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Abstract

We investigate the question which (separable metrizable) spaces have a ‘large’ almost
family of connected (and locally connected) sets. Every compact space of dimension at lea
well as all compact spaces containing an ‘uncountable star’ have such a family. Our results sh
the situation for 1-dimensional compacta is unclear.
 2004 Elsevier B.V. All rights reserved.

MSC: 54D05; 54A25

Keywords: Almost disjoint; Connected; Locally connected

1. Introduction

All topological spaces under discussion are separable and metrizable.
Let X be a set andA be a family of subsets ofX. As usual we say thatA is almost

disjoint if A ⊆ [X]|X| and for all distinctA,B ∈ A we have|A ∩ B| < |X|. It is well
known and easy to prove that every infinite setX has an almost disjoint family of subse
A with |A| > |X|; in particular,R has an almost disjoint family of size greater thanc.
The full binary tree of heightc has cardinality 2<c and 2c cofinal branches, hence 2<c = c
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(in particular the Continuum Hypothesis) implies that there is an almost disjoint fam
maximal size 2c in [c]c.

If C ⊆ R is connected and nontrivial (meaning that it has cardinality at least 2)
it contains an interval with rational endpoints. HenceR has a family of countably man
nontrivial connected setsB such that every nontrivial connected setC contains a member o
B (soB is sort of aπ -base for the connected sets). ForR

2 a family with similar properties
must have size at leastc, as the collection{{x} × R: x ∈ R} clearly demonstrates. Ca
there be such a family of sizec? We will answer this question in the negative by prov
the existence of an almost disjoint family of more thanc connected and locally connecte
subsets ofR2. This motivated us to study the following question: which spaces have ‘la
almost disjoint families of nontrivial connected sets? Here ‘large’ means: any size g
thanc (for which there exists an almost disjoint family of subsets ofR). Let Γ denote the
class of spacesX for which such families can be found. We prove that ifX is compact and
dimX � 2 thenX ∈ Γ . Moreover, ifX contains a certain uncountable ‘star’ thenX ∈ Γ .
These results suggest that the rational continua are precisely the continua that are nΓ .
We disprove this by showing that the Sierpiński triangular curve which is rational is inΓ
and that there is a certain continuum which is not rational at a dense open set of p
not inΓ . We conclude by asking for a transparent characterization of all the 1-dimen
compacta that are inΓ .

2. Preliminaries

If X is a set thenP(X) denotes its powerset. A spaceX is locally of cardinalityκ if
each nonempty open subsetU of X has sizeκ . A setT is a transversal for a collection of
setsA provided that|A ∩ T | = 1 for everyA ∈ A.

Let AD(c) be the set of all cardinalsκ > c for which there existκ almost disjoint subset
of R. As noted above, we havec+ ∈ AD(c). We denote byΓ the class of all spacesX for
which there exists for everyκ ∈ AD(c) an almost disjoint family ofκ connected sets inX.
In addition,∆ is the collection of all spaces in which there exists for everyκ ∈ AD(c) an
almost disjoint family of sizeκ of connected and locally connected sets.

Lemma 2.1. Let κ ∈ AD(c). If X is a set with |X| = c then there are families A,B ⊆ P(X)

such that

(1) A is almost disjoint and B is pairwise disjoint,
(2) |A| = κ ,
(3) |B| = c and |B ∩ A| = c for all B ∈ B, A ∈A.

Proof. Let G ⊆ P(X) be almost disjoint with|G| = κ . For everyG ∈ G let fG :G → X

be a surjection such that|f −1(t)| = c for everyt ∈ X. Let E(G) = {〈x,fG(x)〉: x ∈ G},
the graph offG in G × X. It is clear that the familyE = {E(G): G ∈ G} is almost disjoint
in X2 such that|G| = |E |. Moreover,F = {X × {x}: x ∈ X} is pairwise disjoint, and
|F ∩ E(G)| = c for everyF ∈F andG ∈ G. Since|X|2 = |X|, we are done. �
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Corollary 2.2. Let κ ∈ AD(c). If X is a space with |X| = c then for every pairwise disjoint
family E ⊆ [X]c there is a family A ⊆ P(X) such that

(1) A is almost disjoint,
(2) |A| = κ and every A ∈ A is locally of size c,
(3) |E ∩ A| = c for all E ∈ E , A ∈ A.

Proof. Let A′,B ⊆ P(X) be as in Lemma 2.1. Since|E | � c and|B| = c, there is a bijec-
tion f :X → X such thatf (E) ∈ B for everyE ∈ E . So we may assume without loss
generality thatE ⊆ B.

Fix an arbitraryA′ ∈ A′. The collectionU of all relatively open subsets ofA′ of cardinal-
ity less thanc has a countable subcollection with the same union. Sincec has uncountable
cofinality, this means that|⋃U | < c. HenceA = A′ \ ⋃

U is locally of cardinalityc. The
collectionA = {A: A′ ∈ A′} is almost disjoint and|A| = |A′|. In addition, ifA ∈ A and
B ∈ B then|A ∩ B| = c since|A′ \ A| < c. �
Remark 2.3. It is not true that for every almost disjoint familyA ⊆ P(R) there are two
disjoint subsets ofR both meeting eachA ∈ A. To prove this, let{Aα: α < 2c} be almost
disjoint inR (observe that such a family exists, e.g., under the Continuum Hypothesi
Section 1). Let{〈B0

α,B1
α〉: α < 2c} list all pairs of disjoint subsets ofR. Forα < 2c we will

define setsA′
α ⊆ R, as follows. If|Aα ∩B0

α| = c thenA′
α = Aα ∩B0

α . If this is not true then
we putA′

α = Aα ∩ B1
α if this intersection has sizec. Finally, if |Aα ∩ (B0

α ∪ B1
α)| < c then

A′
α = Aα \ (B0

α ∪B1
α). The family{A′

α: α < 2c} is almost disjoint and for everyα < 2c we
haveB0

α ∩ A′
α = ∅ or B1

α ∩ A′
α = ∅.

Remark 2.4. LetA be a family of at mostκ sets, each of cardinalityκ . It is well known and
easy to prove that for everyA ∈ A there is a setB(A) ⊆ A of sizeκ such that the family
{B(A): A ∈ A} is pairwise disjoint. This is called the ‘Disjoint Refinement Lemma’ a
will be used frequently in the remaining part of this note.

Remark 2.5. A space isanalytic if it is a continuous image of a complete space. I
an old result of Souslin that every analytic space is either countable or contains a
set, [5, 1.5.12]. This implies that a complete space is either countable or of card
c. This will be used frequently without explicit reference in the remaining part of
note.

3. The first method for constructing almost disjoint families

In this section we will describe our first method for constructing almost disjoint fam
of connected sets. We will conclude that ifX is compact and dimX � 2 thenX ∈ Γ and if
n � 2 thenR

n ∈ ∆.
For a spaceX we let S(X) denote the collection of all closed subsets ofX that

separateX.
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Theorem 3.1. Let X be a space containing a set S of size less than c such that:

(1) X is connected and nontrivial,
(2) every A ∈ S(X) that misses S has cardinality c.

Then X ∈ Γ .
Assume that X is connected, locally connected and nontrivial, and that for every con-

nected open U ⊆ X we have

(3) every A ∈ S(U) that misses S has cardinality c.

Then X ∈ ∆.

Proof. We may assume without loss of generality thatS is dense inX. Let B be the
collection of allFσ -subsets ofX that missS and have cardinalityc. Then, clearly,|B| � c.
(It is easy to see thatB �= ∅.) The Disjoint Refinement Lemma gives us for everyB ∈ B a
setE(B) ⊆ B of sizec such that the collection

{
E(B): B ∈ B

}

is pairwise disjoint. Letκ ∈ AD(c) be arbitrary. By Corollary 2.2 there is an almost disjo
family A of subsets ofX such that|A| = κ and|E(B)∩A| = c for everyB ∈ B andA ∈A.
So everyA ∈ A intersects everyB ∈ B, hence to establish the first part of the theorem
clearly suffices to prove the following:

Claim 1. If Y ⊆ X intersects every B ∈ B then Y ∪ S is connected.

Assume thatY ∪ S can be written as the union of the disjoint relatively open and n
empty setsE andF . SinceY ∪S is dense inX there exist disjoint and open setsE′ andF ′
in X such thatE′ ∩ (Y ∪S) = E andF ′ ∩ (Y ∪S) = F . Then by (2),B = X\ (E′ ∪F ′) ∈ B.
SinceY ∩ B �= ∅, this is a contradiction.

For the second part of the theorem, simply observe that ifU ⊆ X is open and connecte
andA ∈ S(U) thenA is anFσ -subset ofX. Hence if such anA missesS thenA ∈ B by (3).
So the proof of Claim 1 can be repeated to show that ifY ⊆ X intersects everyB ∈ B then
U ∩ (Y ∪ S) is connected for every connected open setU . Consequently,{A ∪ S: A ∈ A}
is now an almost disjoint family of connected and locally connected sets.�
Remark 3.2. A spaceX is punctiform if it contains no nondegenerate continuum. Knas
and Kuratowski [3, pp. 236 and 237] proved that ifX ⊆ R

2 is punctiform thenR2 \ X is
connected and locally connected. Their proof is similar to the argument in Claim 1
proof of Theorem 3.1 (observe that ifU ⊆ R

2 is connected and open andB ∈ S(U) then
B contains a nondegenerate continuum). See also Jones [2] where similar argumen
used.

Corollary 3.3. If n � 2 then R
n ∈ ∆.
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Proof. Observe that no countable set separates a connected open subset ofR
n if n � 2. So

we can apply Theorem 3.1 withS = ∅. �
Remark 3.4. If E andF are two opposite faces ofIn+1 ⊆ R

n+1, then the almost disjoin
sets we get from the proof of Theorem 3.1 evidently meet each continuum that inte
bothE andF . By the results in Rubin, Schori and Walsh [7] this means that they are
dimension at leastn. Since every(n + 1)-dimensional subspace ofR

n+1 has nonempty in
terior, [5, 3.7.1], only countably many of them are of dimensionn+1. So we conclude tha
in Rn+1 there exists a ‘large’ almost disjoint family of connected and locally connecten-
dimensional sets. Moreover, these sets can be assumed to be pairwise non-homeom
This is clear since for every setA ⊆ R

n the collection{f (A): f :A → R
n continuous} has

size at mostc (use thatA is separable).

A continuumX is decomposable if it is the union of two proper subcontinua. A conti
uum that is not decomposable, is calledindecomposable. It is known that a continuum i
indecomposable if and only if all of its proper subcontinua are nowhere dense, [5, 1.1

The following lemma is well known. It can be proved by observing that every i
composable continuum has uncountably many composants and that they are all de
connected, [5, Exercise 1.10.23]. We include a somewhat simpler proof.

Lemma 3.5. Let X be an indecomposable continuum. Then no countable closed subset of
X separates X.

Proof. Striving for a contradiction, letK ⊆ X be a countable closed set such thatX\K can
be written asE ∪F , whereE andF are disjoint nonempty open subsets ofX. LetE be the
collection of components ofE ∪ K . SinceX is a continuum, andE ∪ K is a proper closed
subset ofX, everyE ∈ E meetsK , [5, A.10.5]. This means thatE is countable. Similarly
the collectionF of components ofF ∪ K is countable. SinceX is indecomposable, th
countable closed coverE ∪ F of X consists of nowhere dense sets. But this violates
Baire Category Theorem forX. �
Corollary 3.6. Let X be a compact space with dimX � 2. Then X ∈ Γ .

Proof. It was shown by Bing thatX contains a (hereditarily) indecomposable continu
K , [5, 3.8.3]. By Lemma 3.5 it follows that no countable closed subset ofK separates
K . This means that ifT ∈ S(K) then T is uncountable, hence|T | = c. So K ∈ Γ by
Theorem 3.1 (let againS = ∅), henceX ∈ Γ . �

4. The second method for constructing almost disjoint families

We will now present our second method that concerns uncountable stars, i.e., un
able collections of subcontinua ‘emanating’ from a single common point.

If X is compact thenC(X) denotes the hyperspace of subcontinua ofX with the Vietoris
topology. It is known thatC(X) is compact, [5, 1.11.14]. The topology ofC(X) can also be
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described in terms of a metric. Indeed, if� is an admissible metric forX then the Hausdorf
metric�H is an admissible metric forC(X).

Lemma 4.1. Let A ⊆ C(X). If D ⊆ A is dense in A in C(X) then
⋃

D is dense in
⋃

A
in X.

Proof. Let x ∈ ⋃
A. If U is an open neighborhood ofx then the collectionU = {A ∈ A:

A ∩ U �= ∅} is a nonempty open subset ofA. So there is an elementD ∈ D ∩ U . Clearly,
D ∩ U �= ∅, hence

⋃
D meetsU . �

Theorem 4.2. Let X be a compact space containing a point p and an uncountable family
C of subcontinua such that for all distinct C,C′ ∈ C we have C ∩ C′ = {p}. Then X ∈ Γ .

Proof. We may clearly assume thatX is a continuum. SinceC is an uncountable sub
space ofC(X), it contains by the Cantor–Bendixson Theorem, [5, Exercise A.2.13
uncountable dense-in-itself subspace. So we may assume without loss of generalitC
is dense-in-itself.

Let � be an admissible metric forX. Forx ∈ X andε > 0 we letUε(x) denote the open
ball {y ∈ X: �(x, y) < ε}. If C ∈ C(X) andε > 0 then we letVε(C) denote the closed ba

{
C′ ∈ C(X): �H (C,C′) � ε

}

in C(X). Our aim is to construct a Cantor setK in C(X) with certain additional desirabl
properties. Start with two distinct elementsC0,C1 ∈ C. Observe that

C0 \ U2−1(p), C1 \ U2−1(p)

are (possibly empty) disjoint compacta inX. Pick disjoint open setsE andF in X such
thatC0 \ U2−1(p) ⊆ E, C1 \ U2−1(p) ⊆ F andE ∩ F = ∅. There existsδ0 > 0 such that
δ0 < 2−1, Vδ0(C0) ∩ Vδ0(C1) = ∅, and

⋃
Vδ0(C0) ⊆ E ∪ U2−1(p),

⋃
Vδ0(C1) ⊆ F ∪ U2−1(p).

Observe that this implies that if�H (C0,A) � δ0 and �H (C1,B) � δ0 then A ∩ B ⊆
U2−1(p). This completes the first step. In the second step, pick pairwise distinct ele
C00,C01,C10,C11 in C such that fori, j = 0,1, �H (Ci,Cij ) < δ0. This is possible sinceC
is dense in itself. By the same argument as the one above we find 0< δ1 < 2−2 such that
the closed balls

{
Vδ1(Cij ): i, j = 0,1

}

are pairwise disjoint, while moreover for all distincti0j0 and i1j1 and elementsA ∈
Vδ1(Ci0j0) andB ∈ Vδ1(Ci1j1) we have

A ∩ B ⊆ U2−2(p).

Continuing in this way in the standard manner clearly yields a Cantor setK in C(X) such
that for all distinctA,B ∈ K we haveA ∩ B = {p}.
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Let Y ⊆ K be locally of cardinalityc, and putY = ⋃
Y . Let B be the collection of al

closed subsetsB of Y such thatp /∈ B and
∣∣{C ∈ Y : C ∩ B �= ∅}∣∣ = c.

Since |B| � c, there is a transversalTY for the collection{C \ {p}: C ∈ Y} such that
TY ∩ B �= ∅ for everyB ∈ B. We claim thatTY ∪ {p} is connected.

Let U andV be disjoint nonempty relatively open subsets ofTY ∪ {p} such thatp ∈ U .
It suffices to prove thatTY \ (U ∪V ) �= ∅. LetU ′ andV ′ be disjoint open subsets ofY such
thatU ′ ∩ (TY ∪ {p}) = U andV ′ ∩ (TY ∪ {p}) = V , [5, A.8.2]. PutB = Y \ (U ′ ∪ V ′).
ThenB is closed inY and does not containp. Suppose first thatE = {C ∈ Y : C ∩ B = ∅}
is dense inY . Then by Lemma 4.1, the dense connected set

⋃
E in Y is contained in

U (sincep ∈ U and it missesB). But this would imply thatU = Y , which contradicts
the fact thatV �= ∅. HenceY \ E contains a nonempty open subset ofY and hence is o
size c. This shows thatB ∈ B and hence, by construction,TY ∩ B �= ∅ or equivalently
TY \ (U ∪ V ) �= ∅.

Let κ ∈ AD(c), and let{Yα: α < κ} be an almost disjoint family of subsets ofK con-
sisting of sets that are all locally of cardinalityc (Corollary 2.2). Then the collection

{
TYα

∪ {p}: α < κ
}

is clearly almost disjoint and consists of connected sets.�
Corollary 4.3. Let X be a continuum containing a point p such that X \ {p} has uncount-
ably many components. Then X ∈ Γ .

Proof. Let K be a component ofX \ {p}. We claim thatK is not compact. For if it is, then
we can find an open neighborhood ofK such thatK ⊆ U ⊆ U ⊆ X \ {p}. It is clear that
K is a component of the compact spaceU . Since components and quasi-components
compact space agree, [5, A.10.1], there is a relatively clopen subsetC of U such thatK ⊆
C ⊆ U . SinceC is open inU , it is open inX. And sinceC is compact, it is closed inX.
This contradictsX being connected. (Alternatively, use the Boundary Bumping Theo
[6, Theorem 5.4].)

So ifK is the family of all components ofX \ {p} thenK ∪{p} is a continuum for every
K ∈K. Hence we are in a position to apply Theorem 4.2.�

5. Examples

A spaceX is said to berational at the pointx ∈ X if x has arbitrarily small neighbor
hoods the boundaries of which are countable. A space isrational if it is rational at any of
its points.

In view of the results in Section 4, one would be tempted to conjecture that for a c
uumX we haveX ∈ Γ if and only ifX is not rational. The following examples demonstr
that this is not true.

Example 5.1. There is a continuumX which is not rational at a dense open set of po
but which does not belong toΓ .
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Proof. Let (Kn)n be a sequence of pairwise disjoint Cantor sets inI such that every non
degenerate interval(r, s) in I contains one of theKn. Let Z = I \ ⋃

n Kn, and put

X = (
I × {0}) ∪

⋃

n�1

(
Kn × [0,1/n]).

It is clear thatX is closed inI
2, and is connected. We claim thatX is not rational at any

point of the dense open setX\ (I×{0}). To prove this, observe that if〈x, y〉 ∈ X\ (I×{0}),
say 〈x, y〉 ∈ Kn × (0,1/n], then there are a clopen neighborhoodC of x in Kn and a
positive real numbers ∈ (0,1/n] with s < y such thatV = C ×[s,1/n] is a neighborhood
of 〈x, y〉 in X. The boundary∂ of V is clearly equal toC ×{s}. Let U be an arbitrary open
neighborhood of〈x, y〉 in X such thatU ⊆ V \ ∂ . We claim thatU \ U is uncountable
If not, thenB = π(U \ U) is also countable, whereπ :V → C is the projection along th
y-axis. By connectivity, ifp ∈ C \ B then either{p} × [s,1/n] ⊆ U or {p} × [s,1/n] ⊆
V \ U . But, clearly,{p} × [s,1/n] �⊆ U sinceU misses∂ . SinceC is a Cantor set andB
is countable,C \ B is dense inC. HenceV \ U contains the set(C \ B) × [s,1/n] that is
clearly dense inV . This, however, contradicts the fact thatU is a nonempty open subs
of V .

Next we show thatX has no large almost disjoint family of connected sets, henceX /∈
Γ . Striving for a contradiction, assume thatA is an almost disjoint family of connecte
subsets ofX such that|A| > c. For everyA ∈ A let D(A) ⊆ A be countable and dens
SinceX has onlyc countable subsets, there is a subcollectionA′ of A of size greater than
c such thatD(A) = D(A′) for all A,A′ ∈A′. This observation shows that we may assu
without loss of generality that there is a subcontinuumY of X such that everyA ∈ A is a
dense subset ofY .

PutZ′ = Y ∩ (Z × {0}).
Claim 1. Z′ is countable.

Assume indirectly thatZ′ is uncountable. HenceZ′ is an uncountableGδ-subset ofY ,
and consequently has cardinalityc. Observe that at most two elements ofZ′ are endpoints
of Y (the possible ‘minimum’ and ‘maximum’ ofZ′). SoZ′ contains a subsetZ′′ of car-
dinality c which consists entirely of cutpoints ofY . Pick two distinct elementsA,A′ ∈ A.
SinceZ′′ consists of cutpoints ofY and bothA andA′ are dense inY and connected, w
clearly haveZ′′ ⊆ A ∩ A′. But this contradictsA being almost disjoint.

So by Claim 1,Y is covered by the countable disjoint collection
{
Y ∩ (

Kn × [0,1/n]): n ∈ N
} ∪ {{z}: z ∈ Z′}.

By the Sierpínski Theorem, [5, A.10.6], at most one element of that collection is nonem
Since that element clearly is not a singleton, this means that there is a uniquen such that
Y ⊆ Kn × [0,1/n]. But this means thatY is contained in a topological copy ofI. This
clearly leads to a contradiction (see the remarks in Section 1).�
Example 5.2. There is a rational continuumS such thatS ∈ ∆.

Proof. Let S be the Sierpínski triangular curve, [4, p. 276]. It is a locally connected
tional plane continuum containing a countable dense set of local cutpointsD such that no
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point inX \ D locally separatesX. (It is even rim-finite, i.e., it has a base for the open s
the boundary of each element of which is finite.) We claim that ifU is open and connecte
in S andK ∈ S(U) thenK is uncountable provided thatK ∩ D = ∅. Striving for a contra-
diction, assume that there exists such a setK that is countable. WriteU \ K as the union
of two disjoint nonempty open subsetsE andF . Pick arbitraryx ∈ E andy ∈ F . ThenK

separates between{x} and{y} in the (connected and) locally connected spaceU . SinceU

is locally connected, we may assume thatK ∩U is irreducible, i.e., no proper closed sub
K ′ ⊆ K separates between{x} and{y} in U , [5, Exercise 3.10.2]. SinceK is countable
and locally compact,K has an isolated point, sayp. If p /∈ E ∪ F thenV = U \ E ∪ F

is a nonempty open subset ofU which is contained inK and containsp. Sincep is iso-
lated inK , we then get thatp is isolated inU which contradicts the connectivity ofU .
So we may assume without loss of generality thatp ∈ E. Suppose thatp /∈ F . Let W be a
neighborhood ofp such thatW ⊆ U \ F andW ∩ K = {p}. ThenE ∪ W is open, misse
F andU \ (E ∪ W ∪ F) is equal toK \ {p}. But this contradicts the fact thatK is irre-
ducible. So it follows thatp ∈ F . Let X ⊆ U be a connected open neighborhood ofp such
that X ∩ K = {p}. SinceX ∩ E �= ∅ andX ∩ F �= ∅, p is a local cutpoint ofX, which
contradicts the fact thatK missesD.

So we conclude from Theorem 3.1 thatS ∈ ∆. �

6. Remarks

(1) Let p ∈ R × (0,∞) be an arbitrary point in the upper half-plane. Forx ∈ R we let
[x,p] denote the straight-line segment inR

2 connecting〈x,0〉 andp. ForA ⊆ R let


p
A =

⋃

x∈A

[x,p].

A setT ⊆ 
p
A \ {p} is called atransversal for 
p

A if |T ∩ [x,p]| = 1 for everyx ∈ A.
The following result, which motivated Theorem 4.2 and which can be proved e
along the same lines, is inspired by the classical Knaster–Kuratowski fan from [3

Proposition 6.1. If p ∈ R × (0,∞) and A ⊆ R is locally of cardinality c then there is
a transversal T for 
p

A such that T ∪ {p} is connected.

If A is zero-dimensional then clearly any transversalT for 
p
A is totally disconnected

i.e., any pair of points ofT can be separated by a clopen set. It is clear however tha
transversalT given by proposition Proposition 6.1 cannot be zero-dimensional s
T ∪ {p} is connected, henceT is totally disconnected but not zero-dimensional. T
there exist totally disconnected spacesX that can be embedded in a connected sp
Y such that|Y \ X| = 1 is well known, see e.g., [1, Problem 6.3.24]. Our construc
seems to be an efficient way of getting such an example.

(2) The examples in Section 5 demonstrate that the 1-dimensional continua that aΓ

form a rather peculiar class. Can they be characterized in a transparent way?
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