Houston Journal of Mathematics Volume 32, No. 2, 2006

CONTENTS

J. Maney, On the Boundary Map and Overrings	325
D.E. Dobbs and Jay Shapiro , Descent of Divisibility Properties of Integral Domains to Fixed Rings	337
S. Hedayat and R. Nekooei, Prime and Radical Submodules of Free Modules over a PID	355
S. Hedayat and R. Nekooei, Primary Decomposition of Submod- ules of a Finitely Generated Module over a PID	369
A. Badawi D.E. Dobb , Strong Ring Extensions and φ-Pseudo- Valuation Rings	379
P. Malcolmson and F. Okoh, A Class of Integral Domains be- tween Factorial Domains and IDF-Domains	399
D. Guido and T. Isola, Tangential Dimensions II. Measures	423
I.S. Labouriau and M.A.S. Ruas, Invariants for Bifurcations	445
S.G. Popvassilev, Base-Family Paracompactness	459
F. Jordan, The S ₄ Continua in the Sense of Michael are Precisely the Dendrites	471
J. van Mill, Not All Homogeneous Polish Spaces are Products	489
O.T. Alas and R.G. Wilson , <i>Minimal Properties between</i> T_1 <i>and</i> T_2	493
I.G. Todorov, Synthetic Properties of Ternary Masa-Bimodules	505
P. Li, J. Ma and J. Wu, Additive Derivations of Certain Reflexive Algebras	521
D. Kucerovsky and P.W. Ng, The Corona Factorization Property and Approximate Unitary Equivalence	531
T. Oikhberg , Operator Spaces with Complete Bases, Lacking Com- pletely Unconditional Bases	551

(Continued on inside back cover)

(Continued from back cover)

J. Prüss, A. Rhandi, and R. Schnaubelt, Quasinormality of	
Toeplitz Tuples with Analytic Symbols	563
A. Olofsson, An Inequality for Sums of Subharmonic and Super- harmonic Functions	577
Z. Chen and M. Ru, A Uniqueness Theorem for Moving Targets with Truncated Multiplicities	589
R.J. McCann, Stable Rotating Binary Stars and Fluid in a Tube	603

HOUSTON JOURNAL OF MATHEMATICS © 2006 University of Houston Volume 32, No. 2, 2006

NOT ALL HOMOGENEOUS POLISH SPACES ARE PRODUCTS

JAN VAN MILL

Communicated by Charles Hagopian

ABSTRACT. We prove that not every homogeneous Polish space is the product of one of its quasi-components and a totally disconnected space. This answers a question of Aarts and Oversteegen.

1. INTRODUCTION

All spaces under discussion are separable and metrizable.

An interesting and unexpected consequence of the Effros Theorem [6] is that every homogeneous locally compact space is a product of two spaces, one of which is connected and the other of which is zero-dimensional. This result is for the compact case due to Mislove and Rogers [13, 14] and for the general case to Aarts and Oversteegen [1]. It was asked by Aarts and Oversteegen whether every homogeneous Polish space is the product of one of its quasi-components and a totally disconnected space. To put this question into perspective, observe that there are homogeneous, totally disconnected, 1-dimensional Polish spaces. An example of such a space is the so-called *complete Erdős space* E_c , that is, the set of vectors in Hilbert space ℓ^2 all coordinates of which are irrational. So the product $E_c \times S^1$, where S^1 denotes the 1-sphere, is a homogeneous Polish space of which the components form an upper semi-continuous decomposition whose quotient space is not zero-dimensional (but is totally disconnected). This shows

²⁰⁰⁰ Mathematics Subject Classification. 54F15, 54H11.

Key words and phrases. Homogeneous, Polish space, Effros Theorem, product.

I am indebted to Lex Oversteegen for pointing out that my original construction could be significantly simplified by using powerful results of Lewis [12]. I am also indebted to Jan Dijkstra for some helpful comments.

⁴⁸⁹

that for Polish spaces one should aim at totally disconnected instead of zerodimensional factors. The aim of this note is to answer the Aarts-Oversteegen question in the negative.

2. Preliminaries

The example has two ingredients: the Lelek fan L and the pseudo-arc P. In this section we will among other things briefly discuss these spaces and state the results that we need from the literature.

A space is *Polish* if its topology is generated by a complete metric. By $X \approx Y$ we mean that X and Y are homeomorphic spaces.

A space X is totally disconnected if all distinct points $x, y \in X$ have disjoint clopen (= both closed and open) neighborhoods. Moreover, a space X is hereditarily disconnected if all components are singletons. A totally disconnected space is hereditarily disconnected. The converse is not true, as simple examples show.

The Lelek fan L, [11], is a subcontinuum of the cone over the Cantor set (the Cantor fan) having the set of its endpoints E dense in L. It is known that E is a 1-dimensional, totally disconnected, G_{δ} -subset of L. Hence E is Polish. The uniqueness of the Lelek fan as proved by Bula and Oversteegen [3] and Charatonik [4] implicitly shows that E is homogeneous (this is well-known; for a generalization, see e.g. [5, Theorem 7.4]). In fact, if $x, y \in E$ then there is a homeomorphism of L that maps E onto E and x onto y. It was shown by Kawamura, Oversteegen and Tymchatyn [10] that E is homeomorphic to the complete Erdős space E_c (see §1). Erdős [8] proved that E_c is 1-dimensional.

Let P denote the pseudo-arc in the plane. It is well-known that P is homogeneous. Lewis [12], building on work of Bing and Jones [2], proved that for every 1-dimensional continuum X there are a 1-dimensional continuum \tilde{X} and a continuous open surjection $\pi: \tilde{X} \to X$, such that

- (1) for all $x \in X$, $\pi^{-1}(x) \approx P$,
- (2) if $f: X \to X$ is a homeomorphism, then there is a homeomorphism $\tilde{f}: \tilde{X} \to \tilde{X}$ such that $\pi \circ \tilde{f} = f \circ \pi$,
- (3) if for some $x \in X$, $g: \pi^{-1}(x) \to \pi^{-1}(x)$ is a homeomorphism, then there is a homeomorphism $\tilde{g}: \tilde{X} \to \tilde{X}$ such that $\tilde{g} \upharpoonright \pi^{-1}(x) = g$ and $\tilde{g}(\pi^{-1}(y)) = \pi^{-1}(y)$ for every $y \in X$.

Observe that this result implies that \tilde{X} is homogeneous provided that X is.

3. The construction

We adopt the notation in §2. Our example is $Z = \pi^{-1}(E)$ (here \tilde{L} and $\pi: \tilde{L} \to L$ are the space and the map given by the results of Lewis). The results mentioned in §2 imply that Z is homogeneous and Polish.

Proposition 3.1. If X is hereditarily disconnected and Y is connected, then Z and $X \times Y$ are not homeomorphic.

PROOF. Let $\xi: X \times Y \to X$ denote the projection. Striving for a contradiction, let $h: Z \to X \times Y$ be a homeomorphism. Since E is totally disconnected, $\{\pi^{-1}(u): u \in E\}$ is the collection of components of Z. In addition, $\{\{x\} \times Y : x \in X\}$ is the collection of components of $X \times Y$. Since π is open, the assignment $E \to X$ defined by

$$u \mapsto \pi^{-1}(u) \mapsto h(\pi^{-1}(u)) \mapsto \{\xi(h(\pi^{-1}(u)))\}$$

is continuous. By symmetry, it has a continuous inverse, hence $E \approx X$. Moreover, $Y \approx P$ since every $\pi^{-1}(u) \approx K$. This means that $Z \approx E \times P$. But this is a contradiction since dim $Z \leq 1$ being a subspace of the 1-dimensional space \tilde{L} (in fact, its dimension is obviously 1), and dim $(E \times P) = 2$. The latter fact follows from the result due to Hurewicz [9] that the product of a 1-dimensional compactum and a 1-dimensional space is 2-dimensional (see also Engelking [7, 1.9.E]).

Since the quasi-components of Z coincide with its components and hence are continua, Proposition 3.1 solves negatively the Aarts-Oversteegen question that was mentioned in the introduction.

References

- J. M. Aarts and L. G. Oversteegen, The product structure of homogeneous spaces, Indag. Math. (N.S.) 1 (1990), 1–5.
- [2] R. H. Bing and F. B. Jones, Another homogeneous plane continuum, Trans. Amer. Math. Soc. 90 (1959), 171–192.
- [3] W. D. Bula and L. G. Oversteegen, A characterization of smooth Cantor bouquets, Proc. Amer. Math. Soc. 108 (1990), 529–534.
- [4] W. J. Charatonik, The Lelek fan is unique, Houston J. Math. 15 (1989), 27-34.
- [5] J. J. Dijkstra and J. van Mill, Erdős space and homeomorphism groups of manifolds, in preparation.
- [6] E. G. Effros, Transformation groups and C*-algebras, Annals of Math. 81 (1965), 38–55.
- [7] R. Engelking, Theory of dimensions finite and infinite, Heldermann Verlag, Lemgo, 1995.
- [8] P. Erdős, The dimension of the rational points in Hilbert space, Annals of Math. 41 (1940), 734–736.

JAN VAN MILL

- [9] W. Hurewicz, Sur la dimension des produits cartesiens, Ann. of Math. (2) **36** (1935), no. 1, 194–197.
- [10] K. Kawamura, L. G. Oversteegen, and E. D. Tymchatyn, On homogeneous totally disconnected 1-dimensional spaces, Fund. Math. 150 (1996), 97–112.
- [11] A. Lelek, On plane dendroids and their end points in the classical sense, Fund. Math. 49 (1961), 301–319.
- [12] W. Lewis, Continuous curves of pseudo-arcs, Houston J. Math. 11 (1985), no. 1, 91-99.
- [13] M. W. Mislove and J. T. Rogers, Jr., Local product structures on homogeneous continua, Topology Appl. 31 (1989), 259–267.
- [14] M. W. Mislove and J. T. Rogers, Jr., Addendum: "Local product structures on homogeneous continua", Topology Appl. 34 (1990), 209.

Received April 21, 2004

Revised version received October 3, 2004

Faculty of Sciences, Department of Mathematics, Vrije Universite
it, De Boelelaan $1081^a,\,1081~{\rm HV}$ Amsterdam, The Netherlands

E-mail address: vanmill@cs.vu.nl

492