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SUMS OF ALMOST ZERO-DIMENSIONAL SPACES

MOHAMMAD ABRY, JAN J. DIJKSTRA, AND JAN VAN MILL

ABSTRACT. Almost zero-dimensionality is a relatively new di-
mension theoretic concept that fits neatly between zero- and
one-dimensionality. In this note we investigate to which ex-
tent familiar properties of dimension carry over to almost
zero-dimensionality. We are particularly interested in sum
theorems.

1. INTRODUCTION

All spaces in this note are assumed to be separable and metriz-
able. A subset of a space is called a C-set if it can be written as
an intersection of clopen subsets of the space. Note that a space
is zero-dimensional if and only if every closed subset is a C-set. A
space is called almost zero-dimensional (AZD) if every point has a
neighbourhood basis consisting of C-sets. This definition is due in
essence to Oversteegen and Tymchatyn [13]; see also [5, Proposi-
tion 6.1]. It is shown in [13] that the dimension of these spaces is at
most one; see [1] and [11] for simpler proofs. The standard example
of an AZD space that is not zero-dimensional is Erdés space

¢ = {(x1,2,...) € £*: x; € Q for each i € N},

where (2 stands for the Hilbert space of square summable (real)
sequences. The topology of this space is characterized by Dijkstra
and van Mill in [3] and [4].
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It appears that almost zero-dimensionality is a dimension theo-
retic concept that fits neatly between zero- and one-dimensionality.
In this note we investigate to which extent familiar properties of
dimension carry over to almost zero-dimensionality.

2. SIMILARITIES BETWEEN ZERO-DIMENSIONALITY AND
ALMOST ZERO-DIMENSIONALITY

In this section we list properties of almost zero-dimensionality
that correspond to familiar properties of zero-dimensionality.

A space X is called totally disconnected if for every two distinct
points z and y there is a clopen subset of X that contains x and
misses y. A space X is called hereditarily disconnected if its compo-
nents are singletons. Every zero-dimensional space is AZD, every
AZD space is totally disconnected, and every totally disconnected
space is hereditarily disconnected.

Clearly, almost zero-dimensionality is hereditary. Also, count-
able products of AZD spaces are AZD and hence, inverse lim-
its of AZD spaces are AZD. The class of zero-dimensional spaces
has universal elements — the Cantor set, for instance. Since AZD
spaces are totally disconnected every o-compact AZD space is zero-
dimensional so the class of AZD spaces cannot have a compact uni-
versal element. However, there is a complete universal space, for
instance complete Erdds space:

(’EC:{ZEEQ:ziER\QforeachieN}.

This fact is implicitly contained in [9] and [13]; see also [4, The-
orem 5.13]. Thus, every AZD space has an AZD completion and
hence, every AZD subspace of a space can be enlarged to a Gs-
subspace that is AZD (use Lavrientieff [10]). Another consequence
is that every AZD space is imbeddable in R?, which makes the
class of AZD spaces fit nicely between zero-dimensional and one-
dimensional spaces which can be imbedded in R, respectively R3.
If X = FUF, where dim F < 0 and dim I’ < n, then dim X < n;
see [6, Lemma 1.5.2]. Levin and Tymchatyn [12] proved that the
union of an AZD space with a zero-dimensional space is at most
one-dimensional. We have the following extension:

Theorem 2.1. Letn € N. If X = FEUF, where E is AZD and
dim F' < n, then dim X < n.
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Proof: We use induction. The base case n = 1 is the Levin-
Tymchatyn result. Assume that the theorem is valid for some n €
N. Let X = FUF where FE is AZD and dimF' < n. Then we
can write F' = F’' U Z, where dim F’ < n and dim Z < 0; see [6,
Theorem 1.5.7]. By induction we have dim(E U F’) < n; thus,
dimX <n+1. O

Using Theorem 2.1 inductively on finite unions of AZD spaces,
we obtain:

Theorem 2.2. Let n € N. If a space X can be covered by n AZD
subspaces, then dim X < n.

Recall that a space X can be covered by n zero-dimensional
subspaces if and only if dim X < n; see [6, Theorem 1.5.8]. In
contrast, the converse of Theorem 2.2 is not valid — the following
result shows that for instance R™ cannot be covered by n AZD
subspaces.

Theorem 2.3. Let n € N. If X is o-compact then dim X < n if
and only if X can be covered by n AZD subspaces.

Proof: The “only if” part follows from the partition into zero-
dimensional spaces. We prove the “if” part by induction. In the
base case n = 1, X is a o-compact AZD space; thus, dim X < 0.
Assume that the “if” part is valid for some n € N. Let X =
EyU---UFE, 11, where each E; is AZD. As remarked above, we may
assume that E, 1 is a Gg-set in X. So X \ E, 41 is a o-compact
space that can be covered by n AZD subspaces. Thus by induction,
dim(X \ En+1) < n. Theorem 2.1 now guarantees that dim X <n
and the proof is complete. [l

Theorem 2.2 is sharp — €. x [0, 1]" ! is an n-dimensional complete
space (see [8] or [6, Problem 1.9.E(b)]) that can be partitioned into
n AZD subsets because the (n — 1)-cell can be partitioned into n
zero-dimensional spaces. This example was presented in [12] for the
case n = 2.

In a zero-dimensional space, the retracts are precisely the non-
empty closed subsets. This result was extended to AZD spaces by
Dijkstra and van Mill [4, Theorem 5.16] as follows.

Theorem 2.4. A non-empty subset of an AZD space is a C-set if
and only if it is a retract of the space.
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This theorem and the following corollary are the main tools in
our proofs in the remaining part of this note.

Corollary 2.5. Let A be a C-set in an AZD space X. FEvery clopen
subset of A can be extended to a clopen subset of X and every C-set
in A is also a C-set in X.

3. FINITE SUMS OF CLOSED SETS

In this section we show that almost zero-dimensionality is rather
poorly behaved with respect to sums of closed sets.

Lemma 3.1. Let X = EUF, where E and F' are closed subsets of
X.

(1) E is a C-set in X if and only if ENF is a C-set in F.
(2) If E is a nonempty C-set in X and if F' is AZD then E is
a retract of X and hence every C-set in E is a C-set in X.

Proof: For statement (1), note that the “only if” part is trivial.
For the “if” part, note that if C'is a clopen subset of F' that does
not meet F, then C is open in X because F is closed, and C' is
closed in X because F is closed.

For statement (2), if ENF = () then (2) is a trivial statement,
so assume that ENF # (). Since £ N F is a C-set in F, we have
by Theorem 2.4 that there is a retraction r: F' — E N F. Extend
r to an 7: X — FE by using the identity on E. Since F and F are
closed we have that 7 is continuous and a retraction. Let A be a
C-set of E. Clearly, A= EN7 !(A) and hence A is a C-set in X
as an intersection of two C-sets. O

Theorem 3.2. Let X = EUF, where E and F are AZD closed
subsets of X. If £ is a C-set in X then X is AZD.

Proof: Let x € X and let V' be an arbitrary neighbourhood of z
in X. We consider three cases.

Case 1: x € E\ F. Let U be a C-set neighbourhood of z in F
such that U C V. Since F is closed, U is also a neighbourhood of
z in X. By Lemma 3.1, U is a C-set in X.

Case 2: z € F\ E. Since E is a C-set there exists a clopen
subset C' of X that contains x and misses E. Now there is a C-set
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neighbourhood U of x in F' that is contained in V N C. Thus, U is
a C-set in the clopen set C' and hence a C-set in X.

Case 3: z € FNF. We select with Lemma 3.1 a retraction
r: X — E. Let Uj C V be a C-set neighbourhood of z in E.
Then r~1(U;) is a (C-set) neighbourhood of z in X. Let U be a
C-set neighbourhood of z in F that is contained in VNr=1(Uy). We
claim that the neighbourhood U = U; UU; of x is a C-set of X. Let
ye X\U. If y € F\ E, then there is a clopen subset C of X that
contains y and misses E, and there is a clopen subset C’ of F' that
contains y and does not intersect Us. Note that the intersection
C'NC" is a clopen subset of C' and hence a clopen subset of X that
contains y and misses U. If y € E, then there exists a clopen set C'
in E that contains y that does not intersect U;. Thus, the clopen
set 7~1(C) misses r~1(U7) and its subset Us. We have that r—1(C)
is a clopen neighbourhood of y that misses U. In conclusion, U is
a C-set in X. O

Corollary 3.3 (Finite C-set Sum Theorem). If X can be covered
by finitely many C-sets that are AZD, then X is AZD.

Example 3.4. Erdés [7] proved in essence that the empty set is
the only clopen and bounded subset in &.; see also [2]. (The term
“bounded” refers to the standard norm on £2 that is given by ||z =
(3222, 22)1/2)) Consequently, if we add a new point oo to €. whose
neighbourhoods are the complements of bounded sets, then the
resulting space € = €. U {oco} is a connected space (this is well-
known). Let R, = {z € & : n < ||z]| < n+1} for each n €
N U {0}. Define the closed subsets Eeven = Upe Rox U {00} and
Eodd = Upeo Rak+1 U {oo} of €F. The space Eeven is AZD because
each Ry, is a clopen AZD subspace of Eeven and Eeven is clearly
zero-dimensional at the point co. Ey,qq is AZD for the same reason,
and we have € = Eoven U Eoaa-

By the example we have that in Theorem 3.2 we cannot delete
the requirement that E be a C-set.

Proposition 3.5. There erists a non-trivial connected complete
space X such that X can be written as a union of two AZD closed
subsets.

In the next example we show that the closedness of the subspace
F' in Theorem 3.2 is essential.
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Example 3.6. Let N be the convergent sequence {0}U{ : n € N}.
Consider the product space €7 x N and its subspace

P = (¢ x{L:neN})U{(x,0)}

Since every €. x {1} is clopen in P, we have that {(cc,0)} is a C-set
in P, that P\ {(c0,0)} is AZD, and that P is totally disconnected.

Let a be a fixed point in €. and consider the closed subset A =
{(a, 1) :n € N} of P. We claim that for every C-set neighbourhood
U of (00,0) in P, the set A\ U is finite (thus, P is not AZD
and A is no C-set). Let U be a C-set neighbourhood of (c0,0) in
P. Then there is a neighbourhood V of oo in €} and an n € N
such that V x {+ : k > n} C U. Assume that (a,1) ¢ U for
k > n. Select a clopen set C such that (a,7) € C C P\ U. Note
that C’ = {x € & : (z,7) € C} is a clopen subset of €. that is
disjoint from V| and hence C” is bounded. Since a € C’ we have a
contradiction with Erdés [7].

Let P stand for the space P U {(a,0)}. Then PT is not totally
disconnected because (00, 0) cannot be separated from (a,0) by a
clopen set. For if there is a clopen set C' that contains (oo, 0) but
not (a,0), then C'N P is a C-set neighbourhood of (00, 0) in P such
that ANC is finite, contradicting the result above. Note that these
two points are the only points that cannot be separated; thus, P™
is hereditarily disconnected.

Proposition 3.7. There exists a complete space X that is totally
disconnected but not AZD with a C-subset E such that E is zero-
dimensional and X \ E is AZD.

Proof: X = P and E = {(00,0)}. O

The following proposition shows that we still do not have a closed
sum theorem for AZD spaces even if we know that the union is
totally disconnected.

Proposition 3.8. There exists a complete space X that is totally
disconnected but not AZD, and that can be written as a union of
two closed AZD subsets E and F.

Proof: We combine the examples 3.4 and 3.6 as follows: X = P,
E=PnN(Evyen X N),and F = PN (Eyqq X N). O

We also have:
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Proposition 3.9. There exists a complete space X that is hered-
itarily disconnected but not totally disconnected, and that can be
written as a union of two closed AZD subsets & and F'.

Proof: X = P, E = PT N (Een X N), and F = Pt N (Epqq ¥
N). O

4. COUNTABLE SUMS OF C-SETS

In view of Corollary 3.3, it is natural to ask whether a countable
sum of AZD C-sets is AZD.

Proposition 4.1. There are complete spaces X and Y that can be
written as a countable union of AZD C-subsets such that

(1) X is totally disconnected but not AZD, and
(2) Y is hereditarily disconnected but not totally disconnected.

Proof: Let X = P and Y = P* as in Example 3.6. ]

Note that every union of hereditarily disconnected C-sets is triv-
ially hereditarily disconnected.

We show that there is a sum theorem for locally finite collections
of C-sets. We say that the space X is locally finitely coverable by a
collection C of subsets of X if each point of X has a neighbourhood
that is covered by finitely many elements from C. Obviously, if C is
a locally finite cover for X, then X is locally finitely coverable by
C.

Lemma 4.2. Let X be locally finitely coverable by a collection C
consisting of C-sets and let C' be a nonempty element of C. If each
element of C \ {C} is AZD then C is a retract of X, and hence
every C-set in C is a C-set in X.

Proof: Without loss of generality we may assume that C is count-
able and represent it as {X,, : n € N} with C = X;. By Lemma
3.1, we can find a retraction 7, : [Jit] X — J{_, X) for each
n € N. Define r,, = rjorbo---orl; note that it is a retraction from

Zill X}, to C. Observe that r,41] Uzg X}, = r, for each n; thus,
r = Uy2, m is a well-defined function from X to C' that restricts
to the identity on C. For each x € X there is an n € N such that
U= UZ;I X} is a neighbourhood of z. Since r[U = r, and r, is
continuous, we have that r is continuous. Il
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Theorem 4.3. Let X be locally finitely coverable by a collection C
which consists of AZD C-sets. Then X is an AZD space.

Proof: Let V be a arbitrary neighbourhood of x € X. We may
assume that V' is a subset of | J F for some finite subcollection F of
C. By Corollary 3.3, the set |JF is AZD so we can select a C-set
neighbourhood U of z in |J F with U C V. Applying Lemma 4.2 to
the cover {|J F}UC, we find that U is a C-set in X that is obviously
a neighbourhood of z. O

5. CLOSED MAPPINGS AND RETRACTIONS

Concerning totally disconnected spaces we have the following
observation.

Proposition 5.1. For a space X the following statements are equiv-
alent:

(1) X is totally disconnected,
(2) every singleton in X is a C-set in X, and
(3) every retract of X is a C-set in X.

Proof: The equivalence of (1) and (2) is a triviality. Since sin-
gletons are retracts, we have (3) = (2).

(1) = (3). Let r: X — A be a retraction and let x be an
arbitrary point in X \ A. Thus, r(z) # = and hence by (1), there
is a clopen C in X with z € C and r(z) ¢ C. Consider the clopen
neighbourhood D = C'\ 7~(C) of = and note that DN A =0. O

In view of Proposition 5.1 a natural question would be whether
Theorem 2.4 and Corollary 2.5 are valid in the class of totally dis-
connected spaces. The following result shows that the answer is
no.

Proposition 5.2. There exists a totally disconnected complete space
X with a C-subset E, such that E contains a clopen subset C' that
is no C-set in X (and hence, E is no retract of X).

Proof: Consider Example 3.6. We let X = P, E = AU{(0,0)},
and C' = A. O

Question 5.3. Does there exist a space that is not AZD such that
the nonempty C-sets are precisely the retracts of the space?
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A closed map with a zero-dimensional range and zero-dimensional
fibers has a zero-dimensional domain; see [6, Theorem 1.12.4]. Again
we see that almost zero-dimensionality is poorly behaved in this re-
spect:

Proposition 5.4. There exists a perfect and open retraction from
a complete space that is not totally disconnected onto an AZD sub-
space such that each fibre is finite.

The proof is contained in the following example:

Example 5.5. Let B = {x € €. : ||z]] < 1} and let S = {z €
¢. : ||z|| = 1}. Every nonempty clopen subset of B intersects S,
because if C' is a nonempty clopen set of B with C NS = (), then
C' is clopen and bounded in €, in violation of Erdés [7]. Consider
the following equivalence relation on the space B x {0,1}:

(x,e) ~(y,0) @x=yAN(e=0V]z|]=1).

Let B = (B x{0,1})/~ be the quotient space with quotient map q.
Let B. = q(Bx{e}) fore = 0,1 and let S = BoNB; = q(Sx{0,1}).
Thus, B consists of two closed copies of B which are attached to
each other by their unit spheres. Let h be the homeomorphism of
B x {0,1} that is given by the rule h(z,e) = (z,1 — ¢), and let h

be the homeomorphism of B that is defined by ¢ o h = h o q. Note
that p =idp, U (B[Bl) is a retraction of B onto By. The map p is
easily seen to be both open and closed.

Let C be a clopen subset of B. Since h restricts to the identity
on S we have that C' \ h(C) is a clopen subset of B that is disjoint
from S. By the remark above, this means that C'\ h(C) = 0.
Since h = h~!' we have that h(C) = C for every clopen set C in
B. Consequently, no = € B\ S can be separated from the distinct
point B(x) and hence B is not totally disconnected. Since By is
AZD and the fibers of p contain at most two points, we have that
B is hereditarily disconnected. Note that we have found another
proof of Proposition 3.9.

Example 5.5 shows that a space that is not totally disconnected
may be the union of two of its AZD retracts. The following obser-
vations show that our example can not be strengthened, meaning
that the union of two AZD retracts is either AZD or a hereditarily
disconnected space that is not totally disconnected. It follows from
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Corollary 3.3 and Proposition 5.1 that if X is a totally disconnected
space that can be written as a finite union of AZD retracts of the
space, then it is AZD.

Proposition 5.6. If X = |J,.; Fi, where each F; is a totally dis-
connected retract of X and |I| < 280, then X is hereditarily discon-
nected.

Proof: Let C be a connected subset of X and let i € I. If C N F;
consists of at least two points then we can separate these points
in X by a clopen set because Fj is a totally disconnected retract.
Thus, |C] < 2% and hence |C| < 1. O

6. SUMS OF OPEN SETS
We conclude this note by considering the following question:

Question 6.1. Is the union of two open AZD subspaces an AZD
space?

Note that the answer is negative if we substitute totally discon-
nected for AZD:

Proposition 6.2. There exists a complete space X that is not to-
tally disconnected and that contains two distinct points x and y such
that X \ {z} is totally disconnected and X \ {y} is AZD.

Proof: Consider Example 3.6 and let X = P*, z = (a,0), and
y = (00,0). O

According to the next theorem such a simple counterexample
does not exist for AZD spaces. Moreover, this theorem gives a
partial answer to our question. Note that compacta in totally dis-
connected spaces are C-sets.

Theorem 6.3. Let X = O1 U O, where O1 and Os are open AZD
subsets. If X \ O1 is a C-set in Oz and X \ Oz is compact, then X
is AZD.

Proof: Let K = X \ Oz. Let U be an open subset of X such
that K ¢ U c U C O;. By compactness there exists a C-set 1}
in Op such that K C intV; € V4 C U. We put V5 = X \ O
and we claim that V= 1V3 UV, is a C-set in X. Let x € X\ V
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and select for ¢ = 1,2 a clopen subset C; of O; such that x € C;
and C;NV; = 0. Then C; and O; \ C; are open in X. Thus,
CiNCy =X\ ((01\C1)U(Oz\ C2)) is a clopen neighbourhood
of x in X that misses V. Note that V is AZD as a topological sum
of the AZD spaces V; and V5. Observe that X \ V' is contained in
X \ int V] C Oz and hence the set is AZD. Applying Theorem 3.2
to X =V UX\V, we find that the space is AZD. O
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