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On Countable Dense and Strong Loal HomogeneitybyJan VAN MILLPresented by Czesªaw BESSAGA
Summary. We present an example of a onneted, Polish, ountable dense homogeneousspae X that is not strongly loally homogeneous. In fat, a nontrivial homeomorphismof X is the identity on no nonempty open subset of X.1. Introdution. All spaes under disussion are separable and metriz-able. A spae X is strongly loally homogeneous (abbreviated SLH) if it hasan open base B suh that for all B ∈ B and x, y ∈ B there is a homeo-morphism f : X → X whih is supported on B (that is, f is the identityoutside B) and moves x to y. This notion is due to Ford [7℄. Most of thewell-known homogeneous ontinua are SLH, but not all: the pseudo-ar is anexample of a homogeneous ontinuum that is not SLH.A spae X is ountable dense homogeneous (abbreviated CDH) providedthat for all ountable dense subsets D and E of X there is a homeomorphism
f of X suh that f(D) = E. Bennett [2℄ showed that a onneted CDH-spaeis homogeneous.Bennett [2℄ also showed that every loally ompat SLH-spae is CDH.This was generalized to Polish spaes by Flether and MCoy [6℄, and inde-pendently, but later, by Anderson, Curtis and van Mill [1℄. That this annotbe generalized to Baire spaes was shown by van Mill [10℄ (a similar examplewith better properties was onstruted by Saltsman [12℄).The question whether every onneted CDH-spae is SLH is due to theauthor [10℄, and was repeated as Problem 382 in the Open Problemsin Topology book by Fitzpatrik and Zhou [5℄. It was solved negatively
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under the Continuum Hypothesis by Saltsman [13℄ (nonmetri ounterex-amples were earlier onstruted in [4℄ and [15℄). His example is basedon a areful trans�nite indution proedure in the plane, and inevitablyhas bad ompleteness properties. The aim of this note is to present asolution to the question without using additional set-theoretial assump-tions.Example 1.1. There is a onvex subspae X of Hilbert spae ℓ2 withthe following properties:(1) X is CDH (hene X is homogeneous),(2) a nontrivial homeomorphism of X is the identity on no nonemptyopen subset of X,(3) X × X ≈ ℓ2.Observe that (3) implies that X is Polish (among other things). Thisomes as no surprise, sine Hru²ák and Zamora Avilés [8℄ reently provedthat all Borel CDH-spaes are Polish, and that this extends to all spaesunder the Axiom of Determinay (see however [3℄).Our spae is omplete, but not ompat. The following question, whihappeared as Problem 383 in [5℄, remains open:Question 1.2. Is every CDH-ontinuum SLH?Kennedy [9℄ obtained an interesting partial answer to this question: sheproved that if a ontinuum is 2-homogeneous, and has a nontrivial homeo-morphism that is the identity on some nonempty open set, then it is SLH.I am indebted to Jim Rogers for some useful information. I am alsoindebted to the referee whose observations simpli�ed and lari�ed my originalonstrution substantially.2. Preliminaries. If X and (Y, ̺) are spaes, then C(X, Y ) denotes theolletion of all ontinuous funtions from X to Y . If f, g ∈ C(X, Y ), then

̺̂(f, g) = sup{̺(f(x), g(x)) : x ∈ X}.If X is ompat, then ̺̂ is a metri and the topology indued by ̺̂ is separ-able. See, e.g., [11, � 1.3℄ for details.Let Q denote the Hilbert ube ∏
∞

n=1[−1, 1]n with its admissible metri
̺(x, y) =

∞∑

n=1

2−n|xn − yn|.We assume that the reader is familiar with the basi notions in in�nite-dimensional topology (see [11℄).
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The identity funtion on a set X will be denoted by 1X . We say that anindexing {Xn : n ∈ I} is faithful provided that Xn 6= Xm if n 6= m. We let Idenote the losed unit interval [0, 1].3. Dense olletions of ompata. Let X be a nonempty ompatspae. We say that a ountable olletion X of Z-sets in Q is X-dense if(1) X is pairwise disjoint and every X ′ ∈ X is homeomorphi to X,(2) for every f ∈ C(X, Q) and ε > 0 there are an X ′ ∈ X and a homeo-morphism α : X → X ′ suh that ̺̂(α, f) < ε.If X = {pt}, then the singleton subsets of any ountable dense subset of

Q form an X-dense olletion. Sine Q is CDH, all suh {pt}-dense olletionsare �topologially unique�. We will show that this holds for any nonemptyompat spae.Lemma 3.1. Let X be a nonempty ompat spae. Then there exists an
X-dense olletion X of Z-sets in Q.Proof. Let F = {f1, f2, . . . } be a ountable dense subset of C(X, Q). Weassume that every element of F is listed in�nitely often. For every n we willonstrut a Z-imbedding αn : X → Q suh that

̺̂(αn, fn) < 2−n, αn(X) ⊆ Q \
n−1⋃

i=1

αi(X).Then X = {αn(X) : n ∈ N} is the olletion we are after. Assume that
α1, . . . , αn−1 have been onstruted. Sine ⋃n−1

i=1 αi(X) is a Z-set in Q, thereis a map f : X → Q\
⋃n−1

i=1 αi(X) suh that ̺̂(f, fn) < 2−n. By the MappingReplaement Theorem [11, Theorem 5.3.11℄, we may assume without loss ofgenerality that f is a Z-imbedding. Hene αn = f is as required.Lemma 3.2. Let X be a nonempty ompat spae. If h : Q → Q is ahomeomorphism, and X is an X-dense olletion of Z-sets in Q, then {h(A) :
A ∈ X} is X-dense as well.Proof. Use the fat that h is uniformly ontinuous.We will now prove that X-dense olletions are �topologially unique�.The proof is basially idential to the standard proof that Q is CDH. For theonveniene of the reader, we will present the details.Proposition 3.3. Let X be a nonempty ompat spae. In addition, let
S and T be X-dense olletions of Z-sets in Q. Then there is a homeomor-phism h : Q → Q arbitrarily lose to the identity suh that h(

⋃
S) =

⋃
T.Proof. Let {S1, S2, . . . } and {T1, T2, . . . } be faithful enumerations of

S respetively T. Using the Indutive Convergene Criterion [11, The-
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orem 1.6.2℄, we onstrut a sequene (hn)n of homeomorphisms of Q suhthat its in�nite left produt h is a homeomorphism and the following ondi-tions are satis�ed:(1) hn ◦ · · · ◦ h1(Si) = h2i ◦ · · · ◦ h1(Si) ∈ T for eah i and n ≥ 2i,(2) (hn ◦ · · · ◦h1)

−1(Ti) = (h2i+1 ◦ · · · ◦h1)
−1(Ti) ∈ S for eah i and eah

n ≥ 2i + 1.Let h1 = 1Q, assume h1, . . . , h2i−1 have been de�ned for a ertain i, and put
α = h2i−1 ◦ · · · ◦ h1.We �rst laim that if α(Si) ∩ (T1 ∪ · · · ∪ Ti−1) 6= ∅ then α(Si) ∈
{T1, . . . , Ti−1}. For assume that for some j ≤ i − 1 we have α(Si) ∩ Tj 6= ∅.Observe that by (2),

α−1(Tj) = (h2i−1 ◦ · · · ◦ h1)
−1(Tj) = (h2j+1 ◦ · · · ◦ h1)

−1(Tj) ∈ S,hene α−1(Tj) = Si sine S is pairwise disjoint.If α(Si) ∈ {T1, . . . , Ti−1}, take h2i = 1Q. Otherwise, by the above theomplement U2i of the Z-set
K = (T1 ∪ · · · ∪ Ti−1) ∪ α(S1 ∪ · · · ∪ Si−1)is a neighborhood of α(Si). Let κ : X → α(Si) be any homeomorphism. Sine

T is X-dense, there are an index k ≥ i and a homeomorphism λ : X → Tksuh that Tk ⊆ U2i, and κ and λ are as lose as we please. Hene thereexists a �small� homeomorphism ξ : α(Si) → Tk. By the Z-set Homeomor-phism Extension Theorem [11, Theorem 5.3.7℄ this homeomorphism anbe extended to a �small� homeomorphism h2i of Q whih restrits to theidentity on K. Then h2i learly satis�es the required indutive hypothe-ses.Put β = h2i◦· · ·◦h1. If Ti∩β(S1∪· · ·∪Si) 6= ∅ then Ti ∈ {β(S1), . . . , β(Si)}.For assume that Ti ∩ β(Sj) 6= ∅ for some j ≤ i. Observe that by (1),
β(Tj) = h2i ◦ · · · ◦ h1(Tj) = h2j ◦ · · · ◦ h1(Tj) ∈ S,hene β(Tj) = Si sine S is pairwise disjoint.If Ti ∈ {β(S1), . . . , β(Si)}, take h2i+1 = 1Q. Otherwise, by the above theomplement U2i+1 of the Z-set

L = (T1 ∪ · · · ∪ Ti−1) ∪ β(S1 ∪ · · · ∪ Si)is a neighborhood of Ti. Observe that β(T) is X-dense by Lemma 3.2. Henethere is an index ℓ ≥ i+1 suh that β(Tℓ) is ontained in U2i+1 and �loselyapproximates� Si. In fat, we may hoose β(Tℓ) so lose to Si that thereexists a �small� homeomorphism η : β(Tℓ) → Si. By the Z-set Homeomor-phism Extension Theorem [11, Theorem 5.3.7℄ this homeomorphism an beextended to a �small� homeomorphism h2i+1 of Q whih restrits to theidentity on L. Then h2i+1 learly satis�es the required indutive hypothe-ses.
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If the approximations are hosen small enough, the onditions of theIndutive Convergene Criterion [11, Theorem 1.6.2℄ are satis�ed so that

h = limi→∞ hi ◦ · · · ◦ h1 exists and is a homeomorphism of Q arbitrar-ily lose to the identity. In addition, (1) and (2) easily imply that h(
⋃

S)
=

⋃
T.Remark 3.4. Let X and Y be nonempty ompat spaes. If S is X-denseand T is Y -dense, and ⋃

S ∩
⋃

T = ∅, then S ∪ T is Z-dense, where Z is thetopologial sum of X and Y . Hene by Proposition 3.3 we an simultane-ously push two dense olletions in plae provided their unions are disjoint.By repeating the proof of Proposition 3.3, this an easily be generalized toountably many pairwise disjoint �dense� olletions.4. The example. Now let Q be a Q-dense olletion of Z-sets in Q(Lemma 3.1). Put Y = Q \
⋃

Q. Then Y is a Gδ-subset of Q and hene it isPolish. In addition, Y is onneted, being the omplement of a σ-Z-set in Q.By Remark 3.4 we get:Corollary 4.1. Y is CDH.Sine Y is onneted, this implies that Y is homogeneous. Muh moreis true. Observe that the identity Q → Q an be approximated arbitrarilylosely by maps Q → Q \ Y . Hene every ompat subset of Y is a Z-setin Q. By the proof of Proposition 3.3, this shows that homeomorphismsbetween ompat subsets of Y extend to homeomorphisms of Y (with on-trol).We will now analyze the homeomorphisms of Y . To this end, let h : Y →
Y be an arbitrary homeomorphism. Our goal is to prove that if h 6= 1Y then
h is not the identity on some losed non-Z-set of Y . We originally provedthis for open sets, the strengthening to losed non-Z-sets was suggested bythe referee. Let {Qn : n ∈ N} be a faithful enumeration of Q.Proposition 4.2. There is a permutation ̺ : N → N suh that for every
A ⊆ Y , if A ∩ Qn 6= ∅ then h(A) ∩ Q̺(n) 6= ∅ (here losure means losurein Q).Proof. Let Γ ⊆ Q×Q be the graph of h, let M = Γ , and let πi : M → Qbe the restritions to M of the projetion maps Q × Q → Q, i = 1, 2. Itwas shown in the proof of [1, Lemma 3.6℄ that the maps π1, π2 are monotonesurjetions suh that π−1

1 (
⋃

Q) = π−1
2 (

⋃
Q).Now take an arbitrary n ∈ N. Then π−1

1 (Qn) is a ontinuum sine π1is monotone. Sine by Sierpi«ski's theorem from [14℄ no ontinuum is theountable in�nite union of disjoint nonempty ompata, there is a uniqueelement m ∈ N suh that π−1
1 (Qn) ⊆ π−1

2 (Qm). Sine π2 is monotone
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and π1 is ontinuous, π1(π

−1
2 (Qm)) is onsequently a ontinuum that on-tains Qn and is ontained in Q \ Y . Hene again by Sierpi«ski's theorem,

π1(π
−1
2 (Qm)) = Qn. So we onlude that π−1

1 (Qn) = π−1
2 (Qm). Now de�ne

̺(n) = m. Sine n was arbitrary, this de�nes a funtion ̺ : N → N. It is learfrom the onstrution that ̺ is a bijetion.Let A ⊆ Y be suh that A∩Qn 6= ∅. Pik an arbitrary open neighborhood
U of Q̺(n). Then π−1

2 (U) is an open neighborhood of π−1
2 (Q̺(n)) = π−1

1 (Qn).Sine π1 is a losed map, there is an open neighborhood V of Qn suh that
π−1

1 (V ) ⊆ π−1
2 (U). Pik an element a ∈ A ∩ V . Then (a, h(a)) ∈ π−1

1 (V ),hene h(a) = π2(a, h(a)) ∈ π2(π
−1
1 (V )) ⊆ U , as required.This leads us to the result we are after.Theorem 4.3. Let h : Y → Y be a homeomorphism. If h is the identityon some losed subset of Y that is not a Z-set in Y , then h is the identity.Proof. Let V be the losed non-Z-set on whih h is the identity. Strivingfor a ontradition, assume that there is an element x ∈ Y suh that h(x) 6=

x. Sine Q \ Y is a σ-Z-set, the losure V of V in Q is not a Z-set in Q.Let ε > 0 be suh that if β : Q → Q is ontinuous and ̺̂(β, 1Q) < ε, then
β(Q) ∩ V 6= ∅. Sine singleton subsets of Q are Z-sets, there exist maps
Q → Q \ {h(x)} arbitrarily lose to the identity. Hene we may pik aontinuous funtion α : Q → Q suh that x ∈ α(Q), h(x) 6∈ α(Q), and
̺̂(α, 1Q) < ε/2.There is a neighborhood W of x in Y suh that h(W )∩ (W ∪α(Q)) = ∅(here losure means losure in Q). Observe that V ∩ W = ∅. Let W ′ bean open subset of Q suh that W ′ ∩ Y = W . By onstrution, there arean n ∈ N and a homeomorphism fn : Q → Qn suh that ̺̂(α, fn) < ε/2.Sine x ∈ α(Q), we may assume that ̺̂(α, fn) is so small that fn(Q) = Qnintersets W ′. Sine ̺̂(fn, 1Q) < ε we get Qn ∩ V 6= ∅, hene there is asequene (xn)n in V onverging to an element of Qn. By Proposition 4.2, thesequene (h(xn))n has a limit point in Q̺(n). Sine xn = h(xn) for every n,this means that ̺(n) = n. Now let (yn)n be a sequene in W onverging toan element of Qn. Then (h(yn))n has a limit point in Q̺(n) = Qn, again byProposition 4.2. But this is impossible sine h(yn) ∈ h(W ) for every n, and
h(W ) ∩ Qn = ∅.Corollary 4.4. Let h : Y → Y be a homeomorphism. If h is the iden-tity on some nonempty open subset of Y , then h is the identity.Proof. It su�es to observe that every nonempty open set ontains alosed set with nonempty interior and that Z-sets have empty interior.Remark 4.5. By Wong [16℄, there is a Cantor set K in Q whih is not a
Z-set. Hene if L = K ∩Y , then L is a zero-dimensional losed subset of the
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strongly in�nite-dimensional spae Y with the following urious property: if
h is any homeomorphism of Y that restrits to the identity on L, then h isthe identity on Y . It an be shown however that there are involutions on Ywith a unique �xed point.Remark 4.6. Obviously there are similar examples that are �nite-dimen-sional. For example, replae Q by I

3, and onsider an �I-dense� sequene of
Z1-ars that are ontained in the interior of I

3.We will now show that Y has the additional properties promised in Ex-ample 1.1. That Y is homeomorphi to a onvex subset of ℓ2 follows from [1,Theorem 3.1℄ sine Q \ Y is a σ-Z-set in Q. By observing that the identityfuntion Q → Q an be approximated arbitrarily losely by maps Q → Q\Y ,
Y × Y ≈ ℓ2 follows from [1, Theorem 3.5℄.
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