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Abstract

We construct under the Continuum Hypothesis an example of a compact space no finite power of which contains an infinite
closed subset that is of finite dimension greater than 0. This is a partial answer to a question of the third author.
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1. Introduction

In 1965, D.W. Henderson [12] constructed the first infinite-dimensional metrizable compactum with no closed
subspaces of finite positive dimension. Simpler examples were presented subsequently by R.H. Bing [3], D.W. Hen-
derson [13], A.V. Zarelua [25], and others. In 1979, J.J. Walsh [23] improved Henderson’s result by the construction
of a metrizable compactum all of whose subspaces are either zero- or infinite-dimensional (see also Rubin [18]).

For non-metrizable spaces, there are similar results. In 1973, V.V. Fedorchuk [9] constructed for any integer
n � 2 a first countable separable n-dimensional compactum all of whose closed subsets of positive dimension are
n-dimensional. Then in 1975, Fedorchuk [10], assuming the Continuum Hypothesis (abbreviated CH), constructed
for any positive integer n an infinite separable compactum all of whose infinite closed subsets are n-dimensional and
have cardinality 2c. In 1978, A.V. Ivanov [14], under the assumption of Jensen’s principle ♦, constructed for any
positive integer n a hereditarily separable n-dimensional compactum Yn with the following property: for every m ∈ N

and infinite closed subspace F of Ym
n , the dimension of F is one of n,2n, . . . ,mn.

The following question was asked by J. van Mill [15, Remark 5.7] (see also Pol [17, Question 8.1]):
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Question 1.1. Does there exist an infinite-dimensional metrizable compactum X none of whose finite powers contains
a one-dimensional subset?

Its solution is currently beyond (our) reach. We consequently concentrate on the following problem, which is a
weakening of the original question in two ways: the example is not required to be metrizable, and the subsets that we
are interested in are closed.

Question 1.2. Does there exist an infinite-dimensional compactum X none of whose finite powers contains a one-
dimensional closed subset?

Theorem 7.1 of our paper gives a positive answer (under CH) to Question 1.2. Theorem 6.1 is related to Fedorchuk’s
results on compacta without intermediate dimensions. The example constructed there is similar to Ivanov’s Example
that was mentioned above. Its properties are weaker, but its construction requires CH instead of the more powerful
axiom ♦. Question 1.1 remains unsolved. As for non-metrizable spaces, Question 1.2 has several related versions.
One of them is:

Question 1.3. Does there exist in ZFC an n-dimensional compactum Zn, n � 1, such that for every m � 2, every
non-empty closed subset F of Zm

n has dimension kn, where k is some integer between 0 and m?

2. Preliminaries

Unless otherwise stated, all spaces are assumed to be Tychonov, and all mappings are continuous.
If f :X → Y is a function, and A ⊆ Y , then we say that f is one-to-one over A provided that |f −1(y)| = 1 for

every y ∈ A. If x ∈ X then f is said to be one-to-one at x provided that f is one-to-one over {f (x)}. For a function
f :X → Y and a set A ⊆ X we let f #(A) denote the small image of A, i.e.,

f #(A) = Y \ f (X \ A).

A k-face of a finite product
∏m

i=1 Xi is a subset of the form
∏m

i=1 Ai , for which there exists a set B ⊆ {1,2, . . . ,m}
of size m−k such that Ai is a singleton if i ∈ B and Ai = Xi if i /∈ B . So a 0-face is a singleton, and an m-face is the
whole product.

If A ⊆ ∏m
i=1 Xi then the least integer k such that A is contained in the union of a finite family of k-faces, will be

denoted by f(A). Clearly, 0 � f(A) � m. Observe that f(A) = 0 if and only if A is finite.
Let C be a subset of a finite product

∏m
k=1 Yk of sets. We say that C is in general position in

∏m
k=1 Yk if each

projection πi :
∏m

k=1 Yk → Yi , i � m, is one-to-one on C.
If X is a set, and κ is a cardinal number, then [X]<κ denotes the collection of all subsets of X of size smaller

than κ .
For a space X, we let τX denote its topology. If A is a subset of a space X, then FrA denotes its boundary.

A compactum is a compact Hausdorff space. A continuum is a connected compactum.
We say that f is fully closed at the point y ∈ Y , Fedorchuk [8], if f −1(y) �= ∅ and for any finite cover U of f −1(y)

by open sets in X the set

{y} ∪
⋃
U∈U

f #(U)

is a neighborhood of y. We say that f is fully closed if f is fully closed at every y ∈ Y . It is easy to see that a fully
closed map is a closed surjection. The converse need not be true.

By the symbol “X ≈ Y ” we mean that X and Y are homeomorphic topological spaces.
Let f :X → Y be continuous. We say that f is atomic provided that for every closed set A in X such that f (A)

is a non-degenerate continuum, we have that A = f −1(f (A)). Also, f is irreducible if f (A) �= Y for every proper
closed subset A ⊆ X. It is clear that if f is atomic and Y is a continuum, then f is irreducible. Indeed, if A is a closed
subset of X such that f (A) = Y , then since f is atomic, A = f −1(f (A)) = f −1(Y ) = X.

We let I denote the interval [0,1].
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Suppose that X is a topological space and that {Yx : x ∈ X} are topological spaces and, for each x ∈ X,
fx :X \ {x} → Yx is a continuous function. We topologize

Z =
⋃{{x} × Yx : x ∈ X

}
as follows. If x ∈ X, U is an open neighborhood of x in X, and W ⊆ Yx is open, then

U ⊗x W = ({x} × W
) ∪

⋃{{x′} × Yx′ : x′ ∈ U ∩ f −1
x (W)

}
.

We usually omit the index x in the expression U ⊗x W . The collection{
U ⊗ W : (x ∈ U ∈ τX)& (W ∈ τYx)

}
is an open basis for Z. Topologized in this way, Z is called the resolution of X at each point x ∈ X into Yx by the
mapping fx .

Let π0 :Z → X be the ‘projection’. Then π0 is continuous (this is clear), and fully closed if every Yx is compact.
Since the latter fact will be important in our construction, we will sketch the proof. Assume that U is a finite open
cover of the fiber π−1

0 (x), for certain x ∈ X. By compactness of Yx , we may assume without loss of generality that
U consists of basic open sets. So there are a finite open cover W of Yx and for every W ∈ W an open neighborhood
U(W) of x in X such that

U = {
W ⊗ U(W): W ∈W

}
.

Put U = ⋂
W∈W U(W). An easy verification shows that

U \ {x} ⊆
⋃

W∈W
π#

0

(
W ⊗ U(W)

)
,

as required.
Observe that for every x ∈ X the set {x} × Yx is a closed topological copy of Yx in Z. If X is compact, and all Yx

are compact, then so is the resolution, being a perfect pre-image of a compact space. It is also clear that if X and all
the Yx are first countable, then so is the resolution.

Resolutions were introduced in Fedorchuk [7] (for details, see also Fedorchuk and Hart [11], and Watson [24]).
They allow the replacement of each point in a space by a copy of some other space, possibly a different one for each
point.

3. Inverse systems

Throughout, for some ordinal number γ , let T = {Xα,pα
β, γ } be an inverse system of sets. If X0 is not a singleton

then for technical reasons it will be convenient to let X−1 denote {0} and p0
−1 :X0 → X−1 the constant function with

value 0. This will not have any effect on the limit of the system under consideration. We let Xγ denote the inverse
limit of T, and p

γ
α :Xγ → Xα for every α � γ the natural projection. If x ∈ Xα and β � α � γ , then xβ denotes

pα
β(x). So if β � δ � α � γ , then

xβ, pα
β(x), pδ

β

(
pα

δ (x)
)
, pδ

β(xδ)

all represent the same point.
If δ � γ , then T�δ denotes the restriction of T to δ, i.e., T�δ = {Xα,pα

β, δ}. We say that T is continuous if for every

limit ordinal δ < γ we have that Xδ is the inverse limit of the system {Xα,pα
β, δ}, and, for every β � δ, pδ

β :Xδ → Xβ

is the natural projection

lim←− T�δ → Xβ.

We recall some details from Fedorchuk [10]. Assume that T is continuous, and let α � γ and x ∈ Xα be arbitrary.
For −1 � β � α, let

Aα
(β,x) =

{∅ (β is a limit ordinal, or β = −1),
β −1
(pδ ) ({xδ}) \ {xβ} (β = δ + 1).
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Define the collection of subsets M(α,x) of Xα by

M(α,x) = {x} ∪
⋃
β�α

{(
pα

β

)−1
(z): z ∈ Aα

(β,x)

}
.

It is not difficult to see that M(α,x) is a partition of Xα . Denote Xα/M(α,x) by X(α,x), and let p(α,x) :Xα → X(α,x) be
the natural decomposition function. Observe that p(α,x) is one-to-one at x.

In the forthcoming applications, the system T = {Xα,pα
β, γ } will consist of first countable compacta with contin-

uous bonding maps pα
β . The elements of the partition M(α,x) of Xα are then clearly closed Gδ-sets, hence X(α,x)

endowed with the quotient topology is T1 and compact. Moreover, X(α,x) is first countable if it is Hausdorff. In gen-
eral, X(α,x) need not be Hausdorff, so we need to be careful with this construction. For a simple example, consider the
system of spaces X−1 = {0},X0 = I,X1 = I

2, where I → {0} is the constant function with value 0, and I
2 → I is the

projection. If x = 〈0,0〉, then

M(1,x) = {{〈0, y〉}: y ∈ I
} ∪ {{p} × I: 0 < p � 1

}
,

hence X(1,x) is not Hausdorff. In the framework of resolutions there are fortunately no problems with this construction.
Observe that for every β � α, there is a natural function

p
(α,x)
(β,xβ)

:X(α,x) → X(β,xβ)

such that the diagram

Xβ

p(β,xβ )

Xα

p(α,x)

pα
β

X(β,xβ) X(α,x)
p

(α,x)
(β,xβ )

commutes. Also observe that xβ is the only element of the set X(β,xβ) that possibly has a non-degenerate fiber under

the function p
(α,x)
(β,xβ). Hence p

(α,x)
(β,xβ) is one-to-one over X(β,xβ) \ {xβ}. Also observe that if β � δ � α � γ and x ∈ Xα ,

then

p
(α,x)
(β,x) = p

(δ,x)
(β,x) ◦ p

(α,x)
(δ,x) ,

from which it easily follows that{
X(α,x),p

(α,x)
(β,xβ), γ

}
is a continuous inverse system.

4. Dimension theory

If f :X → Y is continuous, then, as usual,

dimf = sup
{
dimf −1(y): y ∈ Y

}
denotes the dimension of f .

Theorem 4.1. (Fedorchuk [8]) If f :X → Y is fully closed, where X is normal and Y is paracompact, then dimX �
max{dimY,dimf }.

The following corollary is implicitly contained in Fedorchuk [10].

Corollary 4.2. Let S = {Xα,pα
β, γ } be a continuous inverse system of compacta such that

(1) dimX0 � n,

and, for all α < γ ,
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(2) pα+1
α :Xα+1 → Xα is fully closed,

(3) dimpα+1
α � n.

Then dim lim←− S � n.

Proof. It suffices to prove that dimXα � n for every α < γ . This can be proved by transfinite induction, as follows.
If γ is a limit, then there is nothing to prove since S is continuous. If γ is a successor, then there is nothing to prove
by Theorem 4.1. �

A locally compact Hausdorff space X is acyclic if Hi(X) = 0 for each integer i � 0; here Hi(Z) denotes the
ith cohomology group with compact supports of the locally compact space Z. See e.g., [4] for details. A surjective
mapping between compacta is acyclic if all of its fibers are acyclic.

The following result is a consequence of the famous Vietoris–Begle–Skljarenko Theorem (see [1,2,20–22]).

Theorem 4.3. If f :X → Y is a continuous surjection between compacta, and Y and f are acyclic, then so is X.

Let S = {Xα,pα
β, γ } be a continuous inverse system of compacta. Then Hi(lim←− S) is isomorphic to the direct limit

of the system {Hi(Xα), (pα
β)	, γ } (see [4]). Hence, by Theorem 4.3, we obtain the following result.

Theorem 4.4. Let S = {Xα,pα
β, γ } be a continuous inverse system of compacta. Assume that pα+1

α is acyclic for every

α < γ . Then the projections p
γ
α : lim←− S → Xα , α < γ , are acyclic as well.

Theorem 4.5. (Dyer [5], Skljarenko [21]) If X and Y are compacta with Y finite-dimensional, and f :X → Y is
acyclic, then dimX � dimY .

Dyer [5] proved this for metrizable compacta, and Skljarenko [21] generalized it for the case where X is paracom-
pact and f is closed.

Let f :X → Y be continuous. As usual, f is said to be monotone provided that every fiber f −1(y) of f is con-
nected.

The following lemma is well-known.

Lemma 4.6. Let f :X → Y be a monotone, continuous surjection between the compacta X and Y . If A and B are
disjoint closed sets in Y , and S is a partition in X between f −1(A) and f −1(B), then f (S) is a partition in Y between
A and B .

A continuum X is unicoherent if for all subcontinua A and B with A ∪ B = X we have that A ∩ B is connected.
The Hilbert cube I

∞ is unicoherent, as is any contractible metrizable continuum [16, A.12.10]. This implies by [16,
Exercises 3.10.2 and 3.10.3], that a partition S between a pair of opposite faces A and B of I

∞ contains a connected
partition between A and B . This will be used in the proof of Theorem 7.1.

Let X be a space. We say that X is strongly infinite-dimensional if it has an infinite essential family of pairs of
disjoint closed subsets. Also, X is weakly infinite-dimensional if it is not strongly infinite-dimensional.

Theorem 4.7. (Skljarenko [19]) Let f :X → Y be a continuous surjection between compacta, where X is weakly
infinite-dimensional, and |f −1(y)| < c for every y ∈ Y . Then Y is weakly infinite-dimensional.

For more information on dimension theory, see [6] and [16].

5. The inverse system S

In this section we put topologies on the elements of certain inverse systems. The inverse limits of these systems
will be used in the next section for the construction of our examples. We assume CH throughout.
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Throughout, we fix a compact metrizable Absolute Retract Z containing more than one point. In the applications
in the forthcoming sections, Z will be I

n for some n, or the Hilbert cube I
∞.

Let n ∈ N be fixed. For an ordinal number α � 1 we let Zα denote the set of all functions α → Z. If β � α then pα
β

denotes the natural projection Zα → Zβ defined by pα
β(f ) = f �β . We let Z0 = {0}, and p1

0 :Z1 → Z0 the constant
function with value 0.

The family

S = {
Zα,pα

β,ω1
}

(†)

is a continuous inverse system of sets and will play a crucial role in the remaining part of this paper. Observe that the
functions pα

β are all surjective.
In our construction we need countably many copies of S. So for i ∈ N, β � α � ω1 and x ∈ Xα , we put

Xi
α = Zα, p

i,α
β = pα

β, Xi
(α,x) = X(α,x), pi

(α,x) = p(α,x), p
i,(α,x)
(β,xβ) = p

(α,x)
(β,xβ),

and define

Si = {
Xi

α,p
i,α
β ,ω1

}
.

For α < ω1, we let Eα denote the collection of all countably infinite sets C for which there exists an F ∈ [N]<ω \ {∅}
such that C is a subset of

∏
i∈F Xi

α in general position. It is clear that |Eα| = c, hence, by CH, we may fix a bijection

f :ω1 →
⋃

α<ω1

Eα,

such that for every α < ω1 there exists β � α such that f (α) ∈ Eβ . For every α < ω1, put Cα = f (α).
Let Q denote a fixed countable dense set in Z, and enumerate it by {q(j): j < ω}. This enumeration is fixed

throughout the forthcoming constructions.
Our aim is to topologize all elements of the systems Si . We use the technique of resolvable spectra invented by

Fedorchuk [10] and further developed thereafter, and ideas and methods of Ivanov’s paper [14].
By transfinite induction on α < ω1, we will topologize the elements of the inverse systems Si , i ∈ N, such that the

following conditions are satisfied:

(1) Xi
1 is homeomorphic to Z for every i ∈ N;

(2) the inverse systems

Si = {
Xi

α,p
i,α
β ,ω1

}
, i ∈ N,

are continuous and consist of first-countable compacta;
(3) if α � ω1, i ∈ N, and x ∈ Xi

α , then the quotient space Xi
(α,x) is Hausdorff.

Moreover, if α < ω1, and i ∈ N, then

(4) (pi,α+1
α )−1(x) is, for every x ∈ Xi

α , homeomorphic to Z;
(5) the projection pi,α+1

α is fully closed;
(6) the projection pi,α+1

α is atomic;
(7) if Cα ∈ Eβ , where β � α, say Cα is in general position in

∏
i∈F Xi

β for certain F ∈ [N]<ω \ {∅}, and A ⊆∏
i∈F Xi

α+1 is such that

Cα ⊆
( ∏

i∈F

p
i,α+1
β

)
(A),

then there is a point z ∈ ∏
i∈F Xi

α with( ∏
i∈F

pi,α+1
α

)−1

(z) ⊆ A.
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All finite products of the spaces Xα are endowed with the Tychonov product topology. In addition, if α � ω1 and
F ∈ [N]<ω \ {∅}, then for every i ∈ F ,

πi
α :

∏
i∈F

Xi
α → Xi

α

denotes the projection.
For all i ∈ N, Xi

1 can be identified with Z in a natural way; we topologize Xi
1 in such a way that it is homeomorphic

to Z. Suppose for some ordinal 1 � γ < ω1, we defined the desired topologies on all the sets Xi
α for i ∈ N and α < γ .

Assume first that γ is a limit ordinal. As to be expected, for every i ∈ N we put Xi
γ = lim←−{Xi

α,p
i,α
β , γ }, and

p
i,γ
β :Xγ → Xβ for β < γ the natural projection. It is easy to see that this is as required (see Section 3).

Now assume that γ is a successor ordinal, say γ = α + 1. Consider the set Cα , and assume it is in general position
in

∏
i∈F Xi

β , where F ∈ [N]<ω \ {∅} and β � α. Since Xi
β is first countable for every i ∈ F , there is a sequence

C′
α ⊆ Cα (i)

converging to some point

z(β) = (
zi
β

)
i∈F

∈
∏
i∈F

Xi
β. (ii)

Since Cα is in general position, it is clear that we may assume that for every i ∈ F , zi
β /∈ πi

β(C′
α), i.e.,

C′
α ⊆

( ∏
i∈F

Xi
β

)∖ ⋃
i∈F

(
πi

β

)−1(
zi
β

)
. (iii)

Consider the continuous surjection

f =
∏
i∈F

p
i,α
β :

∏
i∈F

Xi
α →

∏
i∈F

Xi
β.

For every c ∈ C′
α , pick an arbitrary element x(c) in f −1(c). Since

∏
i∈F Xi

α is first countable, there is an infinite
subset

C′′
α ⊆ C′

α ⊆ Cα (iv)

such that the sequence {x(c): c ∈ C′′
α} converges to, say

z(α) = (
zi
α

)
i∈F

∈
∏
i∈F

Xi
α. (v)

Observe that z(α) ∈ f −1(z(β)).
Consider for i ∈ F the commutative diagram

Xi
β

pi

(β,zi
β

)

Xi
α

pi

(α,ziα)

p
i,α
β

Xi

(β,zi
β )

Xi
(α,zi

α)
p

i,(α,ziα)

(β,zi
β

)

(vi)

and put

Θi = (
p

i,(α,zi
α)

(β,zi
β )

)−1(
pi

(β,zi
β )

(
πi

β(C′′
α)

))
. (vii)

First observe that since zi
β /∈ πi

β(C′′
α) and pi

(β,zi
β )

is one-to-one at zi
β , we have that

pi

(β,zi )

(
zi
β

)
/∈ pi

(β,zi )

(
πi

β(C′′
α)

)
.

β β
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Next observe that p
i,(α,zi

α)

(β,zi
β )

is one-to-one over Xi

(β,zi
β )

\ {pi

(β,zi
β )

(zi
β)}. Hence Θi is a sequence in Xi

(α,zi
α)

having all of

its limit points in the set(
p

i,(α,zi
α)

(β,zi
β )

)−1(
pi

(β,zi
β )

(
zi
β

))
.

Since the sequence {x(c): c ∈ C′′
α} converges to z(α) = (zi

α)i∈F and (vi) commutes, this implies that

Θi is a sequence converging to the point pi
(α,zi

α)

(
zi
α

)
. (viii)

Let m = |F |.
We will now construct for every i ∈ N the space Xi

α+1. It will be a resolution of Xi
α at each point by a copy of Z.

So our task is to specify for all y ∈ Xi
α and i ∈ N a certain continuous function hy :Xi

α \ {y} → Z. This function will
have the form

hy = h′
y ◦ (

pi
(α,y)�Xi

α \ {y}),
where h′

y :Xi
(α,y)

\ {pi
(α,y)

(y)} → Z, is constructed in two steps below.

Step 1. Consider first a fixed i ∈ N such that either i /∈ F , or i ∈ F but y �= zi
α .

Since Xi
(α,y) is first countable, we can fix a neighborhood base {Oj : j ∈ N} at pi

(α,y)(y) such that Oj+1 ⊆ Oj for
every j . Let, for every j , ψj : FrOj → Z be the constant function with value q(j). Evidently,

⋃
j FrOj is closed

in Xi
(α,y) \ {pi

(α,y)(y)}, and Xi
(α,y) \ {pi

(α,y)(y)} is normal (being σ -compact). We can therefore extend
⋃

j ψj to a

continuous function h′
y :Xi

(α,y) \ {pi
(α,y)(y)} → Z. It is clear that we can arrange h′

y to be surjective.

Step 2. We now consider all remaining cases simultaneously. That is, we consider the cases for which i ∈ F , and
y = zi

α . As above, let {Oi
j : j ∈ N} be a neighborhood base at pi

(α,zi
α)

(zi
α) such that Oi

j+1 ⊆ Oi
j for every j . We may

assume without loss of generality that FrOi
j ∩ Θi = ∅ for every j . Let ψi

j : FrOi
j → Z for every j be the constant

function with value q(j). Now observe that formula (vii) defines for every i ∈ F a bijection from C′′
α onto Θi . So we

may pick for every i ∈ F a function ψi :Θi → Q such that the following holds: for every f ∈ QF there is an element
c ∈ C′′

α such that for every i ∈ F ,(
p

i,(α,zi
α)

(β,zi
β )

)−1(
pi

(β,zi
β )

(
πi

β(c)
)) = f (i). (ix)

As in case 1, we can extend, for every i ∈ F , the function {ψi} ∪ ⋃
j ψi

j to a continuous surjection h′
zi
α

:Xi
(α,zi

α)
\

{pi
(α,zi

α)
(zi

α)} → Z.

So having all the mappings hy constructed, we determined the spaces Xi
α+1 for i ∈ N, and all there remains to

verify is (2)α+1 through (7)α+1.
It is clear that (2)α+1, (4)α+1 and (5)α+1 hold.
For (3)α+1, let i ∈ N, and x ∈ Xi

α+1 be arbitrary. If y = pi,α+1
α (x), then Xi

(α+1,x) is (homeomorphic to) the resolu-

tion of Xi
(α,y) at each point z ∈ Xi

(α,y) into Yz by the mapping fz, where{
Yz = {z}, fz(z) = z (z �= pi

(α,y)
(y)),

Yz = Z, fz = h′
y (z = pi

(α,y)(y)).

Hence Xi
(α+1,x) is a compactum.

For (6)α+1, let F be closed in Xi
α+1 such that G = pi,α+1

α (F ) is a non-degenerate continuum. Take an arbitrary
z ∈ G, and put

Gz = pi
(α,z)(G).

The set Gz is clearly a continuum, and non-degenerate because pi
(α,z) is one-to-one at z. As a consequence, all but

finitely many of the boundaries of pi (z) that were chosen to create h′
z meet Gz.
(α,z)
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Claim 1. (pi,α+1
α )−1(z) ⊆ F .

Proof. Take an arbitrary point t ∈ P = (pi,α+1
α )−1(z) ≈ Z, and an arbitrary basic neighborhood

U ⊗ V = ({z} × V
) ∪

⋃{{z′} × Z: z′ ∈ U ∩ h−1
z (V )

}
of t in Xi

α+1. Put

Uz = (
pi

(α,z)

)#
(U).

Then pi
(α,z)(z) ∈ Uz, since pi

(α,z) is one-to-one at z, and

h−1
z (V ) ∩ U ⊇ (

pi
(α,z)

)−1(
(h′

z)
−1(V ) ∩ Uz

)
.

The set V contains infinitely many points from Q, hence (h′
z)

−1(V ) ∩ Uz contains infinitely many of the boundaries
of the neighborhoods of pi

(α,z)(z) that were chosen to create h′
z, and, consequently, meets Gz. So we conclude that(

h−1
z (V ) ∩ U

) ∩ G �= ∅.

Hence, if z′ ∈ (h−1
z (V ) ∩ U) ∩ G then ({z′} × Z) ∩ F �= ∅, i.e.,

(U ⊗ V ) ∩ G �= ∅.

Since U ⊗ V was arbitrary, we conclude that t ∈ F = F , as desired. �
For (7)α+1, let A ⊆ ∏

i∈F Xi
α+1 be such that

Cα ⊆
( ∏

i∈F

p
i,α+1
β

)
(A).

Consider the point z(α) = (zi
α)i∈F ∈ ∏

i∈F Xi
α constructed in (v).

Claim 2. [∏i∈F (pi,α+1
α )−1](z(α)) ⊆ A.

Proof. Enumerate C′′
α as {cj : j < ω}. For every j < ω, pick aj ∈ A such that (

∏
i∈F p

i,α+1
β )(aj ) = cj . Take an

arbitrary element x = (xi)i∈F ∈ ∏
i∈F Xi

α+1 in[ ∏
i∈F

(
pi,α+1

α

)−1
](

z(α)
) =

∏
i∈F

[(
pi,α+1

α

)−1(
zi
α

)] ≈
∏
i∈F

(Z)i ≈ ZF .

For every i ∈ F , let

Oxi
= Ui ⊗ Vi

be an arbitrary basic open neighborhood of xi in Xi
α+1; hence Vi is an open neighborhood of xi in its fiber

(pi,α+1
α )−1(pi,α+1

α (xi)) = Z, and Ui is an open neighborhood of pi,α+1
α (xi) = zi

α in Xi
α . Put Ox = ∏

i∈F Oxi
. We

will prove that Ox meets A, and hence that x ∈ A.
For each i ∈ F , we have that the set

Wi = (
pi

(α,zi
α)

)#
(Ui)

is a neighborhood of (pi
(α,zi

α)
)(zi

α) in Xi
(α,zi

α)
, again since pi

(α,zi
α)

is one-to-one at zi
α . For each i ∈ F ,

Θi = (
p

i,(α,zi
α)

(β,zi
β )

)−1(
pi

(β,zi
β )

(
πi

β(C′′
α)

))
is a sequence in Xi

(α,zi
α)

that converges to pi
(α,zi

α)
(zi

α) (see (vii) and (viii)). Since F is finite, there consequently is an

index j0 such that for all j > j0 we have that

∀i ∈ F :
(
p

i,(α,zi
α)

(β,zi )

)−1(
pi

(β,zi )

(
πi

β(cj )
)) ∈ Wi. (x)
β β
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For every i ∈ F we pick an index �i such that q�i
∈ Vi . Since there are infinitely many such choices, we get by (ix)

that there is an index j > j0 such that(
p

i,(α,zi
α)

(β,zi
β )

)−1(
pi

(β,zi
β )

(
πi

β(cj )
)) = q�i

∈ (
h′

zi
α

)−1
(Vi) (∀i ∈ F). (xi)

We will prove that aj ∈ Ox . First observe that by (iii),( ∏
i∈F

p
i,α+1
β

)
(aj ) = cj ∈ C′′

α ⊆ C′
α ⊆

( ∏
i∈F

Xi
β

)∖ ⋃
i∈F

(
πi

β

)−1(
zi
β

)
. (xii)

Take an arbitrary i ∈ F . It clearly suffices to check that

ai
j = πi

α+1(aj ) ∈ Oxi
= Ui ⊗ Vi. (xiii)

By (xii) we have p
i,α+1
β (ai

j ) �= zi
β , i.e., pi,α+1

α (ai
j ) �= zi

α = pi,α+1
α (xi). This means that for (xiii) we have to check that

bi
j = pi,α+1

α

(
ai
j

) ∈ Ui ∩ h−1
zi
α

(Vi).

Now observe that

p
i,(α,zi

α)

(β,zi
β )

(
pi

(α,zi
α)

(
bi
j

)) = pi

(β,zi
β )

(
p

i,α
β

(
bi
j

)) = pi

(β,zi
β )

(
πi

β(cj )
)
,

hence by (x),

pi
(α,zi

α)

(
bi
j

) ∈ Wi = (
pi

(α,zi
α)

)#
(Ui),

so bi
j ∈ Ui . Finally, by (xi),

hzi
α

(
bi
j

) = h′
zi
α

(
pi

(α,zi
α)

(
bi
j

))
= h′

zi
α

((
p

i,(α,zi
α)

(β,zi
β )

)−1(
pi

(β,zi
β )

(
πi

β(cj )
)))

∈ Vi,

as required. �
This completes the inductive construction of the topologies on the elements of the inverse systems Si , i ∈ N.

6. Products without intermediate dimensions

In this section we will formulate and prove our first main result. To begin with, we will first state some general
facts about the inverse limits of the inverse systems considered in the previous section.

We put for every i ∈ N,

Xi = lim←− Si = lim←−
{
Xi

α,p
i,α
β ,ω1

}
,

where the inverse system Si is as in Section 5.
Let F ⊆ N be finite and non-empty, and let G be an infinite closed subset of

∏
i∈F Xi . Let k be the first integer

such that G is contained in a finite union of k-faces. Then k � 1, since if k = 0 then G is finite. In this finite family
of k-faces, there is at least one k-face Γ such that G ∩ Γ is not contained in a finite family of (k−1)-faces. There is a
subset F ′ of F of size k such that Γ is homeomorphic to

∏
i∈F ′ Xi . By abuse of notation, we think of G′ = G ∩ Γ as

a subspace of
∏

i∈F ′ Xi . Since G′ is not contained in a finite union of (k−1)-faces of
∏

i∈F ′ Xi , there is a countably
infinite set H ⊆ G′ that is in general position in

∏
i∈F ′ Xi . For each α < ω1, put

Hα =
( ∏

′
pi,ω1

α

)
(H).
i∈F
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Since H is countable, we may pick β < ω1 such that Hβ is infinite and in general position in
∏

i∈F ′ Xi
β . Then Hβ ∈ Eβ ,

and, consequently, there is β � α < ω1 such that Hβ = Cα . In view of condition (7)α , there is a point z ∈ ∏
i∈F ′ Xi

α

such that

A =
( ∏

i∈F ′
pi,α+1

α

)−1

(z) ⊆ Hα+1 ⊆
( ∏

i∈F ′
p

i,ω1
α+1

)
(G′). (i)

Fix i ∈ F ′ for a moment. Observe that the set B = (pi,α+1
α )−1(z) is a continuum, being homeomorphic to Z. The

restriction of p
i,ω1
α+1 to the set (p

i,ω1
α+1)

−1(B) is atomic by (5)γ , for α +1 � γ � ω1. Hence this restriction is irreducible.

Since products of irreducible maps are irreducible, the restriction of
∏

i∈F ′ p
i,ω1
α+1 to the set (

∏
i∈F ′ p

i,ω1
α+1)

−1(A) is
irreducible as well. So by (i), this implies that( ∏

i∈F ′
pi,ω1

α

)−1

(z) =
( ∏

i∈F ′
p

i,ω1
α+1

)−1

(A) ⊆ G′, (ii)

hence |G′| = 2c.
These observations lead us to our first main result.

Theorem 6.1. (CH) For every n ∈ N, there is a family of separable compacta Xi, i ∈ N, such that for every non-empty
finite subset F of N and every non-empty closed subset G of

∏
i∈F Xi we have dimG = f(G)n. (In particular, if G is

infinite, then dimG � n.) Moreover, for each infinite closed G ⊆ ∏
i∈F Xi we have |G| = 2c.

We now put Z = I
n as input in the inverse system S in Section 5, and we claim that the spaces Xi , i ∈ N, we get

from our construction, satisfy the conditions in Theorem 6.1. That every Xi is separable is clear. Simply observe that
the bonding maps pi,α+1

α in the inverse system creating Xi are atomic for all 1 � α � ω1, hence irreducible, and that
Xα = Z is separable.

To check the remaining properties of the spaces Xi , i ∈ N, let F ⊆ N be finite and non-empty, and let G be an
infinite closed subset of

∏
i∈F Xi . As above, let k be the first integer such that G is contained in a finite union of

k-faces. Consider the sets F ′ and G′, the ordinal number α, and the point z that were found above. By (ii), it suffices
to prove that dimG′ = kn.

The inequality dimG′ � kn is a consequence of the fact that dimXi � n, for every i ∈ N. To see this, simply apply
Corollary 4.2. To prove the converse, first observe that (

∏
i∈F ′ p

i,ω1
α )−1(z) is the inverse limit of an inverse system of

which the bonding maps are acyclic (Theorem 4.4). Observe that( ∏
i∈F ′

pi,α+1
α

)−1

(z) ≈ ZF ′

is nk-dimensional. Hence dim(
∏

i∈F ′ p
i,ω1
α )−1(z) � nk by 4.5. So by (ii), we conclude that dimG′ � nk, as required.

7. Hereditarily strongly infinite-dimensional products

We now come to our second main result.

Theorem 7.1. (CH) There exists an infinite separable compactum X such that for any positive integer m, if G is an
infinite closed subspace of Xm, then |G| = 2c and G is strongly infinite-dimensional.

We now take Z = I
∞ as input for the inverse system S in Section 5. We claim that every individual Xi satisfies the

conclusions of Theorem 7.1. As before, it follows that each Xi is separable, and that any infinite closed subspace of
any finite product of the Xi ’s has cardinality 2c.

We will first prove that any infinite closed subspace of any finite product of the Xi ’s is strongly infinite-dimensional.
Let F ⊆ N be finite and non-empty, and let G be an infinite closed subset of

∏
i∈F Xi . As above, let k be the first

integer such that G is contained in a finite union of k-faces. Consider the sets F ′ and G′, the ordinal number α, and
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the point z = (zi)i∈F ′ that were found above. It suffices to prove that G′ is strongly infinite-dimensional. And for that,
it suffices by (ii) to prove that the fiber S = (

∏
i∈F ′ p

i,ω1
α )−1(z) is strongly infinite-dimensional. Since

S =
∏
i∈F ′

(
pi,ω1

α

)−1
(zi),

it suffices to prove that one of its factors is strongly infinite-dimensional. In fact, all of its factors are strongly infinite-
dimensional.

To prove this, fix an arbitrary i ∈ F ′. Observe that the set Ti = (pi,α+1
α )−1(zi) is a copy of I

∞, and that the
restriction f of p

i,ω1
α+1 to Si = (p

i,ω1
α )−1(zi) is atomic, and monotone.

Consider a pair A and B of opposite faces of Ti , and let P be a partition in Si between f −1(A) and f −1(B).
Since f is monotone, f (P ) is a partition between A and B by Lemma 4.6. As observed at the end of Section 4, f (P )

contains a connected partition C between A and B . Hence f −1(C) ∩ P is a closed subset of Si that is mapped by the
atomic map f onto the continuum C. This means that P contains f −1(C). Since the collection of pairs of opposite
faces of Ti is an essential collection, this shows that the collection of pre-images under f of that collection is essential
in Si . Hence Si is strongly infinite-dimensional.

Now fix an arbitrary i ∈ N. By induction on m ∈ N, we will verify that for every infinite closed subset G of Xm
i

we have that |G| = 2c, and G is strongly infinite-dimensional. For m = 1, we are done by the above. So assume
that we have what we want for m−1, m � 2, and let G be an infinite closed subset of Xm

i . Let π :Xm
i → Xm−1

i be
the projection, and consider the function q = π�G :G → π(G). If there is an element x ∈ q(G) such that q−1(x) is
infinite, then we are clearly done. So assume that q is finite-to-one. Then q(G) is infinite, and consequently has size
2c and is strongly infinite-dimensional by our inductive assumption. Hence, clearly, |G| = 2c. Moreover, since q is
finite-to-one, G is strongly infinite-dimensional by Theorem 4.7.
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