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Abstract

We investigate the question which (separable metrizable) spaces have a ‘large’ almost disjoint
family of connected (and locally connected) sets. Every compact space of dimension at least 2 as
well as all compact spaces containing an ‘uncountable star’ have such a family. Our results show that
the situation for 1-dimensional compacta is unclear.
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1. Introduction

All topological spaces under discussion are separable and metrizable.

Let X be a set andd be a family of subsets ak. As usual we say thatl is almost
digoint if A € [X]X! and for all distinctA, B € A we have|A N B| < |X|. It is well
known and easy to prove that every infinite &ehas an almost disjoint family of subsets
A with |A]| > |X|; in particular,R has an almost disjoint family of size greater than
The full binary tree of height has cardinality 2¢ and Z cofinal branches, hence 2= ¢
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(in particular the Continuum Hypothesis) implies that there is an almost disjoint family of
maximal size 2in [c]°.

If C € R is connected and nontrivial (meaning that it has cardinality at least 2) then
it contains an interval with rational endpoints. HeriRdas a family of countably many
nontrivial connected sefs such that every nontrivial connected éetontains a member of
BB (soB is sort of ar -base for the connected sets). Bdra family with similar properties
must have size at least as the collectio{{x} x R: x € R} clearly demonstrates. Can
there be such a family of siz& We will answer this question in the negative by proving
the existence of an almost disjoint family of more thatbnnected and locally connected
subsets oR2. This motivated us to study the following question: which spaces have ‘large’
almost disjoint families of nontrivial connected sets? Here ‘large’ means: any size greater
thanc (for which there exists an almost disjoint family of subset®dfLet I denote the
class of spaceX for which such families can be found. We prove thaXifs compact and
dimX > 2 thenX e I". Moreover, ifX contains a certain uncountable ‘star’ thgne I".

These results suggest that the rational continua are precisely the continua that a#é.not in
We disprove this by showing that the Sidrgki triangular curve which is rational is iR

and that there is a certain continuum which is not rational at a dense open set of points is
not in I". We conclude by asking for a transparent characterization of all the 1-dimensional
compacta that are ifr.

2. Preliminaries

If X is a set therP(X) denotes its powerset. A spag&eis locally of cardinalityx if
each nonempty open subgeétof X has sizec. A setT is atransversal for a collection of
setsA provided thajA N T'| = 1 for everyA € A.

Let AD(¢c) be the set of all cardinals > ¢ for which there exisk almost disjoint subsets
of R. As noted above, we hawg € AD(c). We denote by" the class of all spaces for
which there exists for eveny € AD(c) an almost disjoint family ok connected sets iX.
In addition, A is the collection of all spaces in which there exists for every AD(c) an
almost disjoint family of siz& of connected and locally connected sets.

Lemma2.l. Let k € AD(¢). If X isaset with | X| = ¢ thentherearefamilies A, B C P(X)
such that

(1) Aisalmost disoint and B is pairwise digoint,
(2) Al =«,
(3) IBl=cand|BNA|=cforal BeB, Ac A.

Proof. Let G C P(X) be almost disjoint witHG| = k. For everyG € G let fc:G — X
be a surjection such thaf ~1(r)| = ¢ for everyr € X. Let E(G) = {(x, fc(x)): x € G},
the graph offg in G x X. Itis clear that the familf = {E(G): G € G} is almost disjoint
in X2 such that|/G| = |€]. Moreover,F = {X x {x}: x € X} is pairwise disjoint, and
|F N E(G)| = cforeveryF e F andG € G. Since|X|2 = | X|, we are done. O
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Corollary 2.2. Let k € AD(¢). If X isa spacewith | X| = ¢ then for every pairwise digoint
family £ C [X]¢ thereisafamily A C P(X) such that

(1) Aisamost digoint,
(2) |[Al=«x andevery A € Aislocally of sizec,
(B) |IENA|=cforall E€€&, Ae A

Proof. Let A, BC P(X) be as in Lemma 2.1. Sindé€| < ¢ and|B| = ¢, there is a bijec-
tion f: X — X such thatf(E) € B for every E € £. So we may assume without loss of
generality that C B.

Fix an arbitraryA’ € A’. The collectiori/ of all relatively open subsets d@f of cardinal-
ity less thanc has a countable subcollection with the same union. Sif@es uncountable
cofinality, this means thal Ji/| < ¢. HenceA = A"\ | U is locally of cardinalityc. The
collectionA = {A: A’ € A’} is almost disjoint andA| = |.A|. In addition, ifA € A and
B e Bthen|ANB|=csince|A’\ Al <¢. O

Remark 2.3. It is not true that for every almost disjoint familyt € P(R) there are two
disjoint subsets oR both meeting eacld € A. To prove this, lefA,: « < 2°} be almost
disjoint inR (observe that such a family exists, e.g., under the Continuum Hypothesis, see
Section 1). Le‘((BS, B&): a < 2% list all pairs of disjoint subsets . Fora < 2° we will

define setst/, C R, as follows. If| A, N BY| = c thenA!, = A, N BY. If this is not true then

we putAl, = A, N B if this intersection has size Finally, if |A, N (BO U BL)| < ¢ then

Al, = Ay \ (BOU BL). The family{A,: a < 2} is almost disjoint and for every < 2° we
haveB? N A/, =@ or BN A, = 0.

Remark 2.4. Let A be a family of at most sets, each of cardinality. It is well known and
easy to prove that for every € A there is a seB(A) C A of sizex such that the family
{B(A): A € A} is pairwise disjoint. This is called the ‘Disjoint Refinement Lemma’ and
will be used frequently in the remaining part of this note.

Remark 2.5. A space isanalytic if it is a continuous image of a complete space. It is

an old result of Souslin that every analytic space is either countable or contains a Cantor
set, [5, 1.5.12]. This implies that a complete space is either countable or of cardinality
c¢. This will be used frequently without explicit reference in the remaining part of this
note.

3. Thefirst method for constructing almost digoint families

In this section we will describe our first method for constructing almost disjoint families
of connected sets. We will conclude thakifis compact and difX > 2 thenX e I" and if
n > 2 thenR” € A.

For a spaceX we let S(X) denote the collection of all closed subsets Jofthat
separateX.
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Theorem 3.1. Let X be a space containing a set S of size lessthan ¢ such that:

(1) X isconnected and nontrivial,
(2) every A € S(X) that misses S has cardinality c.

ThenX eT.
Assume that X is connected, locally connected and nontrivial, and that for every con-
nected open U C X we have

(3) every A € S(U) that misses S has cardinality c.
Then X € A.

Proof. We may assume without loss of generality tisats dense inX. Let B be the
collection of all F,;-subsets of that missS and have cardinality. Then, clearly|B| < c.
(It is easy to see thdt # ¢1.) The Disjoint Refinement Lemma gives us for evé¢ B a
setE(B) C B of sizec such that the collection

{E(B): BB}

is pairwise disjoint. Lek € ADD(c) be arbitrary. By Corollary 2.2 there is an almost disjoint
family A of subsets ok such thatA| =« and|E(B)N A| = ¢ for everyB € BandA € A.

So everyA € A intersects evenB € B, hence to establish the first part of the theorem it
clearly suffices to prove the following:

Claim 1. If Y C X intersectsevery B € B then Y U S is connected.

Assume that’ U S can be written as the union of the disjoint relatively open and non-
empty set£ andF. SinceY U S is dense inX there exist disjoint and open setsand F’
in X suchthatt'N(YuUSs)=FEandF'N(YUS)=F.Thenby (2)B=X\(E'UF’) e B.
SinceY N B # ¢, this is a contradiction.

For the second part of the theorem, simply observe thiatdf X is open and connected
andA € S(U) thenA is anF,-subset ofX. Hence if such ar missesS thenA € 5 by (3).
So the proof of Claim 1 can be repeated to show th#tdf X intersects every € 1B then
U N (Y US) is connected for every connected openlseConsequentlhyyA U S: A € A}
is now an almost disjoint family of connected and locally connected sets.

Remark 3.2. A spaceX is punctiformif it contains no nondegenerate continuum. Knaster
and Kuratowski [3, pp. 236 and 237] proved thakifc R? is punctiform therR? \ X is
connected and locally connected. Their proof is similar to the argument in Claim 1 in the
proof of Theorem 3.1 (observe thatlif € R? is connected and open amde S(U) then

B contains a nondegenerate continuum). See also Jones [2] where similar arguments were
used.

Corollary 3.3. If n > 2then R" € A.
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Proof. Observe that no countable set separates a connected open subisétof> 2. So
we can apply Theorem 3.1 with=¢. O

Remark 3.4. If E andF are two opposite faces @+1 c R"+1, then the almost disjoint

sets we get from the proof of Theorem 3.1 evidently meet each continuum that intersects
both E and F. By the results in Rubin, Schori and Walsh [7] this means that they are all of
dimension at least. Since everyn + 1)-dimensional subspace Bf'*! has nonempty in-

terior, [5, 3.7.1], only countably many of them are of dimensianl. So we conclude that

in R"*1 there exists a ‘large’ almost disjoint family of connected and locally connescted
dimensional sets. Moreover, these sets can be assumed to be pairwise non-homeomorphic.
This is clear since for every sdtC R” the collection{ f (A): f:A — R" continuou$ has

size at most (use thatd is separable).

A continuumX is decomposableif it is the union of two proper subcontinua. A contin-
uum that is not decomposable, is caliedecomposable. It is known that a continuum is
indecomposable if and only if all of its proper subcontinua are nowhere dense, [5, 1.10.13].
The following lemma is well known. It can be proved by observing that every inde-
composable continuum has uncountably many composants and that they are all dense and
connected, [5, Exercise 1.10.23]. We include a somewhat simpler proof.

Lemma 3.5. Let X be an indecomposable continuum. Then no countable closed subset of
X separates X.

Proof. Striving for a contradiction, leK € X be a countable closed set such thiatK can

be written as£' U F, whereE and F are disjoint nonempty open subsetskofLet £ be the
collection of components df U K. SinceX is a continuum, and' U K is a proper closed
subset ofX, everyE € £ meetskK, [5, A.10.5]. This means thdt is countable. Similarly,
the collectionF of components of U K is countable. Sinc& is indecomposable, the
countable closed covet U F of X consists of nowhere dense sets. But this violates the
Baire Category Theorem fof. O

Corollary 3.6. Let X be a compact spacewithdimX >2. Then X € I'.

Proof. It was shown by Bing thak contains a (hereditarily) indecomposable continuum
K, [5, 3.8.3]. By Lemma 3.5 it follows that no countable closed subset afeparates
K. This means that i € S(K) thenT is uncountable, hencg'| =¢. SoK € I" by
Theorem 3.1 (let agaif = @), henceX e I'. O

4. The second method for constructing almost disjoint families

We will now present our second method that concerns uncountable stars, i.e., uncount-
able collections of subcontinua ‘emanating’ from a single common point.

If X is compactthe@(X) denotes the hyperspace of subcontinui efith the Vietoris
topology. Itis known thaf (X) is compact, [5, 1.11.14]. The topology©X) can also be
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described in terms of a metric. Indeedpifs an admissible metric fax then the Hausdorff
metric oy is an admissible metric faf(X).

Lemma4.l Let ACC(X).If DC Aisdensein AinC(X) then|JD isdensein | J.A
inX.

Proof. Letx € | JA. If U is an open neighborhood ofthen the collectiod/ = {A € A:
ANU # @} is a nonempty open subsetdf So there is an elemei € D NY. Clearly,
DNU #@, hence JD meetsU. O

Theorem 4.2. Let X be a compact space containing a point p and an uncountable family
C of subcontinua such that for all distinct C, C' e C wehave CNC'={p}. ThenX e I'.

Proof. We may clearly assume that is a continuum. Sinc€ is an uncountable sub-
space ofC(X), it contains by the Cantor-Bendixson Theorem, [5, Exercise A.2.13], an
uncountable dense-in-itself subspace. So we may assume without loss of generality that
is dense-in-itself.

Let o be an admissible metric fof. Forx € X ande > 0 we letU, (x) denote the open
ball {y € X: o(x,y) <e&}. If C € C(X) ande > 0 then we letV, (C) denote the closed ball

[C"ecX): on(C,C) <)

in C(X). Our aim is to construct a Cantor Sétin C(X) with certain additional desirable
properties. Start with two distinct elemertts, C1 € C. Observe that

Co\ Up-1(p), C1\ Up-1(p)

are (possibly empty) disjoint compactaih Pick disjoint open set& and F in X such
thatCo \ Us-1(p) C E, C1\ Us-1(p) € F andE N F = . There exist$p > 0 such that
So < 271, Vs0(Co) N V5 (C1) =1, and

UVso(Co) SEUU,a(p), | JV5o(C1) S F U Upa(p).

Observe that this implies that by (Co, A) < 80 and oy (C1, B) < 8g then AN B C
U,-1(p). This completes the first step. In the second step, pick pairwise distinct elements
Coo, Co1, C10, C11in C such that foi, j =0, 1, 0 (Ci, Ci;) < do. This is possible sincé

is dense in itself. By the same argument as the one above we fing} & 22 such that

the closed balls

{Vs,(Cij)r i, j=0,1}

are pairwise disjoint, while moreover for all distingtjo andi1j1 and elementsA €
Vs5,(Ciyjo) @andB € Vs, (Cyy j,) we have

AN B CUya(p).

Continuing in this way in the standard manner clearly yields a Cantd€ $efC(X) such
that for all distinctA, B € K we haveA N B = {p}.
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Let Y C K be locally of cardinalityt, and putY = J ). Let B be the collection of all
closed subsetB8 of Y such thatp ¢ B and

{Cey: CNB#PY =c.

Since |B| < ¢, there is a transversdly for the collection{C \ {p}: C € Y} such that
Ty N B # ¢ for every B € B. We claim thatTy, U { p} is connected.

Let U andV be disjoint nonempty relatively open subsetg'9fu { p} such thaip € U.
It suffices to prove thely \ (UU V) # @. Let U’ andV’ be disjoint open subsets #fsuch
thatU’ N (Ty U{p}) =U andV' N (Ty U{ph =V, [5, A8.2.. PutB=Y \ (U U V).
ThenB is closed inY and does not contaip. Suppose first thaf = {C € Y: C N B =}
is dense iny. Then by Lemma 4.1, the dense connected(gét in Y is contained in
U (sincep € U and it missesB). But this would imply thatU = Y, which contradicts
the fact thatV £ . Hence) \ £ contains a honempty open subsefofind hence is of
sizec. This shows thatB € B and hence, by constructioffy) N B # ¢ or equivalently
Ty\(UUV)#0.

Let k € AD(c), and let{),: a < «} be an almost disjoint family of subsets &fcon-
sisting of sets that are all locally of cardinalityCorollary 2.2). Then the collection

{Tya U{p} a< K}
is clearly almost disjoint and consists of connected sets.

Corollary 4.3. Let X be a continuum containing a point p such that X \ {p} has uncount-
ably many components. Then X € I'.

Proof. Let K be a component of \ {p}. We claim thatk is not compact. For if it is, then
we can find an open neighborhood Kfsuch thatk C U C U € X \ {p}. It is clear that
K is a component of the compact spdéeSince components and quasi-components in a
compact space agree, [5, A.10.1], there is a relatively clopen sGbset/ such thatk <
C C U. SinceC is open inU, it is open inX. And sinceC is compact, it is closed iX.
This contradictsX being connected. (Alternatively, use the Boundary Bumping Theorem,
[6, Theorem 5.4].)

So if K is the family of all components of \ {p} thenK U {p} is a continuum for every
K € K. Hence we are in a position to apply Theorem 4.21

5. Examples

A spaceX is said to beational at the pointx € X if x has arbitrarily small neighbor-
hoods the boundaries of which are countable. A spacatiisnal if it is rational at any of
its points.

In view of the results in Section 4, one would be tempted to conjecture that for a contin-
uumX we haveX e I" ifand only if X is not rational. The following examples demonstrate
that this is not true.

Example 5.1. There is a continuunX which is not rational at a dense open set of points
but which does not belong tb.
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Proof. Let (K,), be a sequence of pairwise disjoint Cantor setssnch that every non-
degenerate interval, s) in I contains one of th&,,. Let Z =1\ | J, K., and put

X = (Ix{0}) U J(Kn x [0,1/n]).

n>1

It is clear thatX is closed inI?, and is connected. We claim th&tis not rational at any
point of the dense open sEt\ (I x {0}). To prove this, observe that(f, y) € X\ (I x {0}),
say (x, y) € K,, x (0,1/n], then there are a clopen neighborha@df x in K, and a
positive real number € (0, 1/n] with s < y such thatV = C x [s, 1/n] is a neighborhood
of (x, y) in X. The boundary of V is clearly equal taC x {s}. LetU be an arbitrary open
neighborhood ofx, y) in X such thaty € V \ 8. We claim thatU \ U is uncountable.
If not, thenB = (U \ U) is also countable, where: V — C is the projection along the
y-axis. By connectivity, ifp € C \ B then either{p} x [s,1/n] C U or {p} x [s,1/n] C
vV \ U. But, clearly,{p} x [s, 1/n] € U sinceU missesy. SinceC is a Cantor set an@
is countable( \ B is dense inC. HenceV \ U contains the setC \ B) x [s, 1/n] that is
clearly dense irv. This, however, contradicts the fact tHatis a nonempty open subset
of V.

Next we show thak has no large almost disjoint family of connected sets, heéhge
I'. Striving for a contradiction, assume thdtis an almost disjoint family of connected
subsets ofX such that.A| > ¢. For everyA € A let D(A) C A be countable and dense.
SinceX has onlyc countable subsets, there is a subcollectibrof A of size greater than
¢ suchthatD(A) = D(A’) forall A, A’ € A’. This observation shows that we may assume
without loss of generality that there is a subcontinuviraf X such that everyt € Ais a
dense subset df.

PutZ =Y N(Z x {0}).

Claim 1. Z’ is countable.

Assume indirectly thaZ'’ is uncountable. Hencg’ is an uncountablé s-subset of,
and consequently has cardinalityObserve that at most two elementsAifare endpoints
of Y (the possible ‘minimum’ and ‘maximum’ af’). So Z’ contains a subset” of car-
dinality ¢ which consists entirely of cutpoints &f. Pick two distinct elementd, A’ € A.
SinceZ” consists of cutpoints of and bothA and A’ are dense irY and connected, we
clearly haveZ” € A N A’. But this contradicts4 being almost disjoint.

So by Claim 1Y is covered by the countable disjoint collection

{yn(K, x[0,1/n]): neN}U{{z}: ze Z'}.

By the Sierpiski Theorem, [5, A.10.6], at most one element of that collection is nonempty.
Since that element clearly is not a singleton, this means that there is a ungyoh that

Y C K, x [0,1/n]. But this means thaY is contained in a topological copy @f This
clearly leads to a contradiction (see the remarks in Section(l).

Example5.2. There is a rational continuuisuch thatS € A.

Proof. Let S be the Sierpiski triangular curve, [4, p. 276]. It is a locally connected ra-
tional plane continuum containing a countable dense set of local cutpisteh that no
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pointin X \ D locally separateX. (It is even rim-finite, i.e., it has a base for the open sets
the boundary of each element of which is finite.) We claim that i§ open and connected
in S andK € S(U) thenK is uncountable provided that N D = . Striving for a contra-
diction, assume that there exists such aisdhat is countable. Writé¢/ \ K as the union
of two disjoint nonempty open subsdisand F'. Pick arbitraryx € E andy € F. Thenk
separates betwedn} and{y} in the (connected and) locally connected spac&inceU
is locally connected, we may assume tRan U is irreducible, i.e., no proper closed subset
K’ C K separates betwedn} and{y} in U, [5, Exercise 3.10.2]. Sinck is countable
and locally compactK has an isolated point, say. If p¢ EUF thenV =U\EUF
is a nonempty open subset Bf which is contained irK and containg. Sincep is iso-
lated in K, we then get thap is isolated inU which contradicts the connectivity a@f .
So we may assume without loss of generality that E. Suppose thap ¢ F. Let W be a
neighborhood of such thatW C U \ F andW N K = {p}. ThenE U W is open, misses
FandU \ (EUWU F) is equal toK \ {p}. But this contradicts the fact th&  is irre-
ducible. So it follows thap € F. Let X C U be a connected open neighborhoogafuch
that X N K ={p}. SinceXNE #@PandX N F # @, p is a local cutpoint ofX, which
contradicts the fact that missesD.

So we conclude from Theorem 3.1tlfat A. O

6. Remarks

(1) Let p € R x (0, 00) be an arbitrary point in the upper half-plane. koe R we let
[x, p] denote the straight-line segment®#4 connecting(x, 0) andp. For A C R let

AR =JIx, pl.

X€eA

AsetT C AL\ {p} is called aransversal for A% if |T N [x, p]| =1 for everyx € A.
The following result, which motivated Theorem 4.2 and which can be proved easily
along the same lines, is inspired by the classical Knaster—Kuratowski fan from [3].

Proposition 6.1. If p e R x (0, 00) and A C R islocally of cardinality ¢ then thereis
atransversal T for AQ suchthat T U {p} is connected.

If Ais zero-dimensional then clearly any transveébr A’; is totally disconnected,
i.e., any pair of points of" can be separated by a clopen set. Itis clear however that the
transversall' given by proposition Proposition 6.1 cannot be zero-dimensional since
T U {p} is connected, hencE is totally disconnected but not zero-dimensional. That
there exist totally disconnected spacéshat can be embedded in a connected space
Y such thatY \ X| =1 is well known, see e.g., [1, Problem 6.3.24]. Our construction
seems to be an efficient way of getting such an example.

(2) The examples in Section 5 demonstrate that the 1-dimensional continua thatare in
form a rather peculiar class. Can they be characterized in a transparent way?
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