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SUMS OF ALMOST ZERO-DIMENSIONAL SPACES

MOHAMMAD ABRY, JAN J. DIJKSTRA, AND JAN VAN MILL

Abstract. Almost zero-dimensionality is a relatively new di-
mension theoretic concept that fits neatly between zero- and
one-dimensionality. In this note we investigate to which ex-
tent familiar properties of dimension carry over to almost
zero-dimensionality. We are particularly interested in sum
theorems.

1. Introduction

All spaces in this note are assumed to be separable and metriz-
able. A subset of a space is called a C-set if it can be written as
an intersection of clopen subsets of the space. Note that a space
is zero-dimensional if and only if every closed subset is a C-set. A
space is called almost zero-dimensional (AZD) if every point has a
neighbourhood basis consisting of C-sets. This definition is due in
essence to Oversteegen and Tymchatyn [13]; see also [5, Proposi-
tion 6.1]. It is shown in [13] that the dimension of these spaces is at
most one; see [1] and [11] for simpler proofs. The standard example
of an AZD space that is not zero-dimensional is Erdős space

E = {(x1, x2, . . . ) ∈ `2 : xi ∈ Q for each i ∈ N},
where `2 stands for the Hilbert space of square summable (real)
sequences. The topology of this space is characterized by Dijkstra
and van Mill in [3] and [4].
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It appears that almost zero-dimensionality is a dimension theo-
retic concept that fits neatly between zero- and one-dimensionality.
In this note we investigate to which extent familiar properties of
dimension carry over to almost zero-dimensionality.

2. Similarities between zero-dimensionality and
almost zero-dimensionality

In this section we list properties of almost zero-dimensionality
that correspond to familiar properties of zero-dimensionality.

A space X is called totally disconnected if for every two distinct
points x and y there is a clopen subset of X that contains x and
misses y. A space X is called hereditarily disconnected if its compo-
nents are singletons. Every zero-dimensional space is AZD, every
AZD space is totally disconnected, and every totally disconnected
space is hereditarily disconnected.

Clearly, almost zero-dimensionality is hereditary. Also, count-
able products of AZD spaces are AZD and hence, inverse lim-
its of AZD spaces are AZD. The class of zero-dimensional spaces
has universal elements – the Cantor set, for instance. Since AZD
spaces are totally disconnected every σ-compact AZD space is zero-
dimensional so the class of AZD spaces cannot have a compact uni-
versal element. However, there is a complete universal space, for
instance complete Erdős space:

Ec = {z ∈ `2 : zi ∈ R \Q for each i ∈ N}.
This fact is implicitly contained in [9] and [13]; see also [4, The-
orem 5.13]. Thus, every AZD space has an AZD completion and
hence, every AZD subspace of a space can be enlarged to a Gδ-
subspace that is AZD (use Lavrientieff [10]). Another consequence
is that every AZD space is imbeddable in R2, which makes the
class of AZD spaces fit nicely between zero-dimensional and one-
dimensional spaces which can be imbedded in R, respectively R3.

If X = E∪F , where dimE ≤ 0 and dimF < n, then dimX ≤ n;
see [6, Lemma 1.5.2]. Levin and Tymchatyn [12] proved that the
union of an AZD space with a zero-dimensional space is at most
one-dimensional. We have the following extension:

Theorem 2.1. Let n ∈ N. If X = E ∪ F , where E is AZD and
dimF < n, then dimX ≤ n.
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Proof: We use induction. The base case n = 1 is the Levin-
Tymchatyn result. Assume that the theorem is valid for some n ∈
N. Let X = E ∪ F where E is AZD and dimF ≤ n. Then we
can write F = F ′ ∪ Z, where dimF ′ < n and dimZ ≤ 0; see [6,
Theorem 1.5.7]. By induction we have dim(E ∪ F ′) ≤ n; thus,
dimX ≤ n + 1. ¤

Using Theorem 2.1 inductively on finite unions of AZD spaces,
we obtain:

Theorem 2.2. Let n ∈ N. If a space X can be covered by n AZD
subspaces, then dimX ≤ n.

Recall that a space X can be covered by n zero-dimensional
subspaces if and only if dimX < n; see [6, Theorem 1.5.8]. In
contrast, the converse of Theorem 2.2 is not valid – the following
result shows that for instance Rn cannot be covered by n AZD
subspaces.

Theorem 2.3. Let n ∈ N. If X is σ-compact then dimX < n if
and only if X can be covered by n AZD subspaces.

Proof: The “only if” part follows from the partition into zero-
dimensional spaces. We prove the “if” part by induction. In the
base case n = 1, X is a σ-compact AZD space; thus, dimX ≤ 0.
Assume that the “if” part is valid for some n ∈ N. Let X =
E1∪· · ·∪En+1, where each Ei is AZD. As remarked above, we may
assume that En+1 is a Gδ-set in X. So X \ En+1 is a σ-compact
space that can be covered by n AZD subspaces. Thus by induction,
dim(X \ En+1) < n. Theorem 2.1 now guarantees that dimX ≤ n
and the proof is complete. ¤

Theorem 2.2 is sharp – Ec×[0, 1]n−1 is an n-dimensional complete
space (see [8] or [6, Problem 1.9.E(b)]) that can be partitioned into
n AZD subsets because the (n − 1)-cell can be partitioned into n
zero-dimensional spaces. This example was presented in [12] for the
case n = 2.

In a zero-dimensional space, the retracts are precisely the non-
empty closed subsets. This result was extended to AZD spaces by
Dijkstra and van Mill [4, Theorem 5.16] as follows.

Theorem 2.4. A non-empty subset of an AZD space is a C-set if
and only if it is a retract of the space.
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This theorem and the following corollary are the main tools in
our proofs in the remaining part of this note.

Corollary 2.5. Let A be a C-set in an AZD space X. Every clopen
subset of A can be extended to a clopen subset of X and every C-set
in A is also a C-set in X.

3. Finite sums of closed sets

In this section we show that almost zero-dimensionality is rather
poorly behaved with respect to sums of closed sets.

Lemma 3.1. Let X = E ∪F , where E and F are closed subsets of
X.

(1) E is a C-set in X if and only if E ∩ F is a C-set in F .
(2) If E is a nonempty C-set in X and if F is AZD then E is

a retract of X and hence every C-set in E is a C-set in X.

Proof: For statement (1), note that the “only if” part is trivial.
For the “if” part, note that if C is a clopen subset of F that does
not meet E, then C is open in X because E is closed, and C is
closed in X because F is closed.

For statement (2), if E ∩ F = ∅ then (2) is a trivial statement,
so assume that E ∩ F 6= ∅. Since E ∩ F is a C-set in F , we have
by Theorem 2.4 that there is a retraction r : F → E ∩ F . Extend
r to an r̃ : X → E by using the identity on E. Since E and F are
closed we have that r̃ is continuous and a retraction. Let A be a
C-set of E. Clearly, A = E ∩ r̃−1(A) and hence A is a C-set in X
as an intersection of two C-sets. ¤

Theorem 3.2. Let X = E ∪ F , where E and F are AZD closed
subsets of X. If E is a C-set in X then X is AZD.

Proof: Let x ∈ X and let V be an arbitrary neighbourhood of x
in X. We consider three cases.

Case 1: x ∈ E \ F . Let U be a C-set neighbourhood of x in E
such that U ⊆ V . Since F is closed, U is also a neighbourhood of
x in X. By Lemma 3.1, U is a C-set in X.

Case 2: x ∈ F \ E. Since E is a C-set there exists a clopen
subset C of X that contains x and misses E. Now there is a C-set
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neighbourhood U of x in F that is contained in V ∩C. Thus, U is
a C-set in the clopen set C and hence a C-set in X.

Case 3: x ∈ E ∩ F . We select with Lemma 3.1 a retraction
r : X → E. Let U1 ⊆ V be a C-set neighbourhood of x in E.
Then r−1(U1) is a (C-set) neighbourhood of x in X. Let U2 be a
C-set neighbourhood of x in F that is contained in V ∩r−1(U1). We
claim that the neighbourhood U = U1∪U2 of x is a C-set of X. Let
y ∈ X \ U . If y ∈ F \E, then there is a clopen subset C of X that
contains y and misses E, and there is a clopen subset C ′ of F that
contains y and does not intersect U2. Note that the intersection
C ∩C ′ is a clopen subset of C and hence a clopen subset of X that
contains y and misses U . If y ∈ E, then there exists a clopen set C
in E that contains y that does not intersect U1. Thus, the clopen
set r−1(C) misses r−1(U1) and its subset U2. We have that r−1(C)
is a clopen neighbourhood of y that misses U . In conclusion, U is
a C-set in X. ¤
Corollary 3.3 (Finite C-set Sum Theorem). If X can be covered
by finitely many C-sets that are AZD, then X is AZD.

Example 3.4. Erdős [7] proved in essence that the empty set is
the only clopen and bounded subset in Ec; see also [2]. (The term
“bounded” refers to the standard norm on `2 that is given by ‖x‖ =
(
∑∞

i=1 x2
i )

1/2.) Consequently, if we add a new point ∞ to Ec whose
neighbourhoods are the complements of bounded sets, then the
resulting space E+

c = Ec ∪ {∞} is a connected space (this is well-
known). Let Rn = {x ∈ Ec : n ≤ ‖x‖ ≤ n + 1} for each n ∈
N ∪ {0}. Define the closed subsets Eeven =

⋃∞
k=0 R2k ∪ {∞} and

Eodd =
⋃∞

k=0 R2k+1 ∪ {∞} of E+
c . The space Eeven is AZD because

each R2n is a clopen AZD subspace of Eeven and Eeven is clearly
zero-dimensional at the point ∞. Eodd is AZD for the same reason,
and we have E+

c = Eeven ∪ Eodd.

By the example we have that in Theorem 3.2 we cannot delete
the requirement that E be a C-set.

Proposition 3.5. There exists a non-trivial connected complete
space X such that X can be written as a union of two AZD closed
subsets.

In the next example we show that the closedness of the subspace
F in Theorem 3.2 is essential.



6 M. ABRY, J. J. DIJKSTRA, AND J. VAN MILL

Example 3.6. Let N be the convergent sequence {0}∪{ 1
n : n ∈ N}.

Consider the product space E+
c ×N and its subspace

P = (Ec × { 1
n : n ∈ N}) ∪ {(∞, 0)}.

Since every Ec×{ 1
n} is clopen in P , we have that {(∞, 0)} is a C-set

in P , that P \ {(∞, 0)} is AZD, and that P is totally disconnected.
Let a be a fixed point in Ec and consider the closed subset A =

{(a, 1
n) : n ∈ N} of P . We claim that for every C-set neighbourhood

U of (∞, 0) in P , the set A \ U is finite (thus, P is not AZD
and A is no C-set). Let U be a C-set neighbourhood of (∞, 0) in
P . Then there is a neighbourhood V of ∞ in E+

c and an n ∈ N
such that V × { 1

k : k ≥ n} ⊂ U . Assume that (a, 1
k ) /∈ U for

k ≥ n. Select a clopen set C such that (a, 1
k ) ∈ C ⊂ P \ U . Note

that C ′ = {x ∈ Ec : (x, 1
k ) ∈ C} is a clopen subset of Ec that is

disjoint from V , and hence C ′ is bounded. Since a ∈ C ′ we have a
contradiction with Erdős [7].

Let P+ stand for the space P ∪ {(a, 0)}. Then P+ is not totally
disconnected because (∞, 0) cannot be separated from (a, 0) by a
clopen set. For if there is a clopen set C that contains (∞, 0) but
not (a, 0), then C ∩P is a C-set neighbourhood of (∞, 0) in P such
that A∩C is finite, contradicting the result above. Note that these
two points are the only points that cannot be separated; thus, P+

is hereditarily disconnected.

Proposition 3.7. There exists a complete space X that is totally
disconnected but not AZD with a C-subset E such that E is zero-
dimensional and X \E is AZD.

Proof: X = P and E = {(∞, 0)}. ¤
The following proposition shows that we still do not have a closed

sum theorem for AZD spaces even if we know that the union is
totally disconnected.

Proposition 3.8. There exists a complete space X that is totally
disconnected but not AZD, and that can be written as a union of
two closed AZD subsets E and F .

Proof: We combine the examples 3.4 and 3.6 as follows: X = P ,
E = P ∩ (Eeven ×N), and F = P ∩ (Eodd ×N). ¤

We also have:
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Proposition 3.9. There exists a complete space X that is hered-
itarily disconnected but not totally disconnected, and that can be
written as a union of two closed AZD subsets E and F .

Proof: X = P+, E = P+ ∩ (Eeven ×N), and F = P+ ∩ (Eodd ×
N). ¤

4. Countable sums of C-sets

In view of Corollary 3.3, it is natural to ask whether a countable
sum of AZD C-sets is AZD.

Proposition 4.1. There are complete spaces X and Y that can be
written as a countable union of AZD C-subsets such that

(1) X is totally disconnected but not AZD, and
(2) Y is hereditarily disconnected but not totally disconnected.

Proof: Let X = P and Y = P+ as in Example 3.6. ¤
Note that every union of hereditarily disconnected C-sets is triv-

ially hereditarily disconnected.
We show that there is a sum theorem for locally finite collections

of C-sets. We say that the space X is locally finitely coverable by a
collection C of subsets of X if each point of X has a neighbourhood
that is covered by finitely many elements from C. Obviously, if C is
a locally finite cover for X, then X is locally finitely coverable by
C.
Lemma 4.2. Let X be locally finitely coverable by a collection C
consisting of C-sets and let C be a nonempty element of C. If each
element of C \ {C} is AZD then C is a retract of X, and hence
every C-set in C is a C-set in X.

Proof: Without loss of generality we may assume that C is count-
able and represent it as {Xn : n ∈ N} with C = X1. By Lemma
3.1, we can find a retraction r′n :

⋃n+1
k=1 Xk →

⋃n
k=1 Xk for each

n ∈ N. Define rn = r′1 ◦ r′2 ◦ · · · ◦ r′n; note that it is a retraction from⋃n+1
k=1 Xk to C. Observe that rn+1¹

⋃n+1
k=1 Xk = rn for each n; thus,

r =
⋃∞

n=1 rn is a well-defined function from X to C that restricts
to the identity on C. For each x ∈ X there is an n ∈ N such that
U =

⋃n+1
k=1 Xk is a neighbourhood of x. Since r¹U = rn and rn is

continuous, we have that r is continuous. ¤
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Theorem 4.3. Let X be locally finitely coverable by a collection C
which consists of AZD C-sets. Then X is an AZD space.

Proof: Let V be a arbitrary neighbourhood of x ∈ X. We may
assume that V is a subset of

⋃F for some finite subcollection F of
C. By Corollary 3.3, the set

⋃F is AZD so we can select a C-set
neighbourhood U of x in

⋃F with U ⊂ V . Applying Lemma 4.2 to
the cover {⋃F}∪C, we find that U is a C-set in X that is obviously
a neighbourhood of x. ¤

5. Closed mappings and retractions

Concerning totally disconnected spaces we have the following
observation.

Proposition 5.1. For a space X the following statements are equiv-
alent:

(1) X is totally disconnected,
(2) every singleton in X is a C-set in X, and
(3) every retract of X is a C-set in X.

Proof: The equivalence of (1) and (2) is a triviality. Since sin-
gletons are retracts, we have (3) ⇒ (2).

(1) ⇒ (3). Let r : X → A be a retraction and let x be an
arbitrary point in X \ A. Thus, r(x) 6= x and hence by (1), there
is a clopen C in X with x ∈ C and r(x) /∈ C. Consider the clopen
neighbourhood D = C \ r−1(C) of x and note that D ∩A = ∅. ¤

In view of Proposition 5.1 a natural question would be whether
Theorem 2.4 and Corollary 2.5 are valid in the class of totally dis-
connected spaces. The following result shows that the answer is
no.

Proposition 5.2. There exists a totally disconnected complete space
X with a C-subset E, such that E contains a clopen subset C that
is no C-set in X (and hence, E is no retract of X).

Proof: Consider Example 3.6. We let X = P , E = A∪{(∞, 0)},
and C = A. ¤

Question 5.3. Does there exist a space that is not AZD such that
the nonempty C-sets are precisely the retracts of the space?
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A closed map with a zero-dimensional range and zero-dimensional
fibers has a zero-dimensional domain; see [6, Theorem 1.12.4]. Again
we see that almost zero-dimensionality is poorly behaved in this re-
spect:

Proposition 5.4. There exists a perfect and open retraction from
a complete space that is not totally disconnected onto an AZD sub-
space such that each fibre is finite.

The proof is contained in the following example:

Example 5.5. Let B = {x ∈ Ec : ‖x‖ ≤ 1} and let S = {x ∈
Ec : ‖x‖ = 1}. Every nonempty clopen subset of B intersects S,
because if C is a nonempty clopen set of B with C ∩ S = ∅, then
C is clopen and bounded in Ec, in violation of Erdős [7]. Consider
the following equivalence relation on the space B × {0, 1}:

(x, ε) ∼ (y, δ) ⇔ x = y ∧ (ε = δ ∨ ‖x‖ = 1).

Let B = (B×{0, 1})/∼ be the quotient space with quotient map q.
Let Bε = q(B×{ε}) for ε = 0, 1 and let S̃ = B0∩B1 = q(S×{0, 1}).
Thus, B consists of two closed copies of B which are attached to
each other by their unit spheres. Let h be the homeomorphism of
B × {0, 1} that is given by the rule h(x, ε) = (x, 1 − ε), and let h̃

be the homeomorphism of B that is defined by q ◦ h = h̃ ◦ q. Note
that ρ = idB0 ∪ (h̃¹B1) is a retraction of B onto B0. The map ρ is
easily seen to be both open and closed.

Let C be a clopen subset of B. Since h̃ restricts to the identity
on S̃ we have that C \ h̃(C) is a clopen subset of B that is disjoint
from S̃. By the remark above, this means that C \ h̃(C) = ∅.
Since h̃ = h̃−1 we have that h̃(C) = C for every clopen set C in
B. Consequently, no x ∈ B \ S̃ can be separated from the distinct
point h̃(x) and hence B is not totally disconnected. Since B0 is
AZD and the fibers of ρ contain at most two points, we have that
B is hereditarily disconnected. Note that we have found another
proof of Proposition 3.9.

Example 5.5 shows that a space that is not totally disconnected
may be the union of two of its AZD retracts. The following obser-
vations show that our example can not be strengthened, meaning
that the union of two AZD retracts is either AZD or a hereditarily
disconnected space that is not totally disconnected. It follows from
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Corollary 3.3 and Proposition 5.1 that if X is a totally disconnected
space that can be written as a finite union of AZD retracts of the
space, then it is AZD.

Proposition 5.6. If X =
⋃

i∈I Fi, where each Fi is a totally dis-
connected retract of X and |I| < 2ℵ0, then X is hereditarily discon-
nected.

Proof: Let C be a connected subset of X and let i ∈ I. If C ∩Fi

consists of at least two points then we can separate these points
in X by a clopen set because Fi is a totally disconnected retract.
Thus, |C| < 2ℵ0 and hence |C| ≤ 1. ¤

6. Sums of open sets

We conclude this note by considering the following question:

Question 6.1. Is the union of two open AZD subspaces an AZD
space?

Note that the answer is negative if we substitute totally discon-
nected for AZD:

Proposition 6.2. There exists a complete space X that is not to-
tally disconnected and that contains two distinct points x and y such
that X \ {x} is totally disconnected and X \ {y} is AZD.

Proof: Consider Example 3.6 and let X = P+, x = (a, 0), and
y = (∞, 0). ¤

According to the next theorem such a simple counterexample
does not exist for AZD spaces. Moreover, this theorem gives a
partial answer to our question. Note that compacta in totally dis-
connected spaces are C-sets.

Theorem 6.3. Let X = O1 ∪O2, where O1 and O2 are open AZD
subsets. If X \O1 is a C-set in O2 and X \O2 is compact, then X
is AZD.

Proof: Let K = X \ O2. Let U be an open subset of X such
that K ⊂ U ⊂ U ⊂ O1. By compactness there exists a C-set V1

in O1 such that K ⊂ intV1 ⊂ V1 ⊂ U . We put V2 = X \ O1

and we claim that V = V1 ∪ V2 is a C-set in X. Let x ∈ X \ V
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and select for i = 1, 2 a clopen subset Ci of Oi such that x ∈ Ci

and Ci ∩ Vi = ∅. Then Ci and Oi \ Ci are open in X. Thus,
C1 ∩ C2 = X \ ((O1 \ C1) ∪ (O2 \ C2)) is a clopen neighbourhood
of x in X that misses V . Note that V is AZD as a topological sum
of the AZD spaces V1 and V2. Observe that X \ V is contained in
X \ intV1 ⊂ O2 and hence the set is AZD. Applying Theorem 3.2
to X = V ∪X \ V , we find that the space is AZD. ¤
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[7] P. Erdős, “The dimension of the rational points in Hilbert space,” Ann. of
Math. (2) 41 (1940), 734–736.

[8] W. Hurewicz, “Sur la dimension des produits Cartésiens,” Ann. of Math.
(2) 36 (1935), no. 1, 194–197.

[9] K. Kawamura, L. G. Oversteegen, and E. D. Tymchatyn, “On homo-
geneous totally disconnected 1-dimensional spaces,” Fund. Math. 150
(1996), no. 2, 97–112.

[10] M. M. Lavrentieff, “Contribution à la théorie des ensembles
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