
Canad. J. Math. Vol. 58 (3), 2006 pp. 529–547

On the Group of Homeomorphisms of the
Real Line That Map the Pseudoboundary
Onto Itself

Jan J. Dijkstra and Jan van Mill

Abstract. In this paper we primarily consider two natural subgroups of the autohomeomorphism

group of the real line R, endowed with the compact-open topology. First, we prove that the subgroup

of homeomorphisms that map the set of rational numbers Q onto itself is homeomorphic to the infi-

nite power of Q with the product topology. Secondly, the group consisting of homeomorphisms that

map the pseudoboundary onto itself is shown to be homeomorphic to the hyperspace of nonempty

compact subsets of Q with the Vietoris topology. We obtain similar results for the Cantor set but we

also prove that these results do not extend to Rn for n ≥ 2, by linking the groups in question with

Erdős space.

1 Introduction

All spaces under discussion are separable and metrizable. Some of the results in this
paper have been announced in Dijkstra and van Mill [15].

In this paper we are primarily interested in the space of all homeomorphisms of

the real line R endowed with the compact open topology. It is known that this space
has two components, each of them homeomorphic to ℓ2, the Hilbert space of square
summable sequences. This is an unpublished result of R. D. Anderson, the proof of
which can be found in Bessaga and Pełczyński [5, Proposition VI.8.1]. Similar results

are known only in dimensions 2 and ∞; see Luke and Mason [28], Ferry [21], and
Toruńczyk [35].

If X is a compact space, then H(X) denotes the group of autohomeomorphisms
of X endowed with the compact-open topology. If X is a noncompact, locally com-

pact space, then H(X) is endowed with the topology that it inherits from H(αX),
where αX is the one-point compactification. If A ⊂ X, then H(X |A) denotes its
subgroup { f ∈ H(X) : f (A) = A}. It is a result of Brouwer [8] that R is countably
dense homogeneous, i.e., if A and B are countable dense subsets of R, then there is a

homeomorphism f ∈ H(R) such that f (A) = B. This result suggests studying the
topological group H(R |Q). Here Q stands for the rational numbers. We will prove
that H(R |Q) is homeomorphic to Q N, the infinite power of Q with the product
topology. It is also known, and not difficult to prove, that if E and F are countable

dense unions of Cantor sets in R, then there is a homeomorphism f ∈ H(R) such
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that f (E) = F. These sets play a role in R that is analogous to that of the pseu-
doboundary in the Hilbert cube as established by Geoghegan and Summerhill [24].

So this suggests studying the group H(R |B), where B is any countable dense union
of Cantor sets in R. As is to be expected, this is more complex than in the case of
a countable dense set. We will prove that H(R |B) is homeomorphic to the space
K(Q), the hyperspace of nonempty compact subsets of Q with the Vietoris topology.

The space K(Q) surfaces at many places in the literature. It is the standard example
of a coanalytic space that is not Borel. We will also prove corresponding results for
the homeomorphism group of the Cantor set. Interestingly, similar results cannot
be proved for the Euclidean spaces Rn for n ≥ 2, or the Hilbert cube Q, because the

corresponding homeomorphism groups contain a copy of Erdős space [20] and are
therefore not zero-dimensional.

2 Preliminaries

A map is a continuous function. Let I denote the interval [0, 1]. Similarly, R denotes
the real line, and Q is the space of rational numbers.

By a Gδ-space we mean an absolute Gδ , i.e., a space which is a Gδ-subset of any

space it is imbedded in. Similarly for Fσδ , Gδσ , etc. It is well known that the Gδ-spaces
are precisely the Polish spaces. The Lavrentieff Theorem easily implies that a space
is an Fσδ-space if and only if it can be imbedded in a Polish space as an Fσδ-subset.
Similarly for Gδσ-space. The collection of Fσδ-subsets of a zero-dimensional space X

is denoted by Π
0
3 (X) and in this paper Π

0
3 stands for the class of all zero-dimensional

Fσδ-spaces. For details, see Kechris [25].
A space is analytic if it is a continuous image of the space of irrational numbers. In

addition, a space is X coanalytic if there is a Polish space X̂ which contains X such that

X̂ \ X is analytic. The collection of coanalytic subsets of a zero-dimensional space X

is denoted by Π
1
1 (X) and Π

1
1 stands for the class of all zero-dimensional coanalytic

spaces.
If X is a space, then K(X) denotes the space of nonempty compact subsets of X

with the Vietoris topology.
If x ∈ R and A ⊂ R, then d(x, A) = inf{|x − y| : y ∈ A}. If A1, A2 ⊂ R then the

function dH is defined by

dH(A1, A2) = sup{d(x, A2), d(y, A1) : x ∈ A1, y ∈ A2}.

The restriction of dH to K(R)2 is called the Hausdorff metric and generates the Vi-
etoris topology.

Topologies on Homeomorphism Groups

If X is a topological space, then H(X) denotes the group of autohomeomorphisms of

X and if A ⊂ X, then H(X |A) stands for the subgroup {h ∈ H(X) : h(A) = A}. We
denote the identity element of H(X) by 1X .

If X is compact then the choice of a topology for H(X) is straightforward: the
compact-open topology coincides with the topology of uniform convergence with
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respect to any compatible metric for X and makes H(X) into a topological group
that is a Polish space. If A, B ⊂ X then we define [A, B] = {h ∈ H(X) : h(A) ⊂ B}.

Thus a subbasis for the topology on H(X) consists of the sets [K, O], where K is
compact and O is open in X. Note that the topology of point-wise convergence is in
general neither metrizable nor compatible with the group structure.

For noncompact spaces the situation is more complex. In general, the topology of
uniform convergence depends on the metric that one chooses for X and it is usually
much stronger than the compact-open topology. However, for locally compact X a

natural choice for a separable metric group topology is available: the topology that
H(X) inherits from H(αX), where αX = X ∪ {∞} is the one-point compactifica-
tion. Since H(X) = H(αX | {∞}), it is a topological group and a Polish space. Note
that the compact-open topology may, even for locally compact spaces, not be com-

patible with the group structure, in particular with the inverse operation. However,
for spaces X with the property that every point has a neighbourhood that is a contin-
uum, the topology that H(X) inherits from H(αX) coincides with the compact-open
topology, see Dijkstra [14] and Arens [3].

If X is locally compact and A ⊂ X, then we think of H(X |A) as a subspace of
H(X). So H(X |A) is a topological group and hence a homogeneous space. If O

is an open subset of X then HO(X) is the closed subgroup of H(X) that consists of
the elements of H(X) that are supported on O. We also put HO(X |A) = HO(X) ∩
H(X |A).

If X is homeomorphic to either Rn or In, then we let H+(X) denote the com-
ponent of the identity in H(X) and we put H+(X |A) = H+(X) ∩ H(X |A). We
are primarily interested in H+(R), the space of increasing autohomeomorphisms of
R, which, according to Anderson (see [5, Proposition VI.8.1]), is homeomorphic to

Hilbert space. It is clear that the topology on H(R) also coincides with the topology
that H(R) inherits from H([−∞,∞]). In fact, H(R) and H([−∞,∞]) are identical
topological groups. This does not extend to Rn for n ≥ 2 because H(Rn) does not in-

herit a topology from H([−∞,∞]n) (simply observe that autohomeomorphisms of
Rn need not extend to autohomeomorphisms of [−∞,∞]n). For H(R) the situation
is particularly nice:

Lemma 2.1 On H(R) the compact-open topology, the topology of point-wise conver-

gence, and the topologies inherited from H(αR) and from H([−∞,∞]) coincide.

Proof It suffices to prove that the topology of pointwise convergence is at least as

strong on H+((0, 1)) as the uniform topology with respect to the standard metric. We
assume that each element of H+((0, 1)) has been extended to an element of H+(I).
Let h ∈ H+((0, 1)) and let n ∈ N. Put ai = h−1(i/n) for i ∈ {0, 1, . . . , n}. Then

U =

⋂n−1

i=1

[

{ai}, ( i−1
n

, i+1
n

)
]

is an open neighbourhood of h in the topology of
point-wise convergence. If f ∈ U and x ∈ (0, 1), then x ∈ [ai , ai+1] for some

i ∈ {0, 1, . . . , n − 1}. Since h and f are increasing, we have h(x) ∈ [ i
n
, i+1

n
] and

f (x) ∈ [ f (ai), f (ai+1)] ⊂ ( i−1
n

, i+2
n

). Consequently, | f (x) − h(x)| < 3
n

for each
x ∈ (0, 1).
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Pseudoboundaries

We now discuss absorbers and pseudoboundaries in Rn and the Hilbert cube. For
more background on these sets than we provide here, see Dijkstra [10, 11]. Let S be
a collection of closed subsets of a Polish space X that is invariant under the action

of H(X) and that is closed hereditary. Let Sσ stand for the collection of countable
unions of elements of S. If U is a collection of subsets of X, then two functions
f , g : Y → X are called U-close if for each y ∈ Y , f (y) = g(y) or there is a U ∈ U

with { f (y), g(y)} ⊂ U . We call an element B of Sσ an S-absorber in X if for every

S ∈ S and every collection U of open subsets of X there is an h ∈ H(X) that is U-close
to 1X while h(S ∩

⋃

U) ⊂ B. The absorber concept is due to West [36] as a general-
ization of the capset notion which was introduced by R. D. Anderson (unpublished

manuscript) and Bessaga and Pełczyński [4].

Theorem 2.2 (Uniqueness Theorem, West [36]) If B and B ′ are S-absorbers and U

is a collection of open subsets of X, then there is an h ∈ H(X) that is U-close to 1X while

h(B ∩
⋃

U) = B ′ ∩
⋃

U.

Let M0
= C be the Cantor set, Mn

= Rn for n ∈ N, and M∞ the Hilbert cube Q.
Note that countable dense subsets of Mn are absorbers for the collection of finite
subsets of Mn (and hence Mn is countably dense homogeneous).

We define the collections of “tame” zero-dimensional compacta in the spaces Mn.
For n = 0 we have

M0
0 = {K ∈ K(C) : int K = ∅}.

For 1 ≤ n < ∞,

Mn
0 = {K ∈ K(R

n) : h(K) ⊂ (R \ Q)n for some h ∈ H(R
n)}.

This definition corresponds to that of the collection of compacta that are strong
Zn−2-sets in Rn in the sense of Geoghegan and Summerhill [23], cf. Dijkstra [10, The-
orem 2.1.12]. And finally,

M∞
0 = {K : K is a zero-dimensional Z-set in Q}.

According to [24, Proposition 3.1], if n ∈ {1, 2}, then Mn
0 is simply the collection of

zero-dimensional compacta in Rn. For higher n there exist wild Cantor sets such as
Antoine necklaces that are not part of Mn

0 .
For every n ∈ {0, 1, . . . ,∞} there exists an Mn

0-absorber Bn
0 , see Geoghegan and

Summerhill [24] (n ∈ N), Curtis and van Mill [9] (n = ∞), and van Mill [31]

(n = 0). This absorber Bn
0 is called the zero-dimensional pseudoboundary of Mn. If

n ∈ {0, 1} then we call Bn
0 simply the pseudoboundary of Mn. Every zero-dimensional

pseudoboundary is homeomorphic to Q×C , which follows easily from the following
characterization.

Theorem 2.3 (Alexandroff and Urysohn [2]) A space X is homeomorphic to Q ×C

if and only if X is a zero-dimensional, σ-compact space that is nowhere locally compact

and nowhere countable.
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Lemma 2.4 If n ∈ {0, 1, 2, . . . ,∞} and B ∈ (Mn
0)σ is a dense set in Mn that is

homeomorphic to Q ×C, then B is a zero-dimensional pseudoboundary of Mn.

This lemma was proved by Curtis and van Mill [9] for n = ∞ using the estimated

homeomorphism extension theorem for Z-sets. Van Mill [31] noted that the same
argument also works for n = 0. We observe that for 2 ≤ n < ∞ the lemma can be
proved using the Taming Theorem [23, Theorem 2.5]. For n = 1 the same method
also works because if C1 and C2 are two Cantor sets in R, then there exists an order

preserving homeomorphism h : C1 → C2 that can then be extended to an element of
H+(R).

Observe that a zero-dimensional pseudoboundary in R or the Cantor set is noth-
ing but a countable dense union of nowhere dense Cantor subsets. In the remaining

part of this paper we are interested in, among other things, groups of homeomor-
phisms that map a given zero-dimensional pseudoboundary onto itself.

Characterizations of Q N and K(Q)

We shall need the following characterization of the space Q N, which follows from a
theorem of Steel [34], see also van Engelen [18, Theorem A.2.5].

Theorem 2.5 A space X is homeomorphic to Q N if and only if X is a zero-dimensional,

first category Fσδ-space with the property that no nonempty clopen subset is a Gδσ-space.

Corollary 2.6 If X is a homogeneous, zero-dimensional, first category Fσδ-space that

contains a closed copy of Q N, then X is homeomorphic to Q N.

The fundamental tool for recognizing that zero-dimensional spaces are homeo-
morphic is the following result of van Engelen [19], which is a zero-dimensional ana-
logue of the Bestvina–Mogilski Uniqueness Theorem [6] for generalized absorbers.

Theorem 2.7 Let X and Y be two zero-dimensional spaces such that X =

⋃∞
i=1 Xi

and Y =

⋃∞
i=1 Yi with Xi (respectively, Yi) closed and nowhere dense in X (respectively,

Y ). If every nonempty clopen subset of X (respectively, Y ) contains a closed and nowhere

dense copy of each Yi (respectively, Xi), then X and Y are homeomorphic.

Michalewski [30] observed that we obtain useful characterizations of the space
K(Q) when we combine Theorem 2.7 with results by Hurewicz and Steel, as follows.
Note that K(Q) =

⋃

q∈Q
{K ∈ K(Q) : q ∈ K} is of the first category in itself. Let C

denote the Cantor set and let D be a countable dense subset of C , so D is a topological

copy of Q . If X is a subset of a space Y , then we say that the pair (X,Y ) reduces a
subset A of C if there is a map f : C → Y with f −1(X) = A. If f is an imbedding,
then we say that (X,Y ) H-reduces A. According to Hurewicz (see [25, Exercise 33.5]),
the pair (K(D), K(C)) reduces every element of Π 1

1 (C). If Y is a Polish space and if

(X,Y ) reduces every element of Π
1
1 (C), then it H-reduces every element of Π

1
1 (C).

This last result is essentially due to Steel [34]; we formulated here the more general
version of Louveau and Saint Raymond [27]. Thus we have that K(Q) (and each
of its nonempty clopen subsets) contains a closed copy of every element of Π

1
1 (C).
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Combining this observation with Theorem 2.7, one obtains a similar characterization
as the one in Michalewski [30], as follows.

Theorem 2.8 A space X is homeomorphic to K(Q) if and only if X is a zero-dimen-

sional, first category, and coanalytic space with the property that every zero-dimensional

coanalytic space admits a closed imbedding in every nonempty clopen subset of X.

Corollary 2.9 Let D be a countable dense subset of a Cantor set C. Let X be a ho-

mogeneous, zero-dimensional, coanalytic subspace of a space Y such that X is of the first

category in itself. If (X,Y ) reduces K(D) (as a subset of the Cantor set K(C)), then X is

homeomorphic to K(Q).

Proof By completing Y we get to assume that Y is a Polish space. Since (X,Y )
reduces K(D) and (K(D), K(C)) in turn reduces every element of Π

1
1 (C), we have

that (X,Y ) reduces (and hence H-reduces) every element of Π 1
1 (C). Let F be a closed

copy of K(D) ≈ K(Q) in X. If x ∈ F and if O is a clopen neighbourhood of x ∈ X,
then according to Theorem 2.8 F ∩ O and hence O contains a closed copy of every
zero-dimensional coanalytic space. Since X is homogeneous, this is true for every

x ∈ X and hence X ≈ K(Q).

We will now expound upon the analogy between Theorem 2.7 and the Bestvina–

Mogilski characterization [6] of certain infinite-dimensional absolute retracts.
Let S be a class of zero-dimensional spaces that is topological, i.e., every space

that is homeomorphic to an element of S is in S, and closed hereditary. We let Sσ

stand for the class of all spaces that admit a countable closed cover consisting of

elements of S. Note that (Π 0
3 )σ = Π

0
3 and (Π 1

1 )σ = Π
1
1 . We call a zero-dimensional

space X locally S-universal if every nonempty clopen subset of X contains a closed
and nowhere dense copy of each element of S. Observe that for zero-dimensional
spaces strong Z-sets are merely closed nowhere dense sets and that local universality

is equivalent to strong universality in the sense of Bestvina and Mogilski [6]. A zero-
dimensional space X is called an S-absorbing space if X is of the first category in itself,
an element of Sσ, and a locally S-universal space. The following uniqueness theorem
is an immediate corollary to Theorem 2.7.

Theorem 2.10 If X and Y are two S-absorbing spaces, then X and Y are homeomor-

phic.

It follows from Theorems 2.5 and 2.8 that Q N is a Π
0
3 -absorbing space and K(Q)

is a Π
1
1 -absorbing space. So these spaces are in a sense the maximal elements of their

respective classes.

3 Homeomorphisms of R That Leave Q Invariant

In this section we will show that if A is any countable dense subset of R then H(R |A)
is homeomorphic to Q N.

The following observation is not new, cf. Brechner [7, p. 532]. We include a proof
for the sake of completeness.
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Proposition 3.1 If A is a zero-dimensional dense subset of R then H(R |A) is zero-

dimensional.

Proof In view of Lemma 2.1 we may use the topology of point-wise convergence on
H(R |A). Note that the map h 7→ (h↾A, h↾(R \ A)) is an imbedding of H(R |A) into

the (non-metric) space AA × (R \ A)R\A. The latter space is zero-dimensional as a
product of zero-dimensional spaces.

Proposition 3.1 is not valid for Rn with n ≥ 2 or for the Hilbert cube, see Corollary

6.3.

Lemma 3.2 If A is a countable subset of a locally compact space X, then H(X |A) is

an Fσδ-space.

Proof Observe that

H(X |A) =

⋂

a∈A

(

⋃

b∈A

[{a}, {b}] ∩
⋃

b∈A

[{b}, {a}]
)

.

Since H(X) is a Gδ-space, the proof is complete.

Theorem 3.3 H(R |Q) and H+(R |Q) are homeomorphic to Q N.

Proof We will use Corollary 2.6. First, Proposition 3.1 and Lemma 3.2 show that
H(R |Q) and H+(R |Q) are zero-dimensional Fσδ-spaces. Since

H(R |Q) =

⋃

q∈Q

[{0}, {q}] ∩ H(R |Q),

it is obvious that this space is of the first category in itself.

Consider the Hilbert cube Q = [ 1
3
, 2

3
]Z and the set D = Q ∩ [ 1

3
, 2

3
]. We will

construct an imbedding H : Q → H+(R) such that H−1(H+(R |Q)) = DZ. For each
z = ( . . . , z−1, z0, z1, . . . ) ∈ Q and x ∈ R we define

Hz(x) =

{

n + 2zn(x − n), if x ∈ [n, n + 1
2
], n ∈ Z,

n + 1 + 2(1 − zn)(x − n − 1), if x ∈ [n + 1
2
, n + 1], n ∈ Z.

Note that for each z ∈ Q and n ∈ Z we have Hz([n, n + 1]) = [n, n + 1] and that Hz

is strictly increasing, so Hz ∈ H+(R). Since Hz(n + 1
2
) = n + zn for each n ∈ Z and

z ∈ Q, H : Q → H+(R) is a one-to-one map. If z, z ′ ∈ Q and x ∈ [n, n + 1
2
] for some

n ∈ Z, then

|Hz(x) − Hz ′(x)| = 2|zn − z ′n|(x − n) ≤ |zn − z ′n|.

If z, z ′ ∈ Q and x ∈ [n + 1
2
, n + 1] for some n ∈ Z, then

|Hz(x) − Hz ′(x)| = 2|zn − z ′n|(n + 1 − x) ≤ |zn − z ′n|.
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Since H(R) carries the topology of point-wise convergence (Lemma 2.1), the conti-
nuity of H follows and hence H is a closed imbedding of Q into H+(R).

We now verify that H−1(H+(R |Q)) = DZ. If Hz ∈ H+(R |Q), then for each

n ∈ Z we consequently have n + 1
2
∈ Q and hence n + zn = Hz(n + 1

2
) ∈ Q . Thus

zn ∈ Q for each n ∈ Z. Consequently, we have z ∈ DZ and H−1(H+(R |Q)) ⊂ DZ.
If, on the other hand, z ∈ DZ and x ∈ R, then we see by inspection of the definition
of H that x ∈ Q if and only if Hz(x) ∈ Q .

We can generalize Theorem 3.3 as follows.

Corollary 3.4 Let X be a locally compact space, let O be an open subset of X, and let D

be a countable dense subset of O. If O contains an open set that is homeomorphic to R,

then HO(X |D) is homeomorphic to Q N if and only if dim HO(X |D) = 0.

Proof We may assume that O contains the space [−∞,∞] in such a way that R

is open in X and D ∩ R = Q . Then HR(X |D) is obviously homeomorphic to
H+(R |Q) (and hence to Q N) and it is a closed subspace of the topological group
G = HO(X |D). According to Lemma 3.2, we have that G = H(X |D)∩HO(X) is an

Fσδ-space. For y ∈ D consider the closed set Fy =

[

{0}, {y}
]

∩G in G and let h ∈ Fy .
For n ∈ N, let τn ∈ G be the translation x 7→ x+2−n of R which has been extended by
the identity on X \ R. Then limn→∞ h ◦ τn = h and h(τn(0)) = h(2−n) 6= h(0) = y

and hence h ◦ τn /∈ Fy for n ∈ N. Thus every Fy is nowhere dense and G =

⋃

y∈D Fy

is a first category space. Now apply Corollary 2.6.

In particular, Theorem 3.3 remains valid if we replace R by the other one-dimensional
manifolds: I, a half open interval, and the circle.

It is possible that dim HO(X |D) = 1, see Section 6.

4 Homeomorphisms of R That Leave the Pseudoboundary Invariant

Lemma 4.1 If A is a Borel subset of a locally compact space X then H(X |A) is a

coanalytic space.

Proof Observe that A×H(X) is Borel in X×H(X). Define the continuous functions
f : A × H(X) → X and g : A × H(X) → X by

f (a, h) = h(a) and g(a, h) = h−1(a).

Put

B = f −1(X \ A) ∪ g−1(X \ A).

Then B is a Borel subset of A × H(X), hence it is a Borel subset of X × H(X). We

conclude that B is analytic. Since the projection π : X×H(X) → H(X) is continuous,
it suffices to observe that π(B) equals precisely the complement of H(X |A).

Theorem 4.2 There exists a pseudoboundary B of R that is a subfield of R.
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Proof Let H1 stand for the linear Hausdorff measure on the spaces Rn with the
standard metric, see for instance [29, Chapter 4]. For each n ∈ N, we define

Gn = {K ∈ K(I) : H1(Kn) = 0},

where Kn stands for the Cartesian product. Since H1 is evidently upper semicontin-
uous, we have that each Gn is a Gδ-subset of K(I). Since each Gn contains all finite
sets, we have that it is a dense Gδ and hence G =

⋂∞
n=1 Gn is a dense Gδ as well. Any

dense Gδ in K(I) contains Cantor sets, so let C ∈ G be such a set.

For n ∈ N, let ϕn
1, ϕ

n
2, . . . enumerate all rational functions in n variables with

coefficients in Z and let the open set On
k ⊂ Rn be the domain of ϕn

k . Write On
k =

⋃∞
i=1 Kn

ki , where each Kn
ki is compact. We define the σ-compactum

B =

∞
⋃

n=1

∞
⋃

k=1

∞
⋃

i=1

ϕn
k(Cn ∩ Kn

ki).

Note that B is invariant under the application of rational functions and hence it is a
field. Note also that C is a subset of B and consequently B contains the pseudobound-
ary Q + C . In order to show that B itself is a pseudoboundary, it suffices to show that

dim B = 0, see Theorem 2.3 and Lemma 2.4.

Since every ϕn
k is continuously differentiable, we have that every ϕn

k↾Kn
ki is a Lip-

schitz map. Since C was chosen with the property H1(Cn) = 0 for each n ∈ N and

Lipschitz functions map sets with measure zero onto sets with measure zero, we have
H1(ϕn

k (Cn∩Kn
ki)) = 0 and hence H1(B) = 0 by σ-additivity. So B is zero-dimensional.

Theorem 4.3 If B is the pseudoboundary of R, then H(R |B) and H+(R |B) are

homeomorphic to K(Q).

Proof In view of Theorem 4.2 and the uniqueness of pseudoboundaries (Theo-
rem 2.2) we may assume that B is a field. We shall apply Corollary 2.9 to H(R |B)

and H+(R |B) as subspaces of the space H(R). Proposition 3.1 and Lemma 4.1 show
that the spaces are zero-dimensional and coanalytic. Write B =

⋃∞
i=1 Bi , where

every Bi is compact. Since dim B = 0, every Bi is nowhere dense in R. If f ∈
[

{0}, Bi

]

∩ H(R |B), then we can select a q ∈ Q \ {0}, arbitrarily close to 0 such

that f (0) + q /∈ Bi . Then g ∈ H(R |B), defined by g(x) = f (x) + q, is close to f but
not an element of [{0}, Bi]. Since H(R |B) =

⋃∞
i=1

[

{0}, Bi

]

∩ H(R |B) this space
(and H+(R |B)) is of the first category in itself.

Select a Cantor set C ⊂ (0, 1) such that D = C ∩ B is a countable dense subset of
C . This can easily be done as follows. Pick a pseudoboundary B ′ and a Cantor set C ′

in R which are disjoint. If D ′ is a countable dense subset of C ′, then B ′ ∪ D ′ is also
a pseudoboundary and hence there exists an f ∈ H+(R) with f (B ′ ∪ D ′) = B. Put

C = f (C ′).

We will construct a map H : K(C) → H+(R) such that H−1(H+(R |B)) = K(D).
Since B is an absorber for the zero-dimensional compacta in R, there is a ϕ ∈ H+(R)
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such that ϕ(C) ⊂ B and ϕ(x) = x for x ≤ 0 or x ≥ 1. If A ∈ K(C), then we define
Â = A ∪ (−∞, 0] ∪ [1,∞). For each A ∈ K(C) let

FA = {(a, b) ⊂ R \ Â : a, b ∈ Â}.

For each A ∈ K(C) and we define HA : R → R as follows

HA(x) =

{

ϕ(x) if x ∈ Â,

ϕ(a) + ϕ(b)−ϕ(a)

b−a
(x − a) whenever x ∈ (a, b) ∈ FA.

Note that HA([a, b]) = [ϕ(a), ϕ(b)] for each (a, b) ∈ FA so HA is a surjection. Since

HA is obviously strictly increasing, we have that it is an element of H+(R).

Claim 1 H−1(H+(R |B)) = K(D).

Proof If A ∈ K(C), then HA↾A = ϕ↾A so HA(A) = ϕ(A) ⊂ ϕ(C) ⊂ B. If HA ∈
H(R |B), then we have that A ⊂ H−1

A (B)∩C = B∩C = D. Thus H−1(H+(R |B)) ⊂
K(D).

In order to show that K(D) ⊂ H−1(H+(R |B)), let A ∈ K(D) = K(C ∩ B). We

first prove that HA(B) ⊂ B. If x ∈ B, then there are three cases to consider. If x ∈ A,
then HA(x) = ϕ(x) ∈ ϕ(C) ⊂ B. If x ∈ Â \ A, then HA(x) = ϕ(x) = x ∈ B. If x ∈
(a, b) ∈ FA, then a, b ∈ A∪{0, 1} ⊂ B. Consequently, ϕ(a), ϕ(b) ∈ ϕ(C)∪{0, 1} ⊂
B. Since x is also in B and B is a field, we have that HA(x) = ϕ(a) + ϕ(b)−ϕ(a)

b−a
(x − a)

is in B. Thus HA(B) ⊂ B.
If, on the other hand, HA(x) ∈ B, then we have again three cases. If x ∈ A, then

x ∈ B. If x ∈ Â \ A, then x = HA(x) ∈ B. If x ∈ (a, b) ∈ FA, then as above
a, b, ϕ(a), ϕ(b) ∈ B and HA(x) = ϕ(a) + ϕ(b)−ϕ(a)

b−a
(x − a) = c for some c ∈ B. Thus

x = a + b−a
ϕ(b)−ϕ(a)

(c − ϕ(a)) ∈ B and hence H−1
A (B) ⊂ B. In conclusion, HA(B) = B

and K(D) ⊂ H−1(H+(R |B)).

We now need to prove that HA is continuous in A ∈ K(C). Select an ε ∈
(

0, 1
2

)

.

Since ϕ is the identity outside (0, 1), the map is uniformly continuous and we can
find a δ ∈ (0, ε) such that |ϕ(x) − ϕ(y)| < ε whenever |x − y| < δ.

Claim 2 For any x ∈ R and A ∈ K(C), if d(x, Â) < δ2, then |HA(x) − ϕ(x)| < 3ε.

Proof If x ∈ Â, then HA(x) = ϕ(x).
So we may assume that x /∈ Â. Then there is an interval (a, b) ∈ FA with a <

x < b. Note that d(x, Â) = min{x − a, b − x}. By symmetry we may assume that
d(x, Â) = x − a < δ2 and hence |ϕ(x) − ϕ(a)| < ε. We have

|HA(x) − ϕ(x)| ≤ |ϕ(a) − ϕ(x)| +
|ϕ(b) − ϕ(a)| · |x − a|

|b − a|
.

If b − x < δ, then

|ϕ(b) − ϕ(a)|
|x − a|

|b − a|
≤ |ϕ(b) − ϕ(x)| + |ϕ(x) − ϕ(a)| < 2ε
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thus |HA(x) − ϕ(x)| < 3ε. If b − x ≥ δ, then

|ϕ(b) − ϕ(a)| · |x − a|

|b − a|
<

δ2

δ
< ε

thus |HA(x) − ϕ(x)| < 2ε.

Let A1 and A2 be elements of K(C) such that dH(A1, A2) < δ3. Note that then also
dH(Â1, Â2) < δ3.

Claim 3 For each x ∈ R we have |HA1
(x) − HA2

(x)| < 6ε.

Proof If d(x, Â1) < δ2/2, then d(x, Â2) < δ2/2 + δ3 < δ2. So

|HA1
(x) − HA2

(x)| ≤ |HA1
(x) − ϕ(x)| + |ϕ(x) − HA2

(x)| < 6ε

by Claim 2.

Thus we may assume that, say d(x, Â1) ≥ δ2/2, and by symmetry also that
d(x, Â2) ≥ δ2/2. So we find that x ∈ (a1, b1) ∈ FA1

and x ∈ (a2, b2) ∈ FA2
.

Note that

d(x, Â1) = min{x − a1, b1 − x} ≥ δ2/2,

d(x, Â2) = min{x − a2, b2 − x} ≥ δ2/2,

min{b1 − a1, b2 − a2, b1 − a2, b2 − a1} ≥ δ2.

We may assume without loss of generality that a2 ≥ a1 and hence a2 ∈ [a1, b1]. This
leads to

min{a2 − a1, b1 − a2} = d(a2, Â1) ≤ dH(Â1, Â2) < δ3.

Since b1 −a2 ≥ δ2 > δ3, we have |a2 −a1| < δ3 and by symmetry also |b2 −b1| < δ3.

Consider

HA1
(x) − HA2

(x)

= ϕ(a1) − ϕ(a2) +
(ϕ(b1) − ϕ(a1)) · (x − a1)

b1 − a1

−
(ϕ(b2) − ϕ(a2)) · (x − a2)

b2 − a2

= ϕ(a1) − ϕ(a2) + (ϕ(b1) − ϕ(b2) + ϕ(a2) − ϕ(a1))
x − a1

b1 − a1

+ (ϕ(b2) − ϕ(a2))
( x − a2

b2 − a2

·
b2 − b1 + a1 − a2

b1 − a1

+
a2 − a1

b1 − a1

)

.

Consequently,

|HA1
(x) − HA2

(x)| ≤ ε + (ε + ε) · 1 + 1 ·
(

1 ·
2δ3

δ2
+

δ3

δ2

)

< 6ε,

where we used {ϕ(a2), ϕ(b2)} ⊂ I.
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So H : K(C) → H+(R) is a continuous function and hence both (H+(R |B), H+(R))
and (H(R |B), H(R)) reduce K(D). This completes the proof of Theorem 4.3

Again we can generalize as follows.

Corollary 4.4 Let X be a locally compact space, let O be an open subset of X, and let

U be an an open subset of O which is a copy of R. If B is a Borel subset of O such that

B ∩ U is the pseudoboundary of U , then HO(X |B) is homeomorphic to K(Q) if and

only if dim HO(X |B) = 0.

Proof We may assume that O contains the space [−∞,∞] in such a way that R is
open in X and B∩R is a subfield and a pseudoboundary of R. Let G denote the group
HO(X |B). In view of Corollary 2.9, let D be a countable dense subset of a Cantor set

C . We have that the pair (HR(X |B), HR(X)) is identical to (H+(R |B ∩ R), H+(R))
and hence (HR(X |B), HR(X)) reduces K(D). Since G ∩ HR(X) = HR(X |B), we
have that also (G, H(X)) reduces K(D). According to Lemma 4.1 we have that G =

H(X |B) ∩ HO(X) is a co-analytic space. As in the proof of Theorem 4.3, write B ∩
R =

⋃∞
i=1 Bi , where every Bi is a nowhere dense compactum. Consider the set V =

⋃

h∈G h(R). Since every h(R) is open in X and X is separable metric, we can find a
countable subset {h j : j ∈ N} of G such that V =

⋃∞
j=1 h j(R). For i, j ∈ N consider

the closed set Fi j = [{0}, h j(Bi)]∩G in G and let f ∈ Fi j . Since Q \ {0} is dense in a
neighbourhood of 0 in X, we can select a q ∈ Q \ {0}, arbitrarily close to 0 such that

h−1
j ( f (q)) /∈ Bi . Then g ∈ G, defined by g(x) = f (x + q) if x ∈ R and g(x) = f (x)

if x ∈ X \ R, is close to f but not an element of Fi j . Thus every Fi j is nowhere dense
in G. If f ∈ G, then f (0) ∈ B ∩ V . Let j ∈ N be such that f (0) ∈ h j(R) and hence
h−1

j ( f (0)) ∈ B ∩ R. Select an i ∈ N such that h−1
j ( f (0)) ∈ Bi and note that f ∈ Fi j .

Thus we have that G =

⋃∞
i=1

⋃∞
j=1 Fi j and hence it is a first category space. Now

apply Corollary 2.9.

Michalewski [30] proved that K(Q) is a (boolean) topological group, answering a
question of Fujita and Taniyama [22]. Recall that a group is boolean if every element

equals its own inverse. By showing that K(Q) is H(R |B), we have found a radically
different group structure for the same space.

5 The Cantor Set

In this section we show that the results we obtained in Sections 3 and 4 for R are also
valid for the Cantor set.

Let C be {0, 1}N, equipped with the standard boolean group structure (denoted
by +). Let D be the countable dense subgroup

{x = (x1, x2, . . . ) ∈ C : there is an n ∈ N with xi = 0 for all i > n}.

We have the following “norm” on C :

|x| = max{2−i|xi | : i ∈ N}.
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Note that this function and the metric it generates assume only values in {0} ∪
{2−i : i ∈ N} and that we have the non-archimedean triangle inequality |x + y| ≤
max{|x|, |y|}. This implies that if |x| > |y|, then |x + y| = |x| for all x, y ∈ C . If
x ∈ C and A ∈ K(C), then d(x, A) = min{|x + y| : y ∈ A}. The Hausdorff metric
on K(C) is given by dH(A1, A2) = max{d(x, A2), d(y, A1) : x ∈ A1, y ∈ A2}.

It is well known that H(C) is homeomorphic to R \ Q and NN, see [5, p. 206].

Theorem 5.1 H(C |D) is homeomorphic to Q N.

Proof We will use Corollary 2.6. Lemma 3.2 shows that H(C |D) is an Fσδ-space.
Since H(C |D) =

⋃

x∈D

[

{0}, {x}
]

∩ H(C |D), it is obvious that this space is of the
first category in itself.

Consider the Cantor set C = α(C×N) with D = D×N as a dense topological copy
of Q . We shall construct an imbedding H : CN → H(C) such that H−1(H(C |D)) =

DN. Let ρ be the metric on C that satisfies the following properties:

ρ((x, n), (y, n)) = 2−n|x + y|,

ρ((x, n),∞) = ρ(∞, (x, n)) = 2−n,

ρ((x, n), (y, m)) = max{2−n, 2−m} if n 6= m.

We let d̂ be the following product metric on CN:

d̂(z, z ′) = max{2−n|zn + z ′n| : n ∈ N},

where z = (z1, z2, . . . ) ∈ CN and z ′ = (z ′1, z ′2, . . . ) ∈ CN.

For every z ∈ CN we put Hz(∞) = ∞ and

Hz(x, n) = (x + zn, n),

whenever (x, n) ∈ C × N. Note that Hz |C × {n} ∈ H(C × {n}) for each z ∈ CN

and n ∈ N, thus Hz ∈ H(C). If z, z ′ ∈ CN and (x, n) ∈ C × N, then

ρ
(

Hz(x, n), Hz ′(x, n)
)

= ρ
(

(x + zn, n), (x + z ′n, n)
)

= 2−n|zn + z ′n|.

This means that H is an isometry from (CN, d̂) to (H(C), ρ̂), where ρ̂ denotes the sup

metric that is associated with ρ.

Finally, we verify that H−1(H(C |D)) = DN. If Hz ∈ H(C |D), then by observing
that for each n ∈ N we have (0, n) ∈ D, we get (zn, n) = Hz(0, n) ∈ D = D × N.

This means that z ∈ DN and H−1(H(C |D)) ⊂ DN. If, on the other hand, z ∈ DN

and (x, n) ∈ C × N, then we have Hz(x, n) = (x + zn, n) ∈ D× N if and only if x ∈ D

because D is a group that contains zn.

Theorem 5.2 If B is the pseudoboundary of a Cantor set C, then H(C |B) is homeo-

morphic to K(Q).
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Proof Note that by Lemma 2.4 B = D × C is a pseudoboundary in the Can-
tor set C2. We shall apply Corollary 2.9 to H(C2 |B) as a subspace of the zero-

dimensional space H(C2). Lemma 4.1 shows that H(C2 |B) is coanalytic. Since
H(C2 |B) =

⋃

x∈D

[

{(0, 0)}, {x} × C
]

∩ H(C2 |B), it is obvious that this space is
of the first category in itself.

We will construct a map H : K(C) → H(C2) such that H−1(H(C2 |B)) = K(D).

If (x1, y1), (x2, y2) ∈ C2 and A ∈ K(C2), then we define

ρ
(

(x1, y1), (x2, y2)
)

= max
{

|x1 + x2|, |y1 + y2|
}

and ρ((x1, y1), A) = min{ρ((x1, y1), z) : z ∈ A}. Let ρH denote the associated
Hausdorff metric on K(C2). Note that ρ is also non-archimedean:

ρ(z1, z3) ≤ max{ρ(z1, z2), ρ(z2, z3)}

and hence
ρ(z1, z3) = max{ρ(z1, z2), ρ(z2, z3)}

whenever ρ(z1, z2) 6= ρ(z2, z3). If n ∈ N ∪ {∞}, then we define Gn ∈ H(C2) by

Gn(x, y) = ((y1, . . . , yn, xn+1, xn+2, . . . ), (x1, . . . , xn, yn+1, yn+2, . . . )),

where (x, y) ∈ C2. Note that G∞(x, y) = (y, x) and that ρ(Gn(x, y), G∞(x, y)) ≤
2−n−1. This last fact is also valid for n = ∞ if we put 2−∞

= 0. Since Gn for finite
n switches only finitely many coordinates, we have that Gn(D × C) = D × C , thus

Gn ∈ H(C2 |B) for each n ∈ N. Also note that every Gn is an isometry with respect
to ρ.

If z ∈ C2 and A ∈ K(C), then we put

nA(z) = − log2(ρ(z, A × {0})) and HA(z) = GnA(z)(z).

Note that we use the convention log2 0 = −∞, so HA(x, 0) = (0, x) whenever x ∈ A.

Claim 4 For each A ∈ K(C), HA is an isometry with respect to ρ.

Proof Let z, z ′ ∈ C2. If j = nA(z) = nA(z ′), then HA(z) = G j(z) and HA(z ′) =

G j(z ′). Since G j is an isometry, we may assume that, say, j = nA(z) < nA(z ′) = k

and hence i = − log2(ρ(z, z ′)) < ∞. Observe that i ≤ j because if i > j then

2− j
= ρ(z, A × {0}) ≤ max

{

ρ(z, z ′), ρ(z ′, A × {0})
}

= max{2−i, 2−k} < 2− j .

Note that

ρ(G j(z), G∞(z)) ≤ 2− j−1,

ρ(G∞(z), G∞(z ′)) = ρ(z, z ′) = 2−i > 2− j−1,

ρ(G∞(z ′), Gk(z ′)) ≤ 2−k−1 < 2− j−1

and hence

ρ(HA(z), HA(z ′)) = ρ(G j(z), Gk(z ′)) = 2−i
= ρ(z, z ′)

because ρ is non-archimedean. Thus HA is an isometry.
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Since isometries are surjective in compact spaces, we have HA ∈ H(C2) for each
A ∈ K(C), see [32, p. 181].

Claim 5 H : K(C) → H(C2) is continuous.

Proof Let A1, A2 ∈ K(C) be distinct so there is an i ∈ N with dH(A1, A2) = 2−i .
Consider a z ∈ C2. If nA1

(z) = nA2
(z), then obviously HA1

(z) = HA2
(z). So

we may assume that, for instance, j = nA1
(z) < nA2

(z) = k, which means that
ρ(z, A1 × {0}) = 2− j and ρ(z, A2 × {0}) = 2−k ≤ 2− j−1. Observe that

2− j
= ρ(z, A1 × {0}) ≤ max

{

ρ
(

z, A2 × {0}
)

, ρH

(

A1 × {0}, A2 × {0}
)}

≤ max{2− j−1, dH(A1, A2)} = max{2− j−1, 2−i}.

Consequently, we have that j ≥ i. Recall that ρ(Gn(z), G∞(z)) ≤ 2−n−1 for each

n ∈ N ∪ {∞}. Thus

ρ(HA1
(z), HA2

(z)) = ρ(G j(z), Gk(z))

≤ max{ρ(G j(z), G∞(z)), ρ(G∞(z), Gk(z))}

≤ max{2− j−1, 2−k−1} = 2− j−1

≤ 2−i−1.

In conclusion, ρ(HA1
(z), HA2

(z)) ≤ dH(A1, A2) for each z ∈ C2, thus H is continu-
ous.

Claim 6 H−1(H(C2 |B)) = K(D).

Proof Let A ∈ K(C) such that HA ∈ H(C2 |B). If a ∈ A then we have HA(a, 0) =

(0, a) ∈ D ×C = B, so (a, 0) ∈ D ×C . Consequently, A ∈ K(D).

Let A ∈ K(D). If a ∈ A, then (a, 0) ∈ B and HA(a, 0) = (0, a) ∈ B. If z ∈
C2 \ (A × {0}), then HA(z) = Gi(z) for some i ∈ N. Since Gi ∈ H(C2 |B), we have
in this case that z ∈ B if and only if HA(z) ∈ B.

In conclusion, (H(C2 |B), H(C2)) reduces K(D) and the proof of Theorem 5.2 is
complete.

6 Rn and the Hilbert Cube

We will show in this section that the results we obtained for R do not generalize to
R2, R3, . . . or the Hilbert cube, because the group of homeomorphisms that leave a
countable dense set or the zero-dimensional pseudoboundary invariant is not zero-

dimensional in these higher dimensional cases.
We call a space X almost zero-dimensional if every point has a neighbourhood basis

consisting of sets that can be written as intersections of clopen sets. This concept is
due to Oversteegen and Tymchatyn [33]. The definition we use here is different from
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the original one, but its equivalence is established in [17]. Note that almost zero-
dimensionality is hereditary. It is proved in [33] that every almost zero-dimensional

space is at most one-dimensional, see also [1, 26].

Proposition 6.1 If A is a zero-dimensional and dense subset of a locally compact space

X, then H(X |A) is almost zero-dimensional.

Proof If X is not compact, then H(X |A) ⊂ H(αX |A). Thus it suffices to prove the
proposition for compact X, which means that we can use the compact-open topol-
ogy. Note that in order to prove almost zero-dimensionality, it suffices to construct

neighbourhood subbases. Since H(X |A) is a topological group we only need to
construct a neighbourhood subbasis S for the identity 1X . Let S consist of all sets
[K, F] ∩ H(X |A) where K and F are closed subsets of X such that K = int K and
K ⊂ int F. It is easily verified that S is a neighbourhood subbasis at 1X .

Let [K, F] ∩ H(X |A) be an arbitrary element of S and let β ∈ H(X |A) \ [K, F].
Then {x ∈ K : β(x) /∈ F} is an open nonempty subset of K. Since K = int K and

A is dense in X, we have that A ∩ K is dense in K and hence there is an a ∈ A ∩ K

such that β(a) /∈ F. Since A is zero-dimensional, we can find an open subset C of X

such that β(a) ∈ C , C ∩ F = ∅, and C ∩ A is clopen in A. Consider the open subset
C̃ = {h ∈ H(X |A) : h(a) ∈ C} of H(X |A). Note that C̃ is disjoint from [K, F] and

that it contains β. If h ∈ H(X |A)\C̃ then h(a) ∈ A\C = A\C . So the complement
of C̃ equals the obviously open set {h ∈ H(X |A) : h(a) /∈ C}. Thus C̃ is clopen in
H(X |A) which concludes the proof.

We will now consider the most famous example of a space that is both one-dimen-
sional and almost zero-dimensional: Erdős space [20]. For reasons of convenience

we will use a variation on the original space that is constructed in the Banach space
ℓ1 rather than in ℓ2. Recall that the space ℓ1 consists of all absolutely summable
sequences of real numbers and is equipped with the norm

‖z‖ =

∞
∑

i=1

|zi | for z = (z1, z2, . . . ) ∈ ℓ1.

Recall also that the norm topology on ℓ1 is generated by the coordinate projections
and the norm function, i.e., it is the weakest topology that makes all these functions
into R continuous. Define

E = {z ∈ ℓ1 : zi ∈ Q and zi ≥ 0 for all i ∈ N}.

The proof that E is one-dimensional is completely analogous to the proof in [20], see
also [13].

Theorem 6.2 If A is a subset of R that is a vector space over the field Q , then

H+(R2 |A2) contains a copy of the Erdős space E and hence dim H+(R2 |A2) > 0.
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Proof If A = {0} or A = R, then the statement is obviously true so we may assume
that there exist an a 6= 0 and a b such that a ∈ A and b ∈ R \ A. By re-scaling we

can arrange that a = 1 and hence that Q ⊂ A. Select two sequences p0 < p1 < · · ·
and q0 > q1 > · · · of rational numbers that both converge to b. For every z ∈ E we
define the function ϕz : R → R by

ϕz(x) =



















































0 if x ≤ p0 or x ≥ q0,
n

∑

i=1

zi +
zn+1

pn+1 − pn

(x − pn) if pn ≤ x ≤ pn+1 for some n,

n
∑

i=1

zi +
zn+1

qn+1 − qn

(x − qn) if qn+1 ≤ x ≤ qn for some n,

∞
∑

i=1

zi if x = b.

for each x ∈ R. Note that ϕz(pn) = ϕz(qn) =

∑n
i=1 zi for z ∈ E and n ∈ {0, 1, . . .}

and that ϕz simply connects these points with linear segments. It is clear that ϕz is
well defined and continuous and that

|ϕz(x) − ϕz ′(x)| ≤ ‖z − z ′‖

for every z, z ′ ∈ E and x ∈ R. Furthermore, since A is a vector space over Q , we have
that ϕz(x) ∈ A whenever x ∈ A.

For each z ∈ E we define the homeomorphism Hz ∈ H+(R2) by Hz(x, y) =

(x, y + ϕz(x)). Note that Hz(x, y) − Hz ′(x, y) = (0, ϕz(x) − ϕz ′(x)). So H : E →
H+(R2) is continuous, since it is continuous even if we use the topology of uniform
convergence on H+(R2). Let π : R2 → R be the projection π(x, y) = y. Observe that
π ◦ Hz(pn, 0) − π ◦ Hz(pn−1, 0) = zn for each n ∈ N and that π ◦ Hz(b, 0) = ‖z‖.

This means that H is a one-to-one map and that if we use H to pull the topology of
point-wise convergence back to E, we get a topology that is at least as strong as the
norm topology by the remark above. In conclusion, H is an imbedding. If x, y ∈ A

and z ∈ E, then ϕz(x) ∈ A, so Hz(x, y) = (x, y + ϕz(x)) ∈ A2. If, on the other hand,

Hz(x, y) ∈ A2, then x ∈ A and thus y ∈ A − ϕz(x) = A. So H is an imbedding of E

in H+(R2 |A2).

Observe that if we choose A = Q in Theorem 6.2, then our construction gives
us a closed imbedding of E in H+(R2 |Q2). Note also that every Hz is extendible
to an element of H+([−∞,∞]2) that is the identity on the boundary which means

that the construction will work for homeomorphism groups of arbitrary topological
manifolds of dimension at least 2, see [12, §4] for details. In particular we have:

Corollary 6.3 If n ∈ {2, 3, . . . ,∞} and if A is either a countable dense subset or the

zero-dimensional pseudoboundary of Mn, then H(Mn |A) is both one-dimensional and

almost zero-dimensional.
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Proof We first consider Rn for n ≥ 2. As the countable dense set we use Qn.
Let B be the pseudoboundary as in Theorem 4.2 and note that Lemma 2.4 shows

that Bn is a zero-dimensional pseudoboundary of Rn. Theorem 6.2 obviously applies
to H(R2 |Q2) and H(R2 |B2). Observe that by extending elements of H(R2) with
the identity for coordinates other than the first two, we obtain closed imbeddings of
H(R2 |Q2) and H(R2 |B2) in H(Rn |Qn), respectively H(Rn |Bn).

Consider now the Hilbert cube Q = [−∞,∞]N. We use as a countable dense
subset

D = {z ∈ Q
N : there is an i ∈ N with z j = 0 for all j > i}.

Application of Theorem 2.3 and Lemma 2.4 gives that

B∞
0 = {z ∈ BN : there is an i ∈ N with z j = 0 for all j > i}

is a zero-dimensional pseudoboundary in Q. Observe that the homeomorphisms Hz

that were constructed in the proof of Theorem 6.2 are all extendible to elements of
H([−∞,∞]2). Again, by using the identity on the other coordinates we get imbed-
dings of E in both H(Q |D) and H(Q |B∞

0 ).

Almost zero-dimensionality follows of course from Proposition 6.1.

The fact that for topological manifolds M of dimension at least two the group of
homeomorphisms that map a countable dense subset D onto itself is at least one-

dimensional appears as Theorem 3.3 in Brechner [7]. However, there is a problem
with the proof of that theorem. Specifically, Dijkstra [12] presents a counterexample
to [7, Lemma 2.4]. Coming attraction: In a forthcoming paper [16] the authors
prove that H(M |D) is in fact homeomorphic to E. The Erdős space imbedding that

is presented here plays a crucial part in that proof.
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