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Notes on Retrats of Coset SpaesbyJ. VAN MILL and G. J. RIDDERBOSPresented by Czesªaw BESSAGASummary. We study retrats of oset spaes. We prove that in ertain spaes the set ofpoints that are ontained in a omponent of dimension less than or equal to n, is a losedset. Using our tehniques we are able to provide new examples of homogeneous spaesthat are not oset spaes. We provide an example of a ompat homogeneous spae whihis not a oset spae. We further provide an example of a ompat metrizable spae whihis a retrat of a homogeneous ompat spae, but whih is not a retrat of a homogeneousmetrizable ompat spae.1. Introdution. If G is a topologial group ating transitively on aspae Z, then for every z ∈ Z we let γz : G → Z be de�ned by γz(g) =
gz. A spae Z is alled a oset spae provided that there is a topologialgroup G with losed subgroup H suh that Z and G/H = {gH : g ∈ G} arehomeomorphi. It is easy to show that Z is a oset spae if and only if thereis a topologial group G ating transitively on Z suh that for some z ∈ Z(equivalently: for all z ∈ Z) the funtion γz : G → Z is open.In the present paper we are primarily interested in retrats of osetspaes. In [9℄ van Mill proved that oset spaes satisfy a ertain �strong�homogeneity ondition. Below we show that a weaker form of this propertyis preserved under taking retrations and therefore it is valid for retrats ofoset spaes. We will use this property to prove some results for retrats ofoset spaes, whih leads to interesting examples. One of our main resultsis that if a σ-ompat spae is a retrat of a oset spae, then the set of allpoints that are ontained in a omponent of dimension less than or equal to
n is a losed set.It is well known that oset spaes are homogeneous. Conversely, Un-gar [11℄ proved that if Z is homogeneous, separable, metrizable and loally2000 Mathematis Subjet Classi�ation: 54C15, 54F45, 54H11.Key words and phrases: oset spae, retration, homogeneous spae, dimension.[169℄
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ompat then Z is a oset spae. This is a onsequene of the E�ros theoremon transitive ations of Polish groups on Polish spaes (E�ros [3℄; see alsovan Mill [10℄). In [6℄ Ford gave an example of a homogeneous spae whih isnot a oset spae. Ford's example is neither metrizable nor loally ompat.In [9℄ van Mill gave an example of a metrizable homogeneous spae that isnot a oset spae. Of ourse, this example annot be loally ompat, it ishowever σ-ompat. We will improve Ford's example in the other diretion:we give an example of a ompat homogeneous spae whih is not (a retratof) a oset spae.We further present an example of a ompat metrizable spae whih isa retrat of a homogeneous ompat spae, but whih is not a retrat of ahomogeneous metrizable ompat spae. In fat we show that this exampleis not a retrat of a oset spae and thus by Ungar's results in [11℄, it followsthat it is not a retrat of a homogeneous metrizable ompat spae.Results on retrats of ompat homogeneous spaes were obtained earlierby Motorov (f. Arkhangel'ski�� [1℄). He was able to show that ertain spaesare not a retrat of a ompat and homogeneous spae. For example, thewell-known sin 1/x-urve in the plane is suh an example. Using our resultswe are able to show that the sin 1/x-urve is not a retrat of a oset spae.Uspenski�� has shown in [12℄ that for every spae X there is a spae Wsuh that X × W ≈ W and W is homogeneous. So if W is Uspenski��'sspae assoiated with the sin 1/x-urve, then W is yet another example of ahomogeneous spae whih is not a oset spae.2. A weak form of Ungar's theorem. We assume that all spaes areTikhonov. Let U be a over of the spae Z. If A ⊆ Z and f : A → Z then wesay that f is limited by U provided that for every z ∈ A there is an element
U ∈ U ontaining both z and f(z). The following theorem an be found invan Mill [9, Theorem 2.1℄. For ompleteness, we inlude the proof.Theorem 2.1. Let Z be a oset spae. Then for every open over U of Zand every ompat K ⊆ Z there is an open over V of Z with the followingproperty : for all V ∈ V and x, y ∈ V there is a homeomorphism h : Z → Zsuh that h(x) = y and h↾K is limited by U .Proof. Let G be a topologial group ating transitively on Z suh thatfor every z ∈ Z the funtion γz : G → Z is open. For z ∈ K let Vz be anopen neighbourhood of e in G suh that γz[V

2
z ] is ontained in an elementof U . There is a �nite F ⊆ K suh that

K ⊆
⋃

z∈F

γz[Vz].Let V =
⋂

z∈F Vz, and let W be a symmetri open neighbourhood of e in Gsuh that W 2 ⊆ V . Put V = {γz[W ] : z ∈ Z}. Then V is an open over of Z,
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and we laim that it is as desired. To see this pik arbitrary z, p, q ∈ Z suhthat p, q ∈ γz[W ]. There are h, g ∈ W suh that hz = p and gz = q. Then
ξ = gh−1 ∈ W 2 and ξp = q. So it su�es to prove that if α ∈ W 2 and y ∈ Kare arbitrary then there exists U ∈ U ontaining both y and αy. Pik z ∈ Fsuh that y ∈ γz[Vz] ⊆ γz[V

2
z ]. Then there is an element f ∈ Vz suh that

fz = y. Sine αy = (αf)z ∈ γz[V
2
z ] and γz[V

2
z ] is ontained in an elementof U , this ompletes the proof.As a orollary we prove the following result for retrats of oset spaes.We use this orollary to prove some of the main results in this paper.Corollary 2.2. Let X be a retrat of a oset spae. Let K ⊆ X beompat and suppose that U is an open over of X. Then there is an openover V of X with the following property : for all V ∈ V and x, y ∈ V thereis a ontinuous funtion f : X → X suh that f(x) = y and f↾K is limitedby U .Proof. Let r : Z → X be a retration where Z is a oset spae. We applyTheorem 2.1 to the over {r−1[U ] : U ∈ U} and the ompat set K ⊆ Z. We�nd a overW of Z with the given properties. We let V = {W∩X : W ∈ W}.Clearly, V is an open over of X. If x, y ∈ V for some V ∈ V, then x, y ∈ Wfor some W ∈ W , so there is a homeomorphism h : Z → Z suh that

h(x) = y and h↾K is limited by {r−1[U ] : U ∈ U}. If we de�ne f : X → Xby f(z) = r(h(z)) for z ∈ X, then it is lear that f(x) = y and it is easilyveri�ed that f↾K is limited by U .For ompat metri spaes we may restate the previous result as follows.Corollary 2.3. Let (X, ̺) be a ompat metri spae and suppose that
X is a retrat of a oset spae. Then for every ε > 0 there is a δ > 0 suhthat whenever ̺(x, y) < δ there is a ontinuous map f : X → X suh that
f(x) = y and f moves no point of X more than ε.Proof. Apply Corollary 2.2 to the over U onsisting of all ε/2-balls in
X to obtain an open over V of X. The number δ is any Lebesgue numberfor V.This last result is a weak form of a theorem due to Ungar [11℄, whihstates that in a ompat and homogeneous metri spae X, for every ε > 0there is some δ > 0 suh that whenever ̺(x, y) < δ there is a homeomorphism
h of X suh that h(x) = y and h moves no point of X more than ε.3. Appliations. Whenever X is a topologial spae, and R is a par-tition of X, then by X/R we denote the quotient spae assoiated to R,and π : X → X/R is the orresponding quotient map. Whenever x ∈ X,by Rx we denote the unique element of R that ontains x. Note that Rx =
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π−1[π(x)]. We say that the partition R is an invariant partition if the fol-lowing holds: for every ontinuous funtion f : X → X and for all R, Q ∈ R,if f [R] ∩ Q 6= ∅ then f [R] ⊆ Q. Examples of invariant partitions are C and
P where C is the family of all omponents in X, and P is the family of allpath-omponents in X. We will always use C and P for these families. Inpartiular we use Cx (Px) for the (path)-omponent ontaining x.In this setion we will prove results that are valid for invariant partitionsin retrats of oset spaes.Theorem 3.1. Suppose X is a retrat of a oset spae and R is aninvariant partition of X. Then π : X → X/R is an open map.Proof. Let U ⊆ X be open. We will show that π−1[π[U ]] is open. Assumeto the ontrary that this set is not open. Then there is an x ∈ π−1[π[U ]]suh that V 6⊆ π−1[π[U ]] for every neighbourhood V of x. De�ne A = X \
π−1[π[U ]]. By assumption we have x ∈ A.Sine π(x) ∈ π[U ] we have U ∩ Rx 6= ∅. So we may hoose y ∈ U ∩ Rx.Let K be the ompat set {y}. Let U = {U, W} where W = X \ {y}.It follows from Corollary 2.2 that we may �nd a ontinuous funtion
f : X → X with the property that f(x) ∈ A and {f(y), y} ⊆ U . Let
f(x) = a. By invariane of R it follows that f(y) ∈ Ra. However, sine
a ∈ A we have a 6∈ π−1[π[U ]] and therefore Ra∩π−1[π[U ]] = ∅. In partiularit follows that Ra ∩ U = ∅. But we have just shown that f(y) ∈ Ra ∩ U ,whih is a ontradition.It is a well-known fat of dimension theory that every �nite olletion oflosed subsets of a normal spae admits an open swelling (see for exampleEngelking [4, Theorem 3.1.1℄). The following lemma is a orollary to thisresult; we give a sketh of the simple proof.Lemma 3.2. Let F be a �nite olletion of losed subsets of a normalspae X. Then there is an open over V of X suh that for all F, G ∈ Fand U, V ∈ V the following holds:
(∗) If F ∩ G = ∅, F ∩ U 6= ∅ and G ∩ V 6= ∅ then U ∩ V = ∅.Proof. Let U = {UF : F ∈ F} be an open swelling of the family F . Forour purposes it su�es to know that whenever F, G ∈ F are disjoint thenso are UF and UG. For every x ∈

⋃

F we set Wx =
⋂

{UF : x ∈ F ∈ F}and Gx =
⋃

{F ∈ F : x 6∈ F}. One easily veri�es that the over V given by
{Wx \ Gx : x ∈

⋃

F} ∪ {X \
⋃

F} satis�es (∗).Theorem 3.3. Suppose X is a retrat of a oset spae and R is aninvariant partition of X. Suppose further that all elements of R are σ-ompat. Let n < ω and onsider the set A onsisting of all points a in Xsuh that dim Ra ≤ n. Then A is a losed subset of X.
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Proof. Assume that p ∈ A. We will show that p ∈ A. Sine Rp is σ-ompat it is Lindelöf and therefore Rp is normal. It follows from the ount-able losed sum theorem (f. [4, Theorem 3.1.8℄) that it su�es to show thatany ompat subset K of Rp satis�es dimK ≤ n.Fix a ompat set K in Rp. We will prove that every family of n+1 pairsof disjoint losed subsets of K is inessential. So let {(Ai, Bi) : 1 ≤ i ≤ n+1}be suh a family. Let F be the family onsisting of all ompat sets Ai and Bifor 1 ≤ i ≤ n+1. The olletion F is a family of losed subsets of the normalspae βX, so we may apply the previous lemma to obtain an open over V of

βX with property (∗). Restriting the over V to X, we obtain an open over
U of X with property (∗). In partiular it follows that whenever Ai ∩U 6= ∅and Bi ∩ V 6= ∅ for some U, V ∈ U then U ∩ V = ∅. By Corollary 2.2 andthe fat that p ∈ A, there is a ontinuous map f of X whih maps p onto
a for some a ∈ A and f↾K is limited by U . By invariane of R, we have
f [Rp] ⊆ Ra.By ompatness, the olletion Γ = {(f [Ai], f [Bi]) : 1 ≤ i ≤ n + 1}is a family of n + 1 pairs of losed subsets of Ra. We will show that it isalso a olletion of pairs of disjoint subsets of Ra. So let f(z) ∈ f [Ai] and
f(w) ∈ f [Bi], where z ∈ Ai and w ∈ Bi. Then there are U, V ∈ U suhthat {z, f(z)} ⊆ U and {w, f(w)} ⊆ V . By (∗) it follows that U ∩ V = ∅ so
f(z) 6= f(w). It follows that f [Ai] ∩ f [Bi] = ∅.Sine Γ is a family of n + 1 pairs of disjoint losed subsets of Ra and
a ∈ A, it follows that it is an inessential family in Ra. By ontinuity of f ,we onlude that the original family {(Ai, Bi) : 1 ≤ i ≤ n + 1} is inessentialin K. Thus we have shown that dimK ≤ n. This ompletes the proof.For appliations of the previous theorem, we note that every omponentof a given spae is losed. It follows that if X is σ-ompat, then everyelement of C is σ-ompat as well.We will use the following theorem to show that the sin 1/x-urve is nota retrat of a oset spae.Theorem 3.4. Suppose X is a retrat of a oset spae and R is aninvariant partition of X. Let R, Q ∈ R be suh that R ∩ Q 6= ∅. Then
R ⊆ Q.Proof. Let R, Q ∈ R with R∩Q 6= ∅. Fix z ∈ R and let U be an arbitraryneighbourhood of z in X. Apply Corollary 2.2 to the ompat set K = {z}and the over U = {U, W} of X where W = X \ {z}, to obtain a over Vwith the stated properties. Pik y ∈ R ∩ Q. Sine V overs X there is a set
V ∈ V with y ∈ V . Sine y ∈ R, we have R ∩ V 6= ∅, so let x ∈ R ∩ V . Bythe properties of V we may �nd a ontinuous funtion f : X → X suh that
f(x) = y and {z, f(z)} ⊆ U . By invariane of R it follows that f [R] ⊆ Qand therefore it follows that f(z) ∈ Q. We have shown that f(z) ∈ U ∩ Q.
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Sine U was an arbitrary neighbourhood of z, we have shown that z ∈ Q.Sine z was arbitrary we have shown that R ⊆ Q.Corollary 3.5. Suppose X is a retrat of a oset spae and R is aninvariant partition of X. Let R, Q ∈ R. The following are equivalent :(1) R ∩ Q 6= ∅,(2) Q ∩ R 6= ∅,(3) R = Q.Proof. It su�es to show the equivalene of (1) and (3). It is lear that(3)⇒(1), so assume (1), i.e. R ∩ Q 6= ∅. By the previous theorem it followsthat R ⊆ Q and thus R ⊆ Q. In partiular Q ∩ R 6= ∅ and again it followsthat Q ⊆ R. Thus R = Q.For ompat metri spaes (X, ̺) we an also prove the following re-sult; details of the proof will appear elsewhere. For ompat metri spaes,Theorem 3.3 follows from this result when R = C.Theorem 3.6. Suppose (X, ̺) is a ompat metri spae whih is a re-trat of a oset spae. Let A ⊆ X be a subset of X with p ∈ A. Then thereis a sequene (Cn)n of omponents of elements of A suh that Cp is hom-eomorphi to the inverse limit of some inverse sequene {Cn, hn

m}m<n<∞.Furthermore, there is a homeomorphism z : Cp → C∞ suh that for every
x ∈ Cp we have

x = lim
n→∞

z(x)n.

4. Examples of homogeneous spaes that are not oset spaes.Using the tehniques developed in the previous setion, we now provide ex-amples. Our �rst example improves Ford's example [6℄ onsiderably as it isan example of a ompat homogeneous spae whih is not a retrat of a osetspae. Seondly, we present an example of a ompat metrizable spae whihis not a retrat of a homogeneous metrizable ompat spae, but whih is aretrat of a homogeneous ompat spae. Our strategy is to show that thespae we onstrut is not a retrat of a oset spae, and onsequently by theresults of Ungar [11℄ it follows that the spae is not a retrat of a homoge-neous metrizable ompat spae. Finally, we show that the sin 1/x-urve isnot a retrat of a oset spae.Example 4.1. Our example is an adaptation of an example by J. vanMill [8℄ (see also Hart and Ridderbos [7℄ for an alternative desription). Weuse the method of resolutions (see Fedorhuk [5℄ and Watson [13℄ for details).The underlying set of the spae X is given by C × S
1. Here C = 2ω is theusual Cantor set and S

1 the irle in the plane. We topologize X as follows.



Retrats of Coset Spaes 175
Whenever s ∈ 2<ω, so s is a �nite sequene of zeros and ones, we put

[s] = {x ∈ C : s ⊆ x}.The family {[s] : s ∈ 2<ω} is the anonial base for the topology on C. Given
x ∈ C and n ∈ ω we put Ux,n = [x↾n], the nth basi neighbourhood of x, and
Cx,n = Ux,n \Ux,n+1. Note that Cx,n is of the form Uy,n+1 for some suitablyhosen y ∈ C.It is well known that S

1 has a point d with a dense positive semi-orbitunder some homeomorphism η of S
1, i.e. the set {ηn(d) : n ∈ ω} is denseis S

1. We de�ne dn = ηn(d) for n ∈ ω. For every x ∈ C we de�ne theresolution maps fx : C \ {x} → S
1 by fx(y) = dn i� y ∈ Cx,n.Now we de�ne basi open sets of X = C×S

1 as follows. Whenever x ∈ C,
Ux is a neighbourhood of x in C and W ⊆ S

1 is open, we de�ne
Ux ⊗ W = ({x} × W ) ∪

⋃

{{x′} × S
1 : x′ ∈ Ux ∩ f−1

x [W ]}.Topologized in this way, X is the resolution of the Cantor set into irles bythe maps fx. The spae X is ompat and Hausdor� (see for example [13℄).Carefully following the argument of van Mill (f. [8℄ and [7℄) one an showthat X is homogeneous. Unlike the spae onstruted in [8℄, it is homoge-neous even in ZFC. Homogeneity follows from the inequality ω < p whihis valid in ZFC. In [8℄ the inequality ω1 < p is needed to prove homogene-ity, sine the weight of the unountable torus is ω1. We have replaed theunountable torus with the irle and the weight of this spae is ω.We will show that the projetion π : X → X/C is not an open mapping.The omponents of X are preisely the sets {x} × S
1, thus we may identify

X/C with the set C. Consider a basi open set of the form Ux ⊗ W in X.Then
π[Ux ⊗ W ] = {x} ∪ {x′ ∈ C : x′ ∈ Ux ∩ f−1

x [W ]}.Then π−1[π[Ux ⊗ W ]] is the set
({x} × S

1) ∪
⋃

{{x′} × S
1 : x′ ∈ Ux ∩ f−1

x [W ]}.Whenever W is not dense in S
1, this set is not open in the resolution topology.This follows from the observation that if V ∩ W = ∅ and V is open in S

1,then Ux ⊗ V is an open neighbourhood of some point of {x} × S
1, but

Ux ∩ f−1
x [V ] 6⊆ Ux ∩ f−1

x [W ].Sine π : X → X/C is not an open mapping but C is an invariant partitionof X, it follows from Theorem 3.1 that X is not a retrat of a oset spae.We now present an appliation of Theorem 3.3. We onstrut a spae Ywhih is not a retrat of a oset spae. In partiular, sine every homogeneousmetrizable ompat spae is a oset spae, it follows that Y is not a retratof a homogeneous metrizable ompat spae. We will however prove the
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surprising property that Y is a retrat of a homogeneous ompat spae, infat Y is a retrat of the spae X onstruted in the previous example.Example 4.2. The spae X is as in the previous example; it is a homo-geneous ompat spae whih is not a retrat of a oset spae. We de�ne thesubspae Y of X as follows. Let e be the point of C with all oordinates zero.We abbreviate Ue,n and Ce,n by Un and Cn respetively. For every n < ω wepik xn ∈ Cn. The spae Y is given as the union of A and B where

A = {e} × S
1, B = {(xn, dn) : n < ω}.The spae Y inherits the topology of X, but this oinides with the topologythat Y inherits from the usual artesian produt of the Cantor set and theirle in the plane. One an easily verify this. It su�es to note that B is adisrete subspae of X, and (Ue ⊗ W ) ∩ Y = (Ue × W ) ∩ Y whenever Ue isan open neighbourhood of e in C and W is an open subset of S

1.So as Y is a subspae of the artesian produt C×S
1, it follows that Y isa ompat metrizable spae, so all omponents in Y are ompat. Note that

B onsists of omponents all of dimension 0, and A is a omponent of Y ofdimension 1. Sine B is dense in Y , it follows from Theorem 3.3 that Y isnot a retrat of a oset spae.We will show that Y is a retrat of X. We de�ne the funtion r : X → Yas follows:
r(w, z) =

{

(w, z) if w = e,
(xn, dn) if w ∈ Cn.We show that r is ontinuous. First note that r−1[(xn, dn)] is open in X sinethis set is Cn × S

1 and this is just the basi open subset Cn ⊗ S
1 of X.Next we onsider basi open subsets V of Y that interset the set A.Suppose

V = ({e} × W ) ∪ {(xn, dn) : n ≥ N and dn ∈ W},where W ⊆ S
1 is open and N < ω. We will show that r−1[V ] is open in X.First note that

r−1[V ] = ({e} × W ) ∪
⋃

{Cn × S
1 : n ≥ N and dn ∈ W}.Sine sets of the form Cn × S

1 are open in X, we are done if we an showthat the set UN ⊗W , whih ontains the set {e}×W , is ontained in r−1[V ].The basi open set UN ⊗ W is given by
({e} × W ) ∪

⋃

{{x′} × S
1 : x′ ∈ UN ∩ f−1

e [W ]}.The set {e}×W is ontained in r−1[V ], so suppose that {x′}×S
1 ⊆ UN ⊗Wwhere x′ 6= e. Then x′ ∈ Cn for some n < ω. Sine x′ ∈ UN , it follows that

n ≥ N . By de�nition of fe we have fe(x
′) = dn, therefore sine fe(x

′) ∈ W ,it follows that dn ∈ W . So the set {x′} × S
1 is ontained in r−1[V ].
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We have shown that r−1[B] is open for every B ∈ B for some basis Bof Y . It follows that r is a retration. Note that sine Y is a retrat of X, itfollows one again that X is not a retrat of a oset spae.As an appliation of Corollary 3.5 we show that the sin 1/x-urve is not aretrat of a oset spae. If W is the assoiated spae onstruted by Uspenski��in [12℄ then W is a homogeneous spae whih is not a oset spae.In partiular it also follows that the sin 1/x-urve is not a retrat of ahomogeneous metrizable ompat spae. This result is not new sine Motorovhas proved the more general theorem stating that the sin 1/x-urve is not aretrat of a homogeneous ompat spae. However our general result does notfollow from Motorov's observations, sine oset spaes need not be ompat.Example 4.3. The sin 1/x-urve in the plane is given as the union of itstwo path omponents P1 and P2 where

P1 = {(0, x) : −1 ≤ x ≤ 1}, P2 = {(x, sin 1/x) : 0 < x ≤ 1}.Sine P1 ⊆ P2 but P1 = P1 it follows from Corollary 3.5 that this spae isnot a retrat of a oset spae.5. Further examples. In this setion we provide some further examplesto illustrate some limitations of our results. We will show that the inequalitiesin Theorem 3.3 annot be replaed by equality. We provide a spae X whihis a retrat of a ompat homogeneous metrizable spae, and a dense subset
A ⊆ X where dimCa = 1 for every a ∈ A, but dimCx = 0 for some x ∈ X.Reall that a ompat and homogeneous metrizable spae is a oset spae.A speial lass of retrats of oset spaes is the lass of all ompatmetrizable spaes X for whih Xω is homogeneous; suh spaes are powerhomogeneous. It was noted by Arkhangel'ski�� (f. [2℄) that if in a powerhomogeneous spae some point has a lopen base, then the spae is zero-dimensional. It follows that the previous example is not power homogeneous.Our seond example will be a ompat metri spae X for whih Xω ishomogeneous and for some dense set A in X we have dim Ca = 2 for every
a ∈ A whereas dimCx = 1 for some x ∈ X.Example 5.1. Our �rst example is a subspae of the plane R

2. It isgiven by
X = {(0, 0)} ∪

⋃

{{1/n} × [0, 1/n] : n ∈ N}.It is a trivial observation that X is a retrat of the spae Z × I where Z isthe onvergent sequene given by {0}∪{1/n : n ∈ N} and I is the usual unitinterval. Sine (Z × I)ω is homogeneous, it follows that X is a retrat of aompat homogeneous metrizable spae.
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The set ⋃

{{1/n} × [0, 1/n] : n ∈ N} is dense in X and it onsists ofomponents of X, all of dimension 1. The set {(0, 0)} is a omponent ofdimension 0, showing that the inequalities in Theorem 3.3 annot be replaedby equality.The previous example does not seem to be very powerful. As announed,we will now provide an example with similar properties, but whih is fur-thermore a ompat spae whih is even power homogeneous.Example 5.2. As in the previous example, Z is the onvergent sequeneand X is given by
X = {0} ∪

⋃

n∈N

[1/(2n + 1), 1/2n].We endow Z with the usual topology and X is a subspae of R. The spae
X is learly homeomorphi to the spae desribed in the previous example.The example is X×I. We will prove that this spae is power homogeneous.By Q we denote the Hilbert ube I

ω. The following is our main observation:Proposition 5.3. The spaes Z × Q and X × Q are homeomorphi.Proof. We write X = {0} ∪
⋃

n∈N
In where In = [1/(2n + 1), 1/2n].For every n ∈ N we �x a homeomorphism hn : In → I. We de�ne a map

h : X × Q → Z × Q as follows. For (x, y) ∈ X × Q, h(x, y) = (x, y) if x = 0and h(x, y) = (1/n, w) if x ∈ In and w is given by
wm =







ym if m < n,
hn(x) if m = n,
ym−1 if m > n.Thus the set In×Q is mapped onto {1/n}×Q and the interval In is mappedonto the nth interval in Q. It is not hard to verify that h is a homeomorphism,and this ompletes the proof.Corollary 5.4. The spae (X × I)ω is homogeneous.Proof. By the previous proposition it follows that

(X × I)ω ≈ (X × Q)ω ≈ (Z × Q)ω ≈ Zω × Q.This last spae is the produt of the Cantor set and the Hilbert ube and istherefore homogeneous.
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