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STRONG LOCAL HOMOGENEITY AND COSET SPACES

JAN VAN MILL

(Communicated by Alan Dow)

Abstract. We prove that for every homogeneous and strongly locally homo-
geneous separable metrizable space X there is a metrizable compactification
γX of X such that, among other things, for all x, y ∈ X there is a homeomor-
phism f : γX → γX such that f(x) = y. This implies that X is a coset space
of some separable metrizable topological group G.

1. Introduction

All spaces under discussion are Tychonoff. If G is a topological group acting on
a space X , then for every x ∈ X we let γx : X → G be defined by γx(g) = gx.
We also let Gx = {g ∈ G : gx = x} denote the stabilizer of x ∈ X . Then Gx is
evidently a closed subgroup of G.

A space X is a coset space provided that there is a topological group G with
closed subgroup H such that X and G/H = {xH : x ∈ G} are homeomorphic.
Observe that G acts transitively on G/H . It is well known, and easy to prove, that
G/Gx is homeomorphic to X if γx is open. So for a space X to be a coset space it
is necessary and sufficient that there is a topological group G acting transitively on
X such that for some x ∈ X (equivalently: for all x ∈ X) the function γx : G → X
is open.

A space X is strongly locally homogeneous (abbreviated: SLH) if it has an open
base B such that for all B ∈ B and x, y ∈ B there is a homeomorphism f : X → X
which is supported on B (that is, f is the identity outside B) and moves x to y.
This notion is due to Ford [2]. The topological sum of the spheres S1 and S2 is
SLH, but not homogeneous. It is not hard to prove that a connected SLH-space is
homogeneous, and that every Polish SLH-space is countably dense homogeneous.
Most of the well-known homogeneous continua are strongly locally homogeneous:
the Hilbert cube, the universal Menger continua and manifolds without boundaries.
The pseudo-arc is an example of a homogeneous continuum which is not SLH.
Observe that a zero-dimensional homogeneous space is evidently SLH (the clopen
sets do the job). Ford [2] essentially proved that every Tychonoff homogeneous and
SLH-space X is a coset space (see also Mostert [6, Theorem 3.2]). The proof goes
as follows. One thinks of X as a subspace of its Čech-Stone compactification βX .
The subgroup

G = {g ∈ H(βX) : g(X) = X}
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of the homeomorphism group H(βX) of βX endowed with the compact-open topol-
ogy acts transitively on X , and by strong local homogeneity, γx : G → X is open
for every x ∈ X (see the proof of Theorem 1.1 below).

In this note we are, among other things, interested in the question whether Ford’s
theorem holds within the class of all separable and metrizable spaces.

It is known that many homogeneous spaces are coset spaces. Every topological
group is evidently a coset space. Ungar [7] proved that if X is separable metrizable,
homogeneous and locally compact, then X is a coset space. This is a consequence
of the Effros Theorem on transitive actions of Polish groups on Polish spaces (Ef-
fros [1]). Not all homogeneous spaces are coset spaces; see Ford [2] and van Mill [5].

Here is our main result.

Theorem 1.1. Let a separable metrizable X be both homogeneous and SLH. Then
X is a coset space of some separable metrizable topological group G.

We prove that a homogeneous and SLH-space X has a (metrizable) compactifica-
tion γX such that, among other things, for all x, y ∈ X there is a homeomorphism
h : γX → γX such that h(x) = y and h(X) = X . Theorem 1.1 is a corollary of
this. Such compactifications surface at several places in the literature. If G is a
topological group acting on a space X , then X admits a compactification γX such
that the action of G on X can be extended to an action of G on γX if and only if
the motion-continuous functions on X separate the points and the closed subsets
of X (such a compactification is called equivariant). Here a continuous real-valued
function f on X is motion-continuous if for every ε > 0 there exists a neighbor-
hood U of the neutral element of G such that for all g ∈ U and all x ∈ X we have
|f(gx) − f(x)| < ε. Observe that for an equivariant compactification γX we have
that for every g ∈ G the homeomorphism x �→ gx of X can be extended to the
homeomorphism y �→ gy of γX . For a locally compact G acting on X an equivariant
compactification of X exists (see de Vries [9] for details) and similarly if the action
is transitive and the space is of the second category. See Uspenskĭı [8] for details (I
am indebted to Michael Megrelishvili for informing me about this result). As was
shown by Megrelishvili [3], not all actions can be ‘equivariantly compactified’, even
if the group and the space under consideration are both Polish.

From now on, all topological spaces under discussion are separable and metrizable.

2. Homogeneous spaces

For a space X we let H(X) denote the homeomorphism group of X . If A ⊆ X ,
then H(X |A) = {h ∈ H(X) : h(A) = A}.

If X is a space, then O(X) denotes the collection of open subsets O in X such
that for all x, y ∈ O there is an element f ∈ H(X) which is supported on O and
sends x to y. Observe that O(X) is invariant under H(X). It is obvious that X is
homogeneous if and only if X ∈ O(X). Finally, observe that X is SLH if and only
if O(X) is a base for X .

Let G be a topological group acting on a space X . The action is transitive if for
all a, b ∈ X there is an element g ∈ G such that the homeomorphism x �→ gx of
X takes a onto b. Hence if G acts transitively on X , then X is homogeneous. The
natural action of H(X) on X is defined by the formula

(h, x) �→ h(x) : H(X) × X → X.
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A topology on H(X) is called admissible if it makes H(X) a topological group and
makes the natural action of H(X) on X continuous. Since all topologies that we
consider are separable and metrizable, it is not clear whether H(X) has such a
topology. Observe that if H(X) admits an admissible topology, then its natural
action on X is transitive if and only if X is homogeneous. If X is compact, then
the compact-open topology on H(X) is admissible. If � is an admissible metric on
X , then the formula

�̂(f, g) = max
{
�
(
f(x), g(x)

)
: x ∈ X

}
defines a metric on H(X) that generates the compact-open topology.

3. Strongly locally homogeneous spaces

In this section we will prove that every homogeneous and SLH-space X has a
compactification γX with certain homogeneity properties. We first prove that the
homogeneity of X can in some sense be captured in a certain countable family
of open subsets of X . Then we use these countably many open sets to define a
(countable) Wallman base for X of which γX is the corresponding Wallman com-
pactification. For background information on Wallman compactifications, see [4,
§A.9].

Proposition 3.1. Let X be SLH and homogeneous. There are a countable subcol-
lection V of O(X) and a countable subgroup G of H(X) such that

(1) X ∈ V and V is a base of X,
(2) V is invariant under G,
(3) for all V ∈ V, x, y ∈ V and ε > 0, there exist A, B ∈ V and g ∈ G such that

(i) A ∪ B ⊆ V , x ∈ A, y ∈ B,
(ii) diamA < ε, diamB < ε,
(iii) g is supported on V , and g(A) = B.

Proof. Let U be a countable subcollection of O(X) which is a base of X . By
homogeneity we may assume that X ∈ U. We will construct V in such a way that
it contains U. So then (1) is automatically satisfied.

Fix O ∈ O(X) for a moment and let A denote the collection of all homeomor-
phisms of X which are supported on O. Put U′ = {U ∈ U : U ⊆ O}. For every
U ∈ U′ and n ∈ N, put

E(U, n) = {α(U) : α ∈ A, diamα(U) < 1
n}.

There is a countable subcollection A(U, n) of A such that
⋃

E(U, n) =
⋃

{α(U) : α ∈ A(U, n)}.
Now let x, y ∈ O and n ∈ N be arbitrary. Pick β ∈ A such that β(x) = y.
Since U is a base, there clearly is an element U ∈ U′ such that diamU < 1

n and
diamβ(U) < 1

n . This implies that y ∈ β(U) ⊆ ⋃
E(U, n). There consequently is an

element α ∈ A(U, n) such that y ∈ α(U).
Put

H = {1X} ∪
∞⋃

n=1

⋃
U∈U′

A(U, n), W = {α(U) : U ∈ U′, α ∈ H}.
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Then both H and W are countable. Observe that by the above for all x, y ∈ O
and n ∈ N there are W0, W1 ∈ W and α ∈ H such that x ∈ W0 ⊆ W 0 ⊆ O,
y ∈ W1 ⊆ W 1 ⊆ O, diamW0 < 1

n , diamW1 < 1
n and α(W0) = W1.

It is now clear how to proceed. For each element of the base U we construct as
above countable subcollections of O(X) and H(X), respectively, which ‘deal’ with
that element. This is the first step of an inductive process. There are countably
many sets and homeomorphisms only at this stage. We may clearly assume that
these sets are invariant under these homeomorphisms, and that the homeomor-
phisms form a subgroup of H(X). Then we proceed with each of these countably
many sets in precisely the same way, etc. At each step of our countable process we
have countable collections. At the end of our process we consequently obtain the
countable base V and the countable subgroup G we are looking for. �

Let X be homogeneous and strongly locally homogeneous. To X we associate
the countable base V and countable group G of Proposition 3.1.

The closed collection

{X \ V : V ∈ V} ∪ {V : V ∈ V}
can be enlarged to a (countable) Wallman base F of X ([4, Lemma A.9.1]). We
may assume without loss of generality that F is invariant under G. The Wallman
compactification γX = ω(X, F) of X consequently has the property that each
homeomorphism g ∈ G can be extended to a homeomorphism ĝ : γX → γX .

For every open subset U ⊆ X , put Û = γX \ X \ U (here closure means closure
in γX). The open collection V̂ = {V̂ : V ∈ V} is clearly a local base in γX at every
point of X .

Take V ∈ V and g ∈ G. Then,

ĝ(V̂ ) = γX \ ĝ(X \ V ) = γX \ X \ g(V ) = ĝ(V ).

So the collection V̂ is invariant under the subgroup Ĝ = {ĝ : g ∈ G} of H(γX).
Moreover, if g is supported on V , then ĝ is supported on V̂ . In addition, if V, W ∈ V

are such that the closure V of V in X is contained in W , then V and X \ W are
disjoint members from F and hence have disjoint closures in γX . This implies that
the closure of V in γX is contained in Ŵ . These observations complete the proof
of the following:

Corollary 3.2. Let X be SLH and homogeneous. Then there are a compactification
γX of X and a countable collection W of open subsets of γX and a countable
subgroup G of H(γX |X) such that

(1) γX ∈ W and W � X is a base of X,
(2) W is invariant under G,
(3) for all W ∈ W, x, y ∈ W ∩ X and ε > 0, there exist A, B ∈ W and g ∈ G

with
(i) A ∪ B ⊆ W , x ∈ A, y ∈ B,
(ii) diamA < ε, diamB < ε,
(iii) g is supported on W , and g(A) = B.

In the remaining part of this section, we adopt the notation in Corollary 3.2.
Let x, y ∈ W for certain W ∈ W. Suppose that there are Ai, Bi ∈ W and gi ∈ G
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for every i such that
(A1) if i ≥ 2, then gi is supported on Bi−1,
(A2) diamBi ≤ 2−i, Bi+1 ⊆ Bi,
(A3) y ∈ Bi ⊆ W ,
(A4) Ai = (gi ◦ · · · ◦ g1)−1(Bi),
(A5) diamAi ≤ 2−i, Ai+1 ⊆ Ai,
(A6) x ∈ Ai ⊆ W .

We say that the sequences (Ai)i, (Bi)i and (gi)i are admissible for x and y.
If both x and y belong to X , then there are such sequences.

Lemma 3.3. If x, y ∈ X, then there are admissible sequences (Ai)i, (Bi)i in W

and (gi)i in G.

Proof. Put A0 = B0 = W and g0 = 1γX . Suppose that

A0, . . . , Ai, B0, . . . , Bi, g0, . . . , gi

have been constructed for some i. Observe that

a = gi ◦ · · · ◦ g0(x) ∈ Bi

by (A4). Let U ⊆ Ai be a closed neighborhood of x and V ⊆ Bi a closed neighbor-
hood of y such that

(1) diamU ≤ 2−(i+1), diamV ≤ 2−(i+1),
(2) gi ◦ · · · ◦ g0(U) ⊆ Bi.

By the properties of W and G there are E, F ∈ W and gi+1 ∈ G such that
(3) a ∈ E ⊆ gi ◦ · · · ◦ g0(U), y ∈ F ⊆ V ,
(4) gi+1(E) = F ,
(5) gi+1 is supported on Bi.

Define Ai+1 = (gi ◦ · · · ◦ g0)−1(E) and Bi+1 = F . Then our choices are easily seen
to be as required. �

Let Z be a compact space and let (hn)n be a sequence in H(Z). It is clear that
for each n ∈ N we have

fn = hn ◦ · · · ◦ h1 ∈ H(Z).
If f = limn→∞ fn exists in H(Z), then it will be denoted by

lim
n→∞ hn ◦ · · · ◦ h1

and is called the infinite left product of the sequence (hn)n.

Lemma 3.4. Suppose that the sequences (Ai)i, (Bi)i and (gi)i are admissible for
x, y ∈ W . Then

(1) g = limi→∞ gi ◦ · · · ◦g1 is a homeomorphism of γX that is supported on W ,
(2) �̂(gi ◦ · · · ◦ g1, g) ≤ 2−i,
(3) g(X \ {x}) = X \ {y},
(4) g(x) = y,
(5) if p 
∈ Ai, then g(p) = gi ◦ · · · ◦ g1(p).

Proof. For every i put fi = gi ◦· · ·◦g1. We will first prove that g(p) = limi→∞ fi(p)
exists for every p ∈ γX . Indeed, if p = x, then fi(p) ∈ Bi for every i by (A6) and
(A4). Hence g(x) = y by (A2) and (A3). If p 
∈ Ai, then q = fi(p) 
∈ Bi by (A4).
Hence (A1) gives us that gj(q) = q for every j ≥ i+1. This shows that limi→∞ fi(p)
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exists and is equal to q. So we proved that g is well defined, and that (4) and (5)
hold.

Observe that by (A1) and (A2) we have that �̂(fi+1, fi) = �̂(gi+1, 1X) ≤ 2−i−1

for every i. This easily implies that g is a continuous surjection ([4, Proposition
1.3.8 and Lemma A.3.1]). That g is one-to-one follows by similar considerations.
Hence g is a homeomorphism. Observe that (5) implies (3) since X is invariant
under G. It remains to prove (2). But this is trivial since gj is supported on Bi for
every j > i and diamBi ≤ 2−i. �

So we completed the proof of the following:

Theorem 3.5. For every homogeneous and SLH-space X there are a compactifi-
cation γX of X and a collection of open subsets W of γX having the following
properties:

(1) γX ∈ W and W � X is a base of X,
(2) for all W ∈ W and x, y ∈ W ∩ X there is a homeomorphism f of γX such

that f(X) = X, f(x) = y and f is supported on W .

Remark 3.6. It would be interesting to know whether a similar result holds for
Tychonoff spaces. Let X be a Tychonoff space of weight α. If X is homogeneous
and SLH, does there exist a Hausdorff compactification γX of X of weight α such
that for all x, y ∈ X there is an element g ∈ H(γX) such that g(X) = X and
g(x) = y?

4. Coset spaces

Many homogeneous spaces are coset spaces. In the introduction we mentioned
the following classes: locally compact homogeneous spaces and topological groups.
Motivated by Ford [2], we add the homogeneous SLH-spaces to this.

Proof of Theorem 1.1. Let γX and W be as in Theorem 3.5. It is clear that the
subgroup

G = {g ∈ H(γX) : g(X) = X}
acts transitively on X . So it remains to prove that for some fixed x ∈ X the
continuous surjection γx : G → X is open. To prove this, let g ∈ G and ε > 0 be
arbitrary. Put

B = {h ∈ G : �̂(h, g) < ε}.
We claim that Bx is open. To prove this, take an arbitrary h ∈ B, let δ = �̂(h, g),
and put γ = ε − δ. Let W ∈ W be such that

hx ∈ W ∩ X ⊆ {y ∈ X : �(y, hx) < 1
2γ}.

We claim that W ∩ X ⊆ Bx, which is clearly as required. To prove this, take
an arbitrary p ∈ W ∩ X . There is ξ ∈ G which is supported on W and has the
property that (ξh)x = p. Observe that �̂(ξh, h) = �̂(ξ, 1γX) < γ, i.e., �̂(ξh, g) < ε.
So p ∈ Bx, and this is what we had to prove. �

Since a zero-dimensional homogeneous space is SLH, we obtain:

Corollary 4.1. Let X be zero-dimensional and homogeneous. Then X is a coset
space.
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Without too much difficulty it can be shown that a homogeneous zero-dimension-
al space is a coset space of some zero-dimensional topological group. The details of
checking this are left to the reader.

The results in this note suggest the following problem that seems to be non-trivial
(recall that all spaces are separable and metrizable).

Question 4.2. Let X be a homogeneous space. Does X admit a transitive action
of a topological group G? What if X is Polish?
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