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Sele
tions and near-sele
tions in metri
 linear spa
eswithout lo
al 
onvexitybyTadeusz Dobrowolski (Pittsburg, KS) and Jan van Mill (Amsterdam)
Abstra
t. We 
hara
terize the AR property in 
onvex subsets of metri
 linear spa
esin terms of 
ertain near-sele
tions.1. Introdu
tion. All spa
es under dis
ussion are metrizable.As is well known, every lo
ally 
onvex metri
 linear spa
e is an Abso-lute Retra
t (abbreviated AR; Dugundji [18℄). (Sin
e we restri
t ourselvesto metrizable spa
es, every AR is an Absolute Extensor, i.e., a spa
e that
an play the role of R in the 
lassi
al Tietze�Urysohn Theorem, and vi
eversa.) The lo
al 
onvexity assumption in this result is not essential, as the

ℓp-spa
es (0 < p < 1) show. Other examples 
an be found within the 
lassof ℵ0-dimensional metri
 linear spa
es, i.e., metri
 linear spa
es having a
ountable Hamel basis. This follows from Haver's Theorem in [20℄ that ev-ery lo
ally 
ontra
tible spa
e that is a 
ountable union of �nite-dimensional
ompa
ta is an Absolute Neighborhood Retra
t (abbreviated: ANR). Theformidable problem of whether every metri
 linear spa
e is an AR was �nallysettled by Cauty [9℄ with a negative answer. Dete
ting the AR-property inin�nite-dimensional metri
 linear spa
es and topologi
al groups is usuallythe �rst step towards proving that they are, in fa
t, homeomorphi
 to anin�nite-dimensional manifold (see, e.g., Dobrowolski and Toru«
zyk [17℄).But even for a spa
e as 
on
rete as the group of all homeomorphisms of the3-
ell, it is unknown whether it is an AR.The usual and well known proof of the fa
t that every lo
ally 
onvexmetri
 linear spa
e is an AR, is by applying the so-
alled Dugundji Extension2000 Mathemati
s Subje
t Classi�
ation: 55M15, 54C60.Key words and phrases: metri
 linear spa
e, lo
ally 
onvex, 
ompa
t 
onvex set, se-le
tion, near-sele
tion, �nite-dimensional, C-spa
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216 T. Dobrowolski and J. van MillFormula [5, p. 57℄. It seems less well known that this result 
an also beproved by a (near-)sele
tion argument (
f. [5, p. 92℄, [26, 1.4.13℄, [28, p.232℄; see also the proof of Theorem 4.2 below). The aim of this paper isto 
hara
terize the AR-property in 
onvex subsets of metri
 linear spa
esin terms of 
ertain near-sele
tions. Roughly speaking, our 
hara
terizationtheorem states that a 
onvex set in a metri
 linear spa
e is an AR if and onlyif lower semi
ontinuous fun
tions with �nite-dimensional 
ompa
t 
onvexvalues in it admit near-sele
tions.For some of our results it su�
es that the spa
es under 
onsiderationare merely para
ompa
t sin
e that is the only thing used in the proofs. Wedo not aim at full generality and so our results are sometimes not stated intheir most general form.We are indebted to Ernie Mi
hael, Pavel Semenov, Valentin Gutev andthe referee for helpful 
omments.
2. Preliminaries. We adopt the usual terminology with respe
t to par-titions of unity (Dugundji [19℄). So, if f : X → R is 
ontinuous, then thesupport of f is the 
losed set {x ∈ X : f(x) 6= 0}. If {κi : i ∈ I} is a parti-tion of unity on a spa
e X, then the supports of the κi form a lo
ally �nite
losed 
overing of X. Hen
e, in parti
ular, for ea
h x ∈ X there are only�nitely many i ∈ I with κi(x) 6= 0. The following 
entral result on partitionsof unity will be used several times without expli
it referen
e: for ea
h open
over U = {Ui : i ∈ I} of a spa
e X there is a partition of unity {κi : i ∈ I}on X su
h that κ−1

i (0, 1] ⊆ Ui for every i ∈ I. Su
h a partition of unity issaid to be subordinated to U. See [19, p. 170℄ for details.If (X, d) is a spa
e and x ∈ X, then B(x, ε) (respe
tively, B(A, ε)) ab-breviates the open ball about x (respe
tively, about A ⊆ X) of radius ε.Let E be a metri
 linear spa
e. We will always 
onsider E equipped witha translation invariant metri
 d indu
ed by a so-
alled F -norm | · | on E (thatis, d(x, y) = |x − y|). We require that su
h a norm is in
reasing on ea
h rayemanating from the origin (or, equivalently, |tx| ≤ |x| for all real numbers
t with |t| ≤ 1). See, e.g., [29, Theorem 1.24℄ for details. A subset X of E is
alled 
omplete if the metri
 d restri
ted to X is a 
omplete metri
. Clearly,every 
omplete subset of E is 
losed in E and every 
ompa
t subset of E is
omplete. The zero ve
tor of E will be denoted by 0.If E is a metri
 linear spa
e that is an AR, then so are all of its denselinear subspa
es. This 
an be seen as follows. First one observes that if L isa dense linear subspa
e of E then E \ L is lo
ally homotopy negligible in E(this is folklore, for a proof see, e.g., Dobrowolski and Mogilski [16, Lemma3.1℄). It then su�
es to apply Toru«
zyk's [32, Theorem 3.1℄. The same 
an



Sele
tions and near-sele
tions 217be said about dense 
onvex sets of arbitrary 
onvex sets in metri
 linearspa
es. We will use this fa
t frequently without expli
it referen
e.3. Set-valued fun
tions. Let X and Y be sets. By writing F : X ⇒ Ywe shall mean that F is a set-valued fun
tion from X to Y . That is, F (x) isa nonempty subset of Y for every x ∈ X.Let X and Y be topologi
al spa
es and let F : X ⇒ Y . For every V ⊆ Ywe put
F⇐(V ) = {x ∈ X : F (x) ∩ V 6= ∅}.Then F is lower semi
ontinuous (abbreviated LSC) provided that for everyopen subset U of Y , F⇐(U) is open in X. In addition, a (
ontinuous) sele
-tion for F is a (
ontinuous) fun
tion f : X → Y su
h that f(x) ∈ F (x) forevery x ∈ X.Remark 3.1. Let E be a metri
 linear spa
e. In addition, let F : X ⇒ Ebe a fun
tion su
h that for every x ∈ X, F (x) is 
onvex. Assume that Xhas an open 
over U su
h that for every U ∈ U the fun
tion F |U has a
ontinuous sele
tion, say fU . Hen
e 
ontinuous sele
tions for F exist lo
ally.We 
laim that in this situation F has in fa
t a global 
ontinuous sele
tion.Let {κU}U∈U be a partition of unity subordinated to U. Then the fun
tion

f de�ned by the formula
f(x) =

∑
{κU (x)fU (x) : U ∈ U, x ∈ U}is a 
ontinuous sele
tion for F . This useful observation, perhaps due to Cor-son and Lindenstrauss [11, proof of Theorem 2.1℄, will be used without ex-pli
it referen
e below.Remark 3.2. The famous Mi
hael Sele
tion Theorem from [23℄ assertsthat if F : X ⇒ E is LSC, where E is a lo
ally 
onvex metri
 linear spa
eand every F (x) is both 
omplete and 
onvex, then F admits a 
ontinuoussele
tion. Continuous sele
tions are important tools in topology and fun
-tional analysis. There are several versions of the Mi
hael Sele
tion Theoremwhi
h all assume lo
al 
onvexity in one form or another. We 
ould not �ndan example in the literature of a metri
 linear spa
e for whi
h the 
on
lusionof the Mi
hael Sele
tion Theorem fails. Let us present su
h an example. ByCauty [9℄, there is a metri
 linear spa
e Z that is not an AR. By passing tothe 
ompletion of Z, we may assume that the Cauty spa
e Z is 
omplete.We may assume that Z is a 
losed subspa
e of some AR X (see [26, Lemma1.2.3℄). Set F (x) = {x} for x ∈ Z and F (x) = Z for x 6∈ Z. Then F : X ⇒ Zis LSC and does not have a 
ontinuous sele
tion, sin
e otherwise Z would bea retra
t of X.We now formulate and prove four simple lemmas.



218 T. Dobrowolski and J. van MillLemma 3.3. Let E be a metri
 linear spa
e. In addition, let F : X ⇒ Ebe an LSC-fun
tion su
h that for every x ∈ X, F (x) is a �nite-dimensional
onvex set. Then, for every n ∈ N, Xn = {x ∈ X : dimF (x) ≤ n − 1} is
losed in X.Proof. We will show that {x ∈ X : dimF (x) ≥ n} is open. Pi
k anarbitrary x0 su
h that dimF (x0) ≥ n. We may assume that F (x0) 
ontainsthe origin. Then F (x0) 
ontains n linearly independent ve
tors v1, . . . , vn.Take pairwise disjoint open balls Bi = B(vi, ri) so that for every 
hoi
eof xi ∈ Bi, i = 1, . . . , n, the set {x1, . . . , xn} is linearly independent. Let
U = F⇐(B1) ∩ · · · ∩ F⇐(Bn), and observe that U is an open neighborhoodof x0. Then, for every x ∈ U , we have F (x) ∩ Bi 6= ∅, i = 1, . . . , n. Hen
e,
F (x) 
ontains at least n linearly independent ve
tors and, 
onsequently,
dimF (x) ≥ n.Let X and (Y, d) be spa
es. If F : X ⇒ Y and ε > 0, then a 
ontinuousfun
tion f : X → Y is 
alled an ε-near-sele
tion of F if d(f(x), F (x)) < εfor every x ∈ X. (So a 
ontinuous sele
tion 
an be thought of as a �0-near-sele
tion� provided every F (x) is 
losed in Y .) This is the 
entral 
on
ept inthis paper.We are primarily interested here in ε-near-sele
tions in the 
ase that Yis a 
onvex subspa
e of a metri
 linear spa
e E, F has 
onvex values, and dis the metri
 on Y we get from an arbitrary F -norm on E.Lemma 3.4. Let X and (Y, d) be spa
es, let F : X ⇒ Y be LSC, and let
ε > 0. In addition, let X0 be a subset of X for whi
h there exists a map
f : X → Y su
h that f |X0 is an ε-near-sele
tion for F |X0. Then there is aneighborhood Uε of X0 su
h that f |Uε is a 2ε-near-sele
tion of F |Uε.Proof. It is easy to see that

Uε =
⋃

x∈X0

f−1(B(f(x), ε)) ∩ F⇐(B(f(x), ε))is as required.We now present a 
ontrolled version of Remark 3.1 for near-sele
tions.Lemma 3.5. Let Y be a 
onvex subspa
e of a metri
 linear spa
e and let
F : X ⇒ Y be an LSC-fun
tion with 
onvex values. Moreover , assume that
X 
an be written as ⋃∞

n=1 Un su
h that for every n ∈ N, Un is open and
F |Un admits an εn-near-sele
tion Fn : Un → Y . Then there is a 
ontinuousfun
tion f : X → Y su
h that d(f(x), F (x)) ≤

∑
{εn : x ∈ Un} for every

x ∈ X.Proof. De�ne Fn(x) for every x ∈ X by letting Fn(x) = Fn(x) if x ∈ Un,and Fn(x) = 0 if x 6∈ Un.



Sele
tions and near-sele
tions 219For the open 
over {Un : n ∈ N} of X we pi
k an arbitrary partition ofunity {λn}n∈N subordinated to it, and de�ne the fun
tion f : X → Y by theformula f(x) =
∑∞

n=1 λn(x)Fn(x).It is 
lear that f is well de�ned and 
ontinuous. Take an arbitrary x ∈ X,and let A = {n ∈ N : λn(x) > 0}. By 
onstru
tion, for every n ∈ Athere exists an element zn ∈ F (x) su
h that |zn − Fn(x)| < εn. Put z =∑
n∈A λn(x)zn. Then z ∈ F (x) sin
e F (x) is 
onvex, and
|f(x) − z| ≤

∑

n∈A

|λn(x)(Fn(x) − zn)| ≤
∑

n∈A

|Fn(x) − zn| ≤
∑

n∈A

εn,as required.Lemma 3.6. Let Y be a 
onvex subspa
e of a metri
 linear spa
e E, andlet F : X ⇒ Y be an LSC-fun
tion with 
onvex values. Then the following
onditions are equivalent :(1) F admits for every ε > 0 an ε-near-sele
tion f : X → Y .(2) For every 
ontinuous fun
tion ε : X → (0, 1) there exists a 
ontin-uous fun
tion f : X → Y su
h that d(f(x), F (x)) < ε(x) for every
x ∈ X.Proof. For (1)⇒(2), let ε : X → (0, 1) be 
ontinuous, and for every n ≥ 0,put

Dn = {x ∈ X : 2−(n+2) < ε(x) < 2−n}.In addition, for every n ≥ 0 let fn : X → Y be a 2−(n+3)-near-sele
tionof F . There exists by Lemma 3.5 a 
ontinuous fun
tion f : X → Y su
h that
d(f(x), F (x)) ≤

∑
{2−(n+3) : x ∈ Dn, n ∈ N} for every x ∈ X. To provethat f is a near-sele
tion for F whi
h is 
ontrolled by the fun
tion ε, takean arbitrary x ∈ X, and let n(x) = min{n ≥ 0 : x ∈ Dn}. Observe that if

x ∈ Dm, then m ∈ {n(x), n(x) + 1}. Hen
e
d(f(x), F (x)) ≤

1

2n(x)+3
+

1

2n(x)+4
<

1

2n(x)+2
< ε(x),as required.Sin
e (2)⇒(1) is trivial, this 
ompletes the proof.4. Main results. In this se
tion we will present our main results, The-orems 4.1 and 4.2. In Theorem 4.1 we show that 
ertain LSC-maps have a
ontinuous sele
tion. This result is then used in Theorem 4.2 to prove our
hara
terization of the AR-property in 
onvex subsets of metri
 linear spa
esin terms of near-sele
tions.In [25, Corollary 7.3℄, Mi
hael proved that if G is a topologi
al group, and

H a 
losed subgroup isomorphi
 to the additive group of a Fré
het spa
e,then the natural quotient map from G to G/H has a 
ross-se
tion. For thespe
ial 
ase that G is a 
omplete metri
 linear spa
e, see [5, Prop. 7.1 on



220 T. Dobrowolski and J. van Millp. 87℄ (the proof presented there is due to Toru«
zyk). Theorem 4.1 belowand its proof are inspired by these results.We will use the following elementary but useful fa
t due to Carathéodory.Let E be an n-dimensional metri
 linear spa
e. Then if x lies in the 
onvexhull of a set F ⊆ E, then x lies in the 
onvex hull of some subset of F that
ontains at most n + 1 points [30, p. 3℄. This easily implies that for every
r > 0 the 
onvex hull of the ball B(0, r) in E is 
ontained in B(0, (n + 1)r).Theorem 4.1. Let E be a metri
 linear spa
e E. Suppose that F : X⇒Eis an LSC-fun
tion with 
losed and 
onvex values. If there is an open 
over
U of X su
h that for every U ∈ U, max{dimF (x) : x ∈ U} < ∞, then Fadmits a 
ontinuous sele
tion.Proof. We will �rst prove the theorem in the spe
ial 
ase that U = {X}.Let n ∈ N be su
h that dimF (x) ≤ n for all x ∈ X. By indu
tion on
k ≥ 0 we will 
onstru
t a sequen
e of (not ne
essarily 
ontinuous) fun
tions
fk : X → E so that(1) fk(x) ∈ F (x), x ∈ X,(2) for every x0 ∈ X there exists a neighborhood V k

x0
of x0 su
h that

|fk(x) − fk(x0)| ≤ 1/2k whenever x ∈ V k
x0
,(3) |fk(x) − fk−1(x)| ≤ 1/2k + (n + 1)/2k−1, x ∈ X.Having 
onstru
ted this sequen
e, we let f denote its pointwise limit. Ob-serve that for every x ∈ X, f(x) is well de�ned and belongs to F (x) sin
e

F (x) being �nite-dimensional and 
onvex is 
omplete with respe
t to any
F -norm | · | on E. Moreover, for every x ∈ V k

x0
,

|f(x) − f(x0)| ≤ |f(x) − fk(x)| + |fk(x) − fk(x0)| + |fk(x0) − f(x0)|

≤ (n + 1)/2k−2 + 3/2k.This yields the 
ontinuity of f .Assuming the F -norm |·| is bounded by 1, for k = 0, we see that 
ondition(2) is satis�ed with V 0
x0

= X, x0 ∈ X, and any sele
tion f0 : X → E of F .Suppose f0, . . . , fk−1 have been 
onstru
ted for some k ≥ 1. Let δ > 0be so small that (2n + 1)δ ≤ 1/2k+2.Consider for a �xed x0 ∈ X its open neighborhood
(i) Ux0

= V k−1
x0

∩ F⇐(B(fk−1(x0), δ)).Sin
e by (i), F (x)∩B(fk−1(x0), δ) 6= ∅ for every x ∈ Ux0
, there is a (possiblydis
ontinuous) sele
tion gx0

: Ux0
→ E for the fun
tion F |Ux0

whi
h, forevery x ∈ Ux0
, satis�es

(ii) |gx0
(x) − fk−1(x0)| < δ.Let gx0

|(X \ Ux0
) be an arbitrary 
onstant fun
tion. By (ii),

(iii) diam gx0
(Ux0

) < 2δ,
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tions and near-sele
tions 221and by (i) and (2),
(iv) |gx0

(x)−fk−1(x)| ≤ |gx0
(x)−fk−1(x0|+|fk−1(x0)−fk−1(x)| ≤ δ+

1

2k−1for every x ∈ Ux0
.Let P = {px0
: x0 ∈ X} be a partition of unity subordinated to the open
over {Ux0

: x0 ∈ X}. De�ne fk : X → E by the formula
fk(x) =

∑

x0∈X

px0
(x)gx0

(x)and noti
e that (1) holds (here we use the 
onvexity of F (x)).Fix x ∈ X, and write E(x) = {x0 ∈ X : x ∈ p−1
x0

(0, 1]} and E′(x) =

{x0 ∈ X : x ∈ p−1
x0

(0, 1]}; observe that E(x) ⊆ E′(x) and that E′(x) is �nite.Clearly,
|fk(x) − fk−1(x)| =

∑

x0∈E(x)

px0
(x)(gx0

(x) − fk−1(x)).

Sin
e all di�eren
es gx0
(x) − fk−1(x) for x0 ∈ E(x) belong to an n-dimen-sional linear subspa
e of E and are by (iv) of F -norm smaller than r =

δ + 2−k+1, it follows by the remark pre
eding this theorem that |fk(x) −
fk−1(x)| < (n + 1)r, whi
h yields (3).Fix y ∈ X and de�ne

Vy =
⋂

x0∈E(y)

p−1
x0

(0, 1] \
⋃

x0∈X\E′(y)

p−1
x0

(0, 1].

It is 
lear that Vy is a neighborhood of y sin
e {p−1
x0

(0, 1] : x0 ∈ X} is alo
ally �nite 
losed 
over of X. Now pi
k an arbitrary x ∈ Vy. Our aim is toestimate |fk(y)−fk(x)|. To this end, �rst observe that E(x) ⊆ E′(y). Hen
eif x0 ∈ E(x), then
x ∈ p−1

x0
(0, 1] ⊆ Ux0

, y ∈ p−1
x0

(0, 1] ⊆ Ux0
,and hen
e by (iii),

|gx0
(x) − gx0

(y)| < 2δ.Observe that for x0 ∈ E(x) we have gx0
(y) − gx0

(x) ∈ F (y) − F (x) and
dim(F (y)−F (x)) ≤ 2n. Hen
e again by the remark pre
eding this theorem,
(v)

∣∣∣
∑

x0∈E(x)

px0
(x)(gx0

(y) − gx0
(x))

∣∣∣ ≤ (2n + 1) · 2δ.

Let V k
y be a neighborhood of y that is 
ontained in Vy su
h that for every

x ∈ V k
y ,

(vi)
∣∣∣

∑

x0∈E′(y)

(px0
(x) − px0

(y))gx0
(y)

∣∣∣ <
1

2k+1
.
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laim that V k
y has the properties required in (2). To prove this, let

x ∈ V k
y be arbitrary. By (v), (vi) and E(x) ⊆ E′(y) (hen
e px0

(x) = 0 if
x0 ∈ E′(y) \ E(x)) we 
learly have

|fk(y) − fk(x)| =
∣∣∣

∑

x0∈E′(y)

px0
(y)gx0

(y) −
∑

x0∈E(x)

px0
(x)gx0

(x)
∣∣∣

≤
∣∣∣

∑

x0∈E′(y)

px0
(y)gx0

(y) −
∑

x0∈E′(y)

px0
(x)gx0

(y)
∣∣∣

+
∣∣∣

∑

x0∈E(x)

px0
(x)gx0

(y) −
∑

x0∈E(x)

px0
(x)gx0

(x)
∣∣∣

≤
1

2k+1
+ (2n + 1) · 2δ ≤

1

2k
.Hen
e this 
ompletes the proof of the spe
ial 
ase. To prove the general 
asefrom the spe
ial 
ase, simply apply Remark 3.1.The usual way of obtaining a 
ontinuous sele
tion is to take the limitof a uniformly 
onvergent sequen
e of (
ontinuous) near-sele
tions. In theproof of Theorem 4.1, a 
ontinuous sele
tion was 
onstru
ted as the limitof a sequen
e of possibly dis
ontinuous sele
tions. The other pla
es that wefound where a similar method was used are: Curtis [12℄, Mi
hael [25℄, andToru«
zyk [5, Prop. 7.1 on p. 87℄.Repov² and Semenov re
ently observed in [27, Theorem 1.6(2)℄ that the
ondition that ea
h F (x) is 
losed in Theorem 4.1 is redundant.Let Y be a 
onvex subset of a metri
 linear spa
e (E, d). We say that

Y has the (�nite-dimensional) sele
tion property if, for every spa
e X, ev-ery LSC-fun
tion F : X ⇒ Y with (�nite-dimensional) 
ompa
t and 
onvexvalues has a 
ontinuous sele
tion.We say that Y has the (�nite-dimensional) near-sele
tion property if, forevery spa
e X, every LSC-fun
tion F : X ⇒ Y with (�nite-dimensional) 
om-pa
t and 
onvex values has, for every ε > 0, a 
ontinuous ε-near-sele
tion.Sometimes near-sele
tions exist and are useful in situations where 
ontin-uous sele
tions may not exist. See, e.g., Haver [21℄ for examples of su
hsituations. For 
omments on the �hereditariness� of the (�nite-dimensional)near-sele
tion property, see �6.We now 
ome to the se
ond main result in this paper.Theorem 4.2. Let Y be a 
onvex subset of a metri
 linear spa
e E.Then Y is an AR if and only if Y has the �nite-dimensional near-sele
tionproperty.Proof. Assume �rst that Y is an AR. Let F : X ⇒ Y be an LSC-fun
tionsu
h that for every x ∈ X, F (x) is a �nite-dimensional 
onvex 
ompa
tum.



Sele
tions and near-sele
tions 223Fix ε > 0, and, for every n ∈ N, put
Xn = {x ∈ X : dimF (x) ≤ n − 1}.Observe that ⋃∞

n=1 Xn = X, and every Xn is 
losed in X by Lemma 3.3.By Theorem 4.1, there exists a 
ontinuous sele
tion fn : Xn → E of F |Xn.Clearly, fn(Xn) ⊆ Y . As Y is an AR, we 
an extend fn to a map f̄n : X → Y .Using Lemma 3.4, we 
an �nd an open set Un of X su
h that fn|Un is an
ε/2n-near-sele
tion of F |Un. Now Lemma 3.5 does the job.Conversely, let f : A → Y be a map of a 
losed subset A of a spa
e X.Let U be a lo
ally �nite open 
over of X \ A so that there exists for every
U ∈ U an element aU ∈ A with d(x, aU ) ≤ 2d(x, A) for all x ∈ U (so U is aDugundji 
over of X \ A, see [26, Lemma 1.4.12℄). De�ne F : X ⇒ Y by

F (x) =

{
{f(x)} for x ∈ A,

conv{f(aU ) : x ∈ U ∈ U} otherwise.It is easy to see that F is LSC ([26, Theorem 1.4.13℄). Hen
e, there exists forevery ε > 0 a 
ontinuous fun
tion f̄ε : X → Y su
h that d(f̄ε(x), F (x)) < εfor every x ∈ A. Sin
e Y is lo
ally equi
onne
ted, f extends to a map
f̄ : X → Y by Dobrowolski [13, Lemma 1℄.So by Lemma 3.6 we get:Corollary 4.3. Let the 
onvex subset Y of the metri
 linear spa
e Ebe an AR and F : X ⇒ Y an LSC-fun
tion with 
ompa
t �nite-dimensional
onvex values. Then for every 
ontinuous ε : X → (0, 1) there exists a 
on-tinuous f : X → Y su
h that d(f(x), F (x)) < ε(x) for every x ∈ X.5. Limitations in generalizing the results. In [9℄, Cauty provedthat there is a 
ertain separable metri
 linear spa
e E whi
h is an AR that
ontains a 
losed linear subspa
e L whi
h is not an AR. In this se
tion wewill use this example among other things to illustrate the sharpness of ourresults. In the next se
tion we will state some open problems and make some
omments whi
h we hope are illuminating.(A) The dimensional restri
tion in Theorem 4.1. It is natural to askwhether the dimensional restri
tion in Theorem 4.1 
an be weakened to:
dimF (x) < ∞ for all x ∈ X. We will show in Example 5.2 below that this
annot be done.Let us say that a fun
tion f : X → Y is a σ-
ontinuous sele
tion forthe fun
tion F : X ⇒ Y provided that f is a sele
tion for F and X 
anbe written as ⋃∞

n=1 Xn su
h that, for ea
h n, Xn is 
losed in X and f |Xnis 
ontinuous (
f. �oban [10℄). We will �rst show that 
ertain maps admit
σ-
ontinuous sele
tions.
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 linear spa
e. If F : X ⇒ E is an LSC-fun
tion with 
losed and 
onvex values and dimF (x) < ∞ for every x ∈ X,then F admits a σ-
ontinuous sele
tion.Proof. For every n, put
Xn = {x ∈ X : dimF (x) ≤ n − 1}.Then every Xn is 
losed by Lemma 3.3, and ⋃∞

n=1 Xn = X. Now �rst observethat by Theorem 4.1 the restri
tion F1 = F |X1 admits a 
ontinuous sele
tion
f1 : X1 → Y . De�ne F2 : X2 ⇒ Y by letting F2(x) = f1(x) for x ∈ X1, and
F2(x) = F (x) otherwise. Sin
e F2 is LSC, again by Theorem 4.1, there existsa 
ontinuous sele
tion f2 : X2 → Y for whi
h ne
essarily f2(x) = f1(x),
x ∈ X1. Pro
eeding indu
tively, we arrive at a sequen
e of maps fn : Xn → Ythat are 
ontinuous sele
tions of F |Xn. Clearly, the fun
tion f de�ned as thepointwise limit of the sequen
e (fn)n is the desired σ-
ontinuous sele
tion.One would hope that the 
onstru
tion in the proof of Lemma 5.1 wouldlead in 
ertain 
ases to a global sele
tion that is 
ontinuous. But this is notthe 
ase in general, as the following example shows, even if the domain of thefun
tion is as ni
e as the Hilbert 
ube Q. In fa
t, the example demonstratesmu
h more. It shows that no 
hoi
e of 
ontinuous partial sele
tions resultsin a 
ontinuous limit fun
tion.Example 5.2. There are a metri
 linear spa
e E and an LSC-fun
tion
F from Q to E with �nite-dimensional 
ompa
t 
onvex values su
h that E
ontains a tower of 
losed subsets {En}n with the following properties:(1) Q =

⋃∞
n=1 Qn, where Qn = F⇐(En),(2) for every n, F |Qn : Qn ⇒ E admits a 
ontinuous sele
tion,(3) if for every n, fn : Qn → E is a sele
tion of F |Qn su
h that f =

limn→∞ fn : Q→E is a well de�ned fun
tion, then f is not 
ontinuous.Proof. Consider the Cauty spa
e E. In [9℄ it was proved that E is thelinear span of a linearly independent 
ompa
t set (this will also be usedin �6), hen
e E is σ-
ompa
t. Consequently, it follows from Cauty's 
on-stru
tion, or by applying results from Dobrowolski [13℄ or van der Bijl andvan Mill [7℄, that there exists a 
ompa
t subspa
e K of E su
h that the iden-tity mapping on K 
annot be approximated arbitrarily 
losely by maps into�nite-dimensional linear subspa
es of E. We may think of K as being a sub-spa
e of Q as well. We 
laim that the identity mapping 1K on K 
annot beextended to a 
ontinuous fun
tion Q → E. For assume that this is not true,i.e., there is a 
ontinuous fun
tion α : Q → E whi
h restri
ts to the identityon K. It is 
lear that α 
an be approximated arbitrarily 
losely by mapsof the form βn ◦ πn, where πn : Q → I
n is the proje
tion, and βn : I

n → Eis 
ontinuous. But every 
ontinuous map from a �nite-dimensional 
ompa
t
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tions 225spa
e into a metri
 linear spa
e E 
an be approximated arbitrarily 
loselyby 
ontinuous maps into �nite-dimensional linear subspa
es of E. (This iswell known: see, e.g., [6, Lemma 2.1℄.) So this 
learly yields the desired 
on-tradi
tion.Let A = {an : n ∈ N} be a 
ountable dense subset of K. For every n, weput
En = K ∪ span{a1, . . . , an}.Let f : K → K denote the identity mapping. We now de�ne F : Q ⇒ E asin the proof of Theorem 4.2 with aU ∈ K for every U ∈ U. It is 
lear that(1) holds, and (2) follows from Theorem 4.1. In addition, (3) holds as well,sin
e if there existed a sequen
e of sele
tions with 
ontinuous limit, then wewould be able to extend the identity mapping on K to a 
ontinuous fun
tion

Q → E.The best result known to us that does not put dimensional restri
tionson F is Proposition 5.3 below. Variations of this result are well known. For
ompleteness' sake we will sket
h a proof that is both standard and dire
t.Proposition 5.3. Let E be a metri
 linear spa
e. Then, for every lo
ally�nite-dimensional spa
e X, every LSC-fun
tion F : X ⇒ E with 
omplete
onvex values has a 
ontinuous sele
tion.Proof. It is 
lear that by Remark 3.1 we may assume without loss ofgenerality that X is �nite-dimensional. Hen
e the theorem follows from the
ompli
ated Theorem 1.2 in Mi
hael [24℄. For a dire
t proof, one 
an modifythe simpler arguments in Mi
hael [23℄, or observe that we 
an simply re�neall open 
overs of the domain of our fun
tion by open 
overs of a �xedbounded order n. This will have the e�e
t that the 
onvex 
ombinationsthat we have to take in our metri
 linear spa
e will be 
ombinations of atmost n ve
tors, whi
h means that we 
an 
ontrol distan
es in pre
isely thesame way as in the proof of Theorem 4.2. The details of 
he
king this areleft to the reader.Remark 5.4. As an illustration of how Proposition 5.3 
an be applied,let us 
onsider a metri
 linear spa
e E with a 
omplete linear subspa
e E′. Itis well known that if E′ is �nite-dimensional, then E and E/E′×E′ are hom-eomorphi
 (but not ne
essarily isomorphi
). To get this from Proposition 5.3,simply observe that the fun
tion FE′ : E/E′ ⇒ E de�ned by F ([x]) = x+E′has a 
ontinuous sele
tion. This su�
es for the proof (see, e.g., [5, Corol-lary 7.1 on p. 86℄). This result by the way is not best possible. It followsfrom Mi
hael [25, Corollary 7.3℄ that for E′, besides 
ompleteness, one onlyneeds lo
al 
onvexity. In (the 
onstru
tion of) Example 5.8 below we willsee that the fun
tion FE′ : E/E′ ⇒ E in general need not have a 
ontinuoussele
tion.
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tions without dimensional restri
tions. The following re-sult on near-sele
tions does not impose any dimensional restri
tions on F .Re
all that a spa
e X is a C-spa
e if for every sequen
e A1, A2, . . . of open
overs of X there are pairwise disjoint open families B1, B2, . . . in X su
hthat Bi re�nes Ai for every i, and ⋃∞
i=1 Bi 
overs X. It is not di�
ult toprove that a 
ountable-dimensional spa
e is a C-spa
e.Proposition 5.5. Let Y be a 
onvex subset of a metri
 linear spa
e E. If

X is a C-spa
e, then for every LSC-fun
tion F : X ⇒ Y with 
onvex values,and every 
ontinuous ε : X → (0, 1), there exists a map f : X → Y su
h that
d(f(x), F (x)) < ε(x) for every x ∈ X.Proof. Let ε > 0. We will �rst prove that F admits an ε-near-sele
tion.By assumption, for ea
h n ∈ N, there exists a disjoint open family Un re�ningthe 
over {F⇐(B(y, ε/2n+1)) : y ∈ Y } su
h that ⋃∞

n=1 Un 
overs X. Fix
n ∈ N. For every U ∈ Un pi
k an element yU ∈ Y su
h that U ⊆ B(yU , ε/2n).The fun
tion fn :

⋃
Un → Y de�ned by

fn(x) = yU ⇔ x ∈ Uis evidently an ε/2n+1-near-sele
tion for F |
⋃

Un. Apply Lemma 3.5 to 
on-
lude that F admits an ε-near-sele
tion. To get the general result, now applyLemma 3.6.Remark 5.6. We are indebted to the referee for pointing out that Propo-sition 5.5 is a 
onsequen
e of 
ompli
ated and mu
h more general results inUspenski�� [33℄. (Let us note that results in [33℄ yield the assertion of Proposi-tion 5.5 if the values F (x) are merely star-shaped. This is be
ause, for ε > 0,
B(F (x), ε) is star-shaped (hen
e, 
ontra
tible) provided F (x) is, and, forevery LSC-fun
tion F : X ⇒ Y , the set {(x, y) ∈ X × Y : y ∈ B(F (x), ε)}is open in X × Y .) Sin
e our proof is 
ompletely trivial, we de
ided to in-
lude it. Let us also remark that Proposition 5.5 
annot be extended beyondC-spa
es (see Example 6.6).Remark 5.7. An immediate 
onsequen
e of Proposition 5.5, togetherwith the argument of Theorem 4.2, is that every 
onvex subset of a metri
linear spa
e is an absolute extensor for the 
lass of C-spa
es. This is well-known, and stronger results are available in the literature (
f. Addis andGresham [1, Theorem 4.1℄, An
el [2, Corollary C.5.10℄).This implies that if Y is both a 
onvex subset of a metri
 linear spa
e anda C-spa
e, then it is an AR. This is folklore and for the 
onvenien
e of thereader we sket
h the proof. Indeed, let Z 
ontaining Y as a 
losed subspa
ebe su
h that Z is an ANR and Z \ Y is a polytope (hen
e is 
ountable-dimensional). (For details, see, e.g., Hu [22, p. 53℄. It is not expli
itly statedthere that the resulting spa
e is an ANR. That this is true is well knownand follows easily from the 
hara
terization theorem in [22, p. 122℄. See
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tions 227also Borsuk [8, p. 107℄.) Hen
e Z is a C-spa
e by Addis and Gresham [1,Theorem 2.1℄, and we 
an apply Remark 5.7 to 
on
lude that Y is a retra
tof Z, hen
e Y is an ANR, and so an AR by 
ontra
tibility. We do not know ofa more elementary proof that 
onvex C-spa
es (in parti
ular, 
onvex subsetsof ℵ0-dimensional metri
 linear spa
es) are AR's.The following example shows that Proposition 5.3 does not hold in 
ase
X is an arbitrary strongly 
ountable-dimensional spa
e (or even, when X isa 
ountable union of �nite-dimensional 
ompa
ta).Example 5.8. There are a metri
 linear spa
e E and a linear subspa
e Lof E su
h that L is 
omplete and X = E/L is ℵ0-dimensional (hen
e strongly
ountable-dimensional) while the standard LSC-fun
tion F = FL : X ⇒ Ede�ned by F ([x]) = x + L has the following properties:(1) F does not admit a 
ontinuous sele
tion,(2) for every 
ontinuous ε : X → (0, 1), there exists a 
ontinuous fun
tion

f : X → L su
h that d(f(x), F (x)) < ε(x) for every x ∈ X.Proof. Dobrowolski and Kalton [14℄ proved that Cauty's 
onstru
tion in[9℄ 
an be used to 
onstru
t an example of a 
omplete separable metri
 linearspa
e E′ whi
h is an AR, having a 
losed linear subspa
e L whi
h is not an AR(re
all that the original Cauty spa
e is σ-
ompa
t). Let A be a 
ountabledense subset of E′, and put E = span(L ∪ A). Then E is a dense linearsubspa
e of E′, when
e E is an AR be
ause E′ is (see �2). Then X = E/Lis an ℵ0-dimensional metri
 linear spa
e and hen
e is strongly 
ountable-dimensional. Now if the standard LSC-fun
tion FL : X ⇒ E had a 
ontinuoussele
tion, then E would be homeomorphi
 to X ×L (
f. [5, Corollary 7.1 onp. 86℄), whi
h would violate L being a non-AR. This proves (1). For (2),apply Proposition 5.5.Observe that the fun
tion F in the proof of Example 5.8 is even 
ontin-uous.6. Remarks and open questions. As announ
ed in �5, we will statehere some open problems and make some further remarks that will put someof our results in their proper perspe
tives.(A) Convex-hereditary Absolute Retra
ts and (near-)sele
tions. It is triv-ial that the (�nite-dimensional) sele
tion property is hereditary with respe
tto 
onvex subsets. As a 
onsequen
e, every 
onvex subset of a metri
 linearspa
e with the �nite-dimensional sele
tion property is a �
onvex-hereditaryAbsolute Retra
t�. This means that the �nite-dimensional sele
tion propertyis stri
tly stronger than the AR-property in metri
 linear spa
es. Simply 
on-sider Cauty's linear spa
e E and its linear subspa
e L that we used in �5, andapply Theorem 4.2. The near-sele
tion property and the �nite-dimensional
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tion property are not hereditary however, not even for 
losed linearsubspa
es. To see this, again 
onsider the Cauty spa
es E and L and againuse the fa
t that E is the linear span of a linearly independent 
ompa
t set.In su
h a spa
e every 
onvex 
ompa
tum is �nite-dimensional (Dobrowolskiand Mogilski [15, Example on p. 657℄). But the near-sele
tion property andthe �nite-dimensional near-sele
tion property are hereditary on dense 
on-vex sets. The proof of this is similar to the standard proof that a dense linearsubspa
e of a metri
 linear AR is an AR (for a sket
h of that proof, see �2).The only known 
onvex subsets of metri
 linear spa
es that are 
onvex-hereditary Absolute Retra
ts are the ones that are lo
ally 
onvex or areC-spa
es (among them, the 
onvex subsets of ℵ0-dimensional metri
 linearspa
es); see Remark 5.7. Sin
e every 
onvex set with the �nite-dimensionalsele
tion property is a 
onvex-hereditary Absolute Retra
t, the following twoquestions are quite natural.Question 6.1. Let E be a metri
 linear spa
e. Are the following state-ments about E equivalent:(a) E is a 
onvex-hereditary Absolute Retra
t.(b) E has the �nite-dimensional sele
tion property.(
) E has the sele
tion property.Question 6.2. Is the spa
e ℓp, 0 < p < 1, a 
onvex-hereditary AbsoluteRetra
t?It is an intriguing problem whether Theorem 4.1 
an be extended to the
ase where the LSC-fun
tion F has no dimensional restri
tions but instead
E is ℵ0-dimensional.Question 6.3. Let E be an ℵ0-dimensional metri
 linear spa
e. If F :
X ⇒ E is an LSC-fun
tion with 
omplete and 
onvex values, does F admita 
ontinuous sele
tion? If not, does E have the �nite-dimensional sele
tionproperty?We even do not know the answer if E is as simple as the spa
e of alleventually zero sequen
es in ℓp, where 0 < p < 1. A
tually, we do not knowa single example of a nonlo
ally 
onvex metri
 linear spa
e E that has the�nite-dimensional sele
tion property.An interesting spe
ial 
ase of Question 6.3 is the following:Question 6.4. Let E be an ℵ0-dimensional metri
 linear spa
e. If X isa 
ountable union of zero-dimensional subspa
es, i.e., if X is ℵ0-dimensional,does every LSC F : X ⇒ E with �nite-dimensional 
ompa
t 
onvex valueshave a 
ontinuous sele
tion? What if X is equal to σ = {x ∈ Q : (∃N ∈
N)(∀n ≥ N)(xn = 0)}?
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tions 229It follows from Uspenskij [33℄ (or Proposition 5.5) that a fun
tion F su
has in Question 6.4 has ε-near-sele
tions for every ε > 0. In fa
t, this evenholds for fun
tions F for whi
h the sets F (x) are (not ne
essarily 
ompa
t)star-shaped (see Remark 5.6).(B) Ni
ely pla
ed subspa
es in metri
 linear AR's. We showed in Theo-rem 4.2 that a 
onvex subset of a metri
 linear spa
e is an AR if and onlyif it has the �nite-dimensional near-sele
tion property. This prompts thefollowing 
entral question.Question 6.5. Let E be a metri
 linear spa
e. If E is an AR, does Ehave the near-sele
tion property? What if E = ℓp and 0 < p < 1?In �3 we used Cauty's spa
e to get a linear spa
e for whi
h the 
on
lusionof the Mi
hael Sele
tion Theorem fails. A variation of this example willbe 
onstru
ted in Example 6.6 below. Consider the natural LSC fun
tion
FE′ : E/E′ ⇒ E for a 
losed linear subspa
e E′ of a metri
 linear spa
e
E ∈ AR. Then if FE′ admits a 
ontinuous sele
tion it follows that both
E′ and E/E′ are AR's (see Remark 5.4). If, however, FE′ has merely an
ε-near-sele
tion for every ε > 0 then E/E′ is an AR, as stated in Bessagaand Dobrowolski [4, p. 40℄, while E′ may not be an AR (see Example 5.8).Let us say that a 
losed linear subspa
e E′ of a metri
 linear spa
e E isni
ely pla
ed in E provided that FE′ has an ε-near-sele
tion for every ε > 0.Example 6.6. There exists a metri
 linear spa
e E homeomorphi
 to ℓ2and a 
losed linear subspa
e E′ of E whi
h is not ni
ely pla
ed in E (hen
ethe natural fun
tion FE′ : E/E′ ⇒ E does not have an ε-near-sele
tion forsome ε > 0).Proof. By a result of Terry [31℄, there is a so-
alled 
ouniversal spa
e forseparable metri
 linear spa
es, that is, a separable 
omplete metri
 linearspa
e Z su
h that for every separable 
omplete metri
 linear spa
e E thereis a 
losed linear subspa
e Z ′ of Z su
h that Z/Z ′ and E are isomorphi
.Interestingly, Z is homeomorphi
 to ℓ2. Applying this for the 
ompletion
L̂ of the Cauty spa
e L (see �5), we get by the just quoted observation ofBessaga and Dobrowolski a 
losed linear subspa
e Z ′ of Z su
h that FZ′ : L̂ =
Z/Z ′ ⇒ Z does not have an ε-near-sele
tion for some ε > 0.Remark 6.7. Let E′ be a 
losed linear subspa
e of a metri
 linear spa
e
E. If E is separable then E′ 
an be enlarged to a dense linear subspa
e E′′of E so that E′ is ni
ely pla
ed in E′′. By Proposition 5.5, any dense E′′ forwhi
h E′′/E′ is ℵ0-dimensional will do.By applying Remark 6.7, the linear subspa
e Z ′ of Z from the 
onstru
-tion of Example 6.6 
an be enlarged to a dense linear subspa
e Z ′′ in whi
h
Z ′ is ni
ely pla
ed; yet, Z ′ is not ni
ely pla
ed in Z.
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onvenien
e, we provide a simple proof of the Bessaga andDobrowolski observation, whi
h we generalize to 
onvex sets. For a 
onvexset C in a metri
 linear spa
e E, let X = κ(C), where κ : E → E/E′ is thenatural quotient map. De�ne FC : X → C by FC([x]) = (x + E′)∩C. Thenwe have:Lemma 6.8. Assume that FC has an ε-near-sele
tion for every ε > 0.Then if C is an AR, so is X.Proof. Simply observe that κ|C : C → X admits ε-right inverses for every
ε > 0. Hen
e we 
an apply [22, Theorem 5.3℄ to 
on
lude that X is an ANRand, therefore, an AR by 
ontra
tibility.For E = C, the assumption in Lemma 6.8 simply says that E′ is ni
elypla
ed in E. It should be noted, however, that unlike FE′ , the fun
tion FCmay not be LSC, even in the 
ase when C is a 
losed 
one in a 3-dimensionalspa
e E (see Baus
hke and Borwein [3, Example 2.3℄). So, 
onstru
ting ε-near-sele
tions for FC may be a very di�
ult task.Question 6.9. Are all 
losed linear subspa
es E′ of ℓp, 0 < p < 1, ni
elypla
ed in ℓp?(C) Near-sele
tions with stronger properties. Let Y be a 
onvex subsetof a metri
 linear spa
e E, and let F : X ⇒ Y be LSC with 
onvex values.We 
onsider the following statements about F :(I) For ea
h ε > 0 there is a 
ontinuous fun
tion f : X → Y su
h that

d(f(x), F (x)) < ε for every x ∈ X.(II) For ea
h 
ontinuous ε : X → (0, 1) there is a 
ontinuous fun
tion
f : X → Y su
h that d(f(x), F (x)) < ε(x) for every x ∈ X.(III) For every open 
over U of Y there exists a 
ontinuous fun
tion
f : X → Y su
h that for every x ∈ X there exists an element
U ∈ U su
h that f(x) ∈ U and U ∩ F (x) 6= ∅.(IV) For every 
ontinuous fun
tion δ : Y → (0, 1) there is a 
ontinuousfun
tion f : X → Y su
h that d(f(x), F (x)) < δ(f(x)) for every
x ∈ X.The reader 
an easily verify that (III)⇔(IV)⇒(I)⇔(II) (
f. Lemma 3.6).This raises the interesting problem whether all four properties are equivalenteven if the values of F are not only 
onvex but also 
ompa
t. This does notseem to be trivial. Simply observe that (III) is �topologi
al�, but (I) is not.
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