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NOT ALL HOMOGENEOUS POLISH SPACES ARE PRODUCTS

JAN VAN MILL

Communicated by Charles Hagopian

Abstract. We prove that not every homogeneous Polish space is the prod-

uct of one of its quasi-components and a totally disconnected space. This

answers a question of Aarts and Oversteegen.

1. Introduction

All spaces under discussion are separable and metrizable.
An interesting and unexpected consequence of the Effros Theorem [6] is that

every homogeneous locally compact space is a product of two spaces, one of
which is connected and the other of which is zero-dimensional. This result is for
the compact case due to Mislove and Rogers [13, 14] and for the general case
to Aarts and Oversteegen [1]. It was asked by Aarts and Oversteegen whether
every homogeneous Polish space is the product of one of its quasi-components
and a totally disconnected space. To put this question into perspective, observe
that there are homogeneous, totally disconnected, 1-dimensional Polish spaces.
An example of such a space is the so-called complete Erdős space Ec, that is, the
set of vectors in Hilbert space `2 all coordinates of which are irrational. So the
product Ec × S1, where S1 denotes the 1-sphere, is a homogeneous Polish space
of which the components form an upper semi-continuous decomposition whose
quotient space is not zero-dimensional (but is totally disconnected). This shows
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that for Polish spaces one should aim at totally disconnected instead of zero-
dimensional factors. The aim of this note is to answer the Aarts-Oversteegen
question in the negative.

2. Preliminaries

The example has two ingredients: the Lelek fan L and the pseudo-arc P . In
this section we will among other things briefly discuss these spaces and state the
results that we need from the literature.

A space is Polish if its topology is generated by a complete metric. By X ≈ Y

we mean that X and Y are homeomorphic spaces.
A space X is totally disconnected if all distinct points x, y ∈ X have disjoint

clopen (= both closed and open) neighborhoods. Moreover, a space X is heredi-
tarily disconnected if all components are singletons. A totally disconnected space
is hereditarily disconnected. The converse is not true, as simple examples show.

The Lelek fan L, [11], is a subcontinuum of the cone over the Cantor set
(the Cantor fan) having the set of its endpoints E dense in L. It is known
that E is a 1-dimensional, totally disconnected, Gδ-subset of L. Hence E is
Polish. The uniqueness of the Lelek fan as proved by Bula and Oversteegen [3]
and Charatonik [4] implicitly shows that E is homogeneous (this is well-known;
for a generalization, see e.g. [5, Theorem 7.4]). In fact, if x, y ∈ E then there
is a homeomorphism of L that maps E onto E and x onto y. It was shown
by Kawamura, Oversteegen and Tymchatyn [10] that E is homeomorphic to the
complete Erdős space Ec (see §1). Erdős [8] proved that Ec is 1-dimensional.

Let P denote the pseudo-arc in the plane. It is well-known that P is homo-
geneous. Lewis [12], building on work of Bing and Jones [2], proved that for
every 1-dimensional continuum X there are a 1-dimensional continuum X̃ and a
continuous open surjection π : X̃ → X, such that

(1) for all x ∈ X, π−1(x) ≈ P ,
(2) if f : X → X is a homeomorphism, then there is a homeomorphism

f̃ : X̃ → X̃ such that π ◦ f̃ = f ◦ π,
(3) if for some x ∈ X, g : π−1(x) → π−1(x) is a homeomorphism, then there is

a homeomorphism g̃ : X̃ → X̃ such that g̃ ¶ π−1(x) = g and g̃(π−1(y)) =
π−1(y) for every y ∈ X.

Observe that this result implies that X̃ is homogeneous provided that X is.
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3. The construction

We adopt the notation in §2. Our example is Z = π−1(E) (here L̃ and π : L̃ →
L are the space and the map given by the results of Lewis). The results mentioned
in §2 imply that Z is homogeneous and Polish.

Proposition 3.1. If X is hereditarily disconnected and Y is connected, then Z

and X × Y are not homeomorphic.

Proof. Let ξ : X×Y → X denote the projection. Striving for a contradiction, let
h : Z → X × Y be a homeomorphism. Since E is totally disconnected, {π−1(u) :
u ∈ E} is the collection of components of Z. In addition, {{x} × Y : x ∈ X} is
the collection of components of X × Y . Since π is open, the assignment E → X

defined by
u 7→ π−1(u) 7→ h(π−1(u)) 7→ {ξ(h(π−1(u)))}

is continuous. By symmetry, it has a continuous inverse, hence E ≈ X. Moreover,
Y ≈ P since every π−1(u) ≈ K. This means that Z ≈ E × P . But this is
a contradiction since dim Z ≤ 1 being a subspace of the 1-dimensional space L̃

(in fact, its dimension is obviously 1), and dim(E × P ) = 2. The latter fact
follows from the result due to Hurewicz [9] that the product of a 1-dimensional
compactum and a 1-dimensional space is 2-dimensional (see also Engelking [7,
1.9.E]). £

Since the quasi-components of Z coincide with its components and hence are
continua, Proposition 3.1 solves negatively the Aarts-Oversteegen question that
was mentioned in the introduction.
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