
FUNDAMENTAMATHEMATICAE192 (2006)

Seletions and near-seletions in metri linear spaeswithout loal onvexitybyTadeusz Dobrowolski (Pittsburg, KS) and Jan van Mill (Amsterdam)
Abstrat. We haraterize the AR property in onvex subsets of metri linear spaesin terms of ertain near-seletions.1. Introdution. All spaes under disussion are metrizable.As is well known, every loally onvex metri linear spae is an Abso-lute Retrat (abbreviated AR; Dugundji [18℄). (Sine we restrit ourselvesto metrizable spaes, every AR is an Absolute Extensor, i.e., a spae thatan play the role of R in the lassial Tietze�Urysohn Theorem, and vieversa.) The loal onvexity assumption in this result is not essential, as the

ℓp-spaes (0 < p < 1) show. Other examples an be found within the lassof ℵ0-dimensional metri linear spaes, i.e., metri linear spaes having aountable Hamel basis. This follows from Haver's Theorem in [20℄ that ev-ery loally ontratible spae that is a ountable union of �nite-dimensionalompata is an Absolute Neighborhood Retrat (abbreviated: ANR). Theformidable problem of whether every metri linear spae is an AR was �nallysettled by Cauty [9℄ with a negative answer. Deteting the AR-property inin�nite-dimensional metri linear spaes and topologial groups is usuallythe �rst step towards proving that they are, in fat, homeomorphi to anin�nite-dimensional manifold (see, e.g., Dobrowolski and Toru«zyk [17℄).But even for a spae as onrete as the group of all homeomorphisms of the3-ell, it is unknown whether it is an AR.The usual and well known proof of the fat that every loally onvexmetri linear spae is an AR, is by applying the so-alled Dugundji Extension2000 Mathematis Subjet Classi�ation: 55M15, 54C60.Key words and phrases: metri linear spae, loally onvex, ompat onvex set, se-letion, near-seletion, �nite-dimensional, C-spae.The �rst-named author gratefully aknowledges support from grant B 61-541 of theNederlandse Organisatie voor Wetenshappelijk Onderzoek (NWO) during the summer of2004. [215℄



216 T. Dobrowolski and J. van MillFormula [5, p. 57℄. It seems less well known that this result an also beproved by a (near-)seletion argument (f. [5, p. 92℄, [26, 1.4.13℄, [28, p.232℄; see also the proof of Theorem 4.2 below). The aim of this paper isto haraterize the AR-property in onvex subsets of metri linear spaesin terms of ertain near-seletions. Roughly speaking, our haraterizationtheorem states that a onvex set in a metri linear spae is an AR if and onlyif lower semiontinuous funtions with �nite-dimensional ompat onvexvalues in it admit near-seletions.For some of our results it su�es that the spaes under onsiderationare merely paraompat sine that is the only thing used in the proofs. Wedo not aim at full generality and so our results are sometimes not stated intheir most general form.We are indebted to Ernie Mihael, Pavel Semenov, Valentin Gutev andthe referee for helpful omments.
2. Preliminaries. We adopt the usual terminology with respet to par-titions of unity (Dugundji [19℄). So, if f : X → R is ontinuous, then thesupport of f is the losed set {x ∈ X : f(x) 6= 0}. If {κi : i ∈ I} is a parti-tion of unity on a spae X, then the supports of the κi form a loally �nitelosed overing of X. Hene, in partiular, for eah x ∈ X there are only�nitely many i ∈ I with κi(x) 6= 0. The following entral result on partitionsof unity will be used several times without expliit referene: for eah openover U = {Ui : i ∈ I} of a spae X there is a partition of unity {κi : i ∈ I}on X suh that κ−1

i (0, 1] ⊆ Ui for every i ∈ I. Suh a partition of unity issaid to be subordinated to U. See [19, p. 170℄ for details.If (X, d) is a spae and x ∈ X, then B(x, ε) (respetively, B(A, ε)) ab-breviates the open ball about x (respetively, about A ⊆ X) of radius ε.Let E be a metri linear spae. We will always onsider E equipped witha translation invariant metri d indued by a so-alled F -norm | · | on E (thatis, d(x, y) = |x − y|). We require that suh a norm is inreasing on eah rayemanating from the origin (or, equivalently, |tx| ≤ |x| for all real numbers
t with |t| ≤ 1). See, e.g., [29, Theorem 1.24℄ for details. A subset X of E isalled omplete if the metri d restrited to X is a omplete metri. Clearly,every omplete subset of E is losed in E and every ompat subset of E isomplete. The zero vetor of E will be denoted by 0.If E is a metri linear spae that is an AR, then so are all of its denselinear subspaes. This an be seen as follows. First one observes that if L isa dense linear subspae of E then E \ L is loally homotopy negligible in E(this is folklore, for a proof see, e.g., Dobrowolski and Mogilski [16, Lemma3.1℄). It then su�es to apply Toru«zyk's [32, Theorem 3.1℄. The same an



Seletions and near-seletions 217be said about dense onvex sets of arbitrary onvex sets in metri linearspaes. We will use this fat frequently without expliit referene.3. Set-valued funtions. Let X and Y be sets. By writing F : X ⇒ Ywe shall mean that F is a set-valued funtion from X to Y . That is, F (x) isa nonempty subset of Y for every x ∈ X.Let X and Y be topologial spaes and let F : X ⇒ Y . For every V ⊆ Ywe put
F⇐(V ) = {x ∈ X : F (x) ∩ V 6= ∅}.Then F is lower semiontinuous (abbreviated LSC) provided that for everyopen subset U of Y , F⇐(U) is open in X. In addition, a (ontinuous) sele-tion for F is a (ontinuous) funtion f : X → Y suh that f(x) ∈ F (x) forevery x ∈ X.Remark 3.1. Let E be a metri linear spae. In addition, let F : X ⇒ Ebe a funtion suh that for every x ∈ X, F (x) is onvex. Assume that Xhas an open over U suh that for every U ∈ U the funtion F |U has aontinuous seletion, say fU . Hene ontinuous seletions for F exist loally.We laim that in this situation F has in fat a global ontinuous seletion.Let {κU}U∈U be a partition of unity subordinated to U. Then the funtion

f de�ned by the formula
f(x) =

∑
{κU (x)fU (x) : U ∈ U, x ∈ U}is a ontinuous seletion for F . This useful observation, perhaps due to Cor-son and Lindenstrauss [11, proof of Theorem 2.1℄, will be used without ex-pliit referene below.Remark 3.2. The famous Mihael Seletion Theorem from [23℄ assertsthat if F : X ⇒ E is LSC, where E is a loally onvex metri linear spaeand every F (x) is both omplete and onvex, then F admits a ontinuousseletion. Continuous seletions are important tools in topology and fun-tional analysis. There are several versions of the Mihael Seletion Theoremwhih all assume loal onvexity in one form or another. We ould not �ndan example in the literature of a metri linear spae for whih the onlusionof the Mihael Seletion Theorem fails. Let us present suh an example. ByCauty [9℄, there is a metri linear spae Z that is not an AR. By passing tothe ompletion of Z, we may assume that the Cauty spae Z is omplete.We may assume that Z is a losed subspae of some AR X (see [26, Lemma1.2.3℄). Set F (x) = {x} for x ∈ Z and F (x) = Z for x 6∈ Z. Then F : X ⇒ Zis LSC and does not have a ontinuous seletion, sine otherwise Z would bea retrat of X.We now formulate and prove four simple lemmas.



218 T. Dobrowolski and J. van MillLemma 3.3. Let E be a metri linear spae. In addition, let F : X ⇒ Ebe an LSC-funtion suh that for every x ∈ X, F (x) is a �nite-dimensionalonvex set. Then, for every n ∈ N, Xn = {x ∈ X : dimF (x) ≤ n − 1} islosed in X.Proof. We will show that {x ∈ X : dimF (x) ≥ n} is open. Pik anarbitrary x0 suh that dimF (x0) ≥ n. We may assume that F (x0) ontainsthe origin. Then F (x0) ontains n linearly independent vetors v1, . . . , vn.Take pairwise disjoint open balls Bi = B(vi, ri) so that for every hoieof xi ∈ Bi, i = 1, . . . , n, the set {x1, . . . , xn} is linearly independent. Let
U = F⇐(B1) ∩ · · · ∩ F⇐(Bn), and observe that U is an open neighborhoodof x0. Then, for every x ∈ U , we have F (x) ∩ Bi 6= ∅, i = 1, . . . , n. Hene,
F (x) ontains at least n linearly independent vetors and, onsequently,
dimF (x) ≥ n.Let X and (Y, d) be spaes. If F : X ⇒ Y and ε > 0, then a ontinuousfuntion f : X → Y is alled an ε-near-seletion of F if d(f(x), F (x)) < εfor every x ∈ X. (So a ontinuous seletion an be thought of as a �0-near-seletion� provided every F (x) is losed in Y .) This is the entral onept inthis paper.We are primarily interested here in ε-near-seletions in the ase that Yis a onvex subspae of a metri linear spae E, F has onvex values, and dis the metri on Y we get from an arbitrary F -norm on E.Lemma 3.4. Let X and (Y, d) be spaes, let F : X ⇒ Y be LSC, and let
ε > 0. In addition, let X0 be a subset of X for whih there exists a map
f : X → Y suh that f |X0 is an ε-near-seletion for F |X0. Then there is aneighborhood Uε of X0 suh that f |Uε is a 2ε-near-seletion of F |Uε.Proof. It is easy to see that

Uε =
⋃

x∈X0

f−1(B(f(x), ε)) ∩ F⇐(B(f(x), ε))is as required.We now present a ontrolled version of Remark 3.1 for near-seletions.Lemma 3.5. Let Y be a onvex subspae of a metri linear spae and let
F : X ⇒ Y be an LSC-funtion with onvex values. Moreover , assume that
X an be written as ⋃∞

n=1 Un suh that for every n ∈ N, Un is open and
F |Un admits an εn-near-seletion Fn : Un → Y . Then there is a ontinuousfuntion f : X → Y suh that d(f(x), F (x)) ≤

∑
{εn : x ∈ Un} for every

x ∈ X.Proof. De�ne Fn(x) for every x ∈ X by letting Fn(x) = Fn(x) if x ∈ Un,and Fn(x) = 0 if x 6∈ Un.



Seletions and near-seletions 219For the open over {Un : n ∈ N} of X we pik an arbitrary partition ofunity {λn}n∈N subordinated to it, and de�ne the funtion f : X → Y by theformula f(x) =
∑∞

n=1 λn(x)Fn(x).It is lear that f is well de�ned and ontinuous. Take an arbitrary x ∈ X,and let A = {n ∈ N : λn(x) > 0}. By onstrution, for every n ∈ Athere exists an element zn ∈ F (x) suh that |zn − Fn(x)| < εn. Put z =∑
n∈A λn(x)zn. Then z ∈ F (x) sine F (x) is onvex, and
|f(x) − z| ≤

∑

n∈A

|λn(x)(Fn(x) − zn)| ≤
∑

n∈A

|Fn(x) − zn| ≤
∑

n∈A

εn,as required.Lemma 3.6. Let Y be a onvex subspae of a metri linear spae E, andlet F : X ⇒ Y be an LSC-funtion with onvex values. Then the followingonditions are equivalent :(1) F admits for every ε > 0 an ε-near-seletion f : X → Y .(2) For every ontinuous funtion ε : X → (0, 1) there exists a ontin-uous funtion f : X → Y suh that d(f(x), F (x)) < ε(x) for every
x ∈ X.Proof. For (1)⇒(2), let ε : X → (0, 1) be ontinuous, and for every n ≥ 0,put

Dn = {x ∈ X : 2−(n+2) < ε(x) < 2−n}.In addition, for every n ≥ 0 let fn : X → Y be a 2−(n+3)-near-seletionof F . There exists by Lemma 3.5 a ontinuous funtion f : X → Y suh that
d(f(x), F (x)) ≤

∑
{2−(n+3) : x ∈ Dn, n ∈ N} for every x ∈ X. To provethat f is a near-seletion for F whih is ontrolled by the funtion ε, takean arbitrary x ∈ X, and let n(x) = min{n ≥ 0 : x ∈ Dn}. Observe that if

x ∈ Dm, then m ∈ {n(x), n(x) + 1}. Hene
d(f(x), F (x)) ≤

1

2n(x)+3
+

1

2n(x)+4
<

1

2n(x)+2
< ε(x),as required.Sine (2)⇒(1) is trivial, this ompletes the proof.4. Main results. In this setion we will present our main results, The-orems 4.1 and 4.2. In Theorem 4.1 we show that ertain LSC-maps have aontinuous seletion. This result is then used in Theorem 4.2 to prove ourharaterization of the AR-property in onvex subsets of metri linear spaesin terms of near-seletions.In [25, Corollary 7.3℄, Mihael proved that if G is a topologial group, and

H a losed subgroup isomorphi to the additive group of a Fréhet spae,then the natural quotient map from G to G/H has a ross-setion. For thespeial ase that G is a omplete metri linear spae, see [5, Prop. 7.1 on



220 T. Dobrowolski and J. van Millp. 87℄ (the proof presented there is due to Toru«zyk). Theorem 4.1 belowand its proof are inspired by these results.We will use the following elementary but useful fat due to Carathéodory.Let E be an n-dimensional metri linear spae. Then if x lies in the onvexhull of a set F ⊆ E, then x lies in the onvex hull of some subset of F thatontains at most n + 1 points [30, p. 3℄. This easily implies that for every
r > 0 the onvex hull of the ball B(0, r) in E is ontained in B(0, (n + 1)r).Theorem 4.1. Let E be a metri linear spae E. Suppose that F : X⇒Eis an LSC-funtion with losed and onvex values. If there is an open over
U of X suh that for every U ∈ U, max{dimF (x) : x ∈ U} < ∞, then Fadmits a ontinuous seletion.Proof. We will �rst prove the theorem in the speial ase that U = {X}.Let n ∈ N be suh that dimF (x) ≤ n for all x ∈ X. By indution on
k ≥ 0 we will onstrut a sequene of (not neessarily ontinuous) funtions
fk : X → E so that(1) fk(x) ∈ F (x), x ∈ X,(2) for every x0 ∈ X there exists a neighborhood V k

x0
of x0 suh that

|fk(x) − fk(x0)| ≤ 1/2k whenever x ∈ V k
x0
,(3) |fk(x) − fk−1(x)| ≤ 1/2k + (n + 1)/2k−1, x ∈ X.Having onstruted this sequene, we let f denote its pointwise limit. Ob-serve that for every x ∈ X, f(x) is well de�ned and belongs to F (x) sine

F (x) being �nite-dimensional and onvex is omplete with respet to any
F -norm | · | on E. Moreover, for every x ∈ V k

x0
,

|f(x) − f(x0)| ≤ |f(x) − fk(x)| + |fk(x) − fk(x0)| + |fk(x0) − f(x0)|

≤ (n + 1)/2k−2 + 3/2k.This yields the ontinuity of f .Assuming the F -norm |·| is bounded by 1, for k = 0, we see that ondition(2) is satis�ed with V 0
x0

= X, x0 ∈ X, and any seletion f0 : X → E of F .Suppose f0, . . . , fk−1 have been onstruted for some k ≥ 1. Let δ > 0be so small that (2n + 1)δ ≤ 1/2k+2.Consider for a �xed x0 ∈ X its open neighborhood
(i) Ux0

= V k−1
x0

∩ F⇐(B(fk−1(x0), δ)).Sine by (i), F (x)∩B(fk−1(x0), δ) 6= ∅ for every x ∈ Ux0
, there is a (possiblydisontinuous) seletion gx0

: Ux0
→ E for the funtion F |Ux0

whih, forevery x ∈ Ux0
, satis�es

(ii) |gx0
(x) − fk−1(x0)| < δ.Let gx0

|(X \ Ux0
) be an arbitrary onstant funtion. By (ii),

(iii) diam gx0
(Ux0

) < 2δ,



Seletions and near-seletions 221and by (i) and (2),
(iv) |gx0

(x)−fk−1(x)| ≤ |gx0
(x)−fk−1(x0|+|fk−1(x0)−fk−1(x)| ≤ δ+

1

2k−1for every x ∈ Ux0
.Let P = {px0
: x0 ∈ X} be a partition of unity subordinated to the openover {Ux0

: x0 ∈ X}. De�ne fk : X → E by the formula
fk(x) =

∑

x0∈X

px0
(x)gx0

(x)and notie that (1) holds (here we use the onvexity of F (x)).Fix x ∈ X, and write E(x) = {x0 ∈ X : x ∈ p−1
x0

(0, 1]} and E′(x) =

{x0 ∈ X : x ∈ p−1
x0

(0, 1]}; observe that E(x) ⊆ E′(x) and that E′(x) is �nite.Clearly,
|fk(x) − fk−1(x)| =

∑

x0∈E(x)

px0
(x)(gx0

(x) − fk−1(x)).

Sine all di�erenes gx0
(x) − fk−1(x) for x0 ∈ E(x) belong to an n-dimen-sional linear subspae of E and are by (iv) of F -norm smaller than r =

δ + 2−k+1, it follows by the remark preeding this theorem that |fk(x) −
fk−1(x)| < (n + 1)r, whih yields (3).Fix y ∈ X and de�ne

Vy =
⋂

x0∈E(y)

p−1
x0

(0, 1] \
⋃

x0∈X\E′(y)

p−1
x0

(0, 1].

It is lear that Vy is a neighborhood of y sine {p−1
x0

(0, 1] : x0 ∈ X} is aloally �nite losed over of X. Now pik an arbitrary x ∈ Vy. Our aim is toestimate |fk(y)−fk(x)|. To this end, �rst observe that E(x) ⊆ E′(y). Heneif x0 ∈ E(x), then
x ∈ p−1

x0
(0, 1] ⊆ Ux0

, y ∈ p−1
x0

(0, 1] ⊆ Ux0
,and hene by (iii),

|gx0
(x) − gx0

(y)| < 2δ.Observe that for x0 ∈ E(x) we have gx0
(y) − gx0

(x) ∈ F (y) − F (x) and
dim(F (y)−F (x)) ≤ 2n. Hene again by the remark preeding this theorem,
(v)

∣∣∣
∑

x0∈E(x)

px0
(x)(gx0

(y) − gx0
(x))

∣∣∣ ≤ (2n + 1) · 2δ.

Let V k
y be a neighborhood of y that is ontained in Vy suh that for every

x ∈ V k
y ,

(vi)
∣∣∣

∑

x0∈E′(y)

(px0
(x) − px0

(y))gx0
(y)

∣∣∣ <
1

2k+1
.



222 T. Dobrowolski and J. van MillWe laim that V k
y has the properties required in (2). To prove this, let

x ∈ V k
y be arbitrary. By (v), (vi) and E(x) ⊆ E′(y) (hene px0

(x) = 0 if
x0 ∈ E′(y) \ E(x)) we learly have

|fk(y) − fk(x)| =
∣∣∣

∑

x0∈E′(y)

px0
(y)gx0

(y) −
∑

x0∈E(x)

px0
(x)gx0

(x)
∣∣∣

≤
∣∣∣

∑

x0∈E′(y)

px0
(y)gx0

(y) −
∑

x0∈E′(y)

px0
(x)gx0

(y)
∣∣∣

+
∣∣∣

∑

x0∈E(x)

px0
(x)gx0

(y) −
∑

x0∈E(x)

px0
(x)gx0

(x)
∣∣∣

≤
1

2k+1
+ (2n + 1) · 2δ ≤

1

2k
.Hene this ompletes the proof of the speial ase. To prove the general asefrom the speial ase, simply apply Remark 3.1.The usual way of obtaining a ontinuous seletion is to take the limitof a uniformly onvergent sequene of (ontinuous) near-seletions. In theproof of Theorem 4.1, a ontinuous seletion was onstruted as the limitof a sequene of possibly disontinuous seletions. The other plaes that wefound where a similar method was used are: Curtis [12℄, Mihael [25℄, andToru«zyk [5, Prop. 7.1 on p. 87℄.Repov² and Semenov reently observed in [27, Theorem 1.6(2)℄ that theondition that eah F (x) is losed in Theorem 4.1 is redundant.Let Y be a onvex subset of a metri linear spae (E, d). We say that

Y has the (�nite-dimensional) seletion property if, for every spae X, ev-ery LSC-funtion F : X ⇒ Y with (�nite-dimensional) ompat and onvexvalues has a ontinuous seletion.We say that Y has the (�nite-dimensional) near-seletion property if, forevery spae X, every LSC-funtion F : X ⇒ Y with (�nite-dimensional) om-pat and onvex values has, for every ε > 0, a ontinuous ε-near-seletion.Sometimes near-seletions exist and are useful in situations where ontin-uous seletions may not exist. See, e.g., Haver [21℄ for examples of suhsituations. For omments on the �hereditariness� of the (�nite-dimensional)near-seletion property, see �6.We now ome to the seond main result in this paper.Theorem 4.2. Let Y be a onvex subset of a metri linear spae E.Then Y is an AR if and only if Y has the �nite-dimensional near-seletionproperty.Proof. Assume �rst that Y is an AR. Let F : X ⇒ Y be an LSC-funtionsuh that for every x ∈ X, F (x) is a �nite-dimensional onvex ompatum.



Seletions and near-seletions 223Fix ε > 0, and, for every n ∈ N, put
Xn = {x ∈ X : dimF (x) ≤ n − 1}.Observe that ⋃∞

n=1 Xn = X, and every Xn is losed in X by Lemma 3.3.By Theorem 4.1, there exists a ontinuous seletion fn : Xn → E of F |Xn.Clearly, fn(Xn) ⊆ Y . As Y is an AR, we an extend fn to a map f̄n : X → Y .Using Lemma 3.4, we an �nd an open set Un of X suh that fn|Un is an
ε/2n-near-seletion of F |Un. Now Lemma 3.5 does the job.Conversely, let f : A → Y be a map of a losed subset A of a spae X.Let U be a loally �nite open over of X \ A so that there exists for every
U ∈ U an element aU ∈ A with d(x, aU ) ≤ 2d(x, A) for all x ∈ U (so U is aDugundji over of X \ A, see [26, Lemma 1.4.12℄). De�ne F : X ⇒ Y by

F (x) =

{
{f(x)} for x ∈ A,

conv{f(aU ) : x ∈ U ∈ U} otherwise.It is easy to see that F is LSC ([26, Theorem 1.4.13℄). Hene, there exists forevery ε > 0 a ontinuous funtion f̄ε : X → Y suh that d(f̄ε(x), F (x)) < εfor every x ∈ A. Sine Y is loally equionneted, f extends to a map
f̄ : X → Y by Dobrowolski [13, Lemma 1℄.So by Lemma 3.6 we get:Corollary 4.3. Let the onvex subset Y of the metri linear spae Ebe an AR and F : X ⇒ Y an LSC-funtion with ompat �nite-dimensionalonvex values. Then for every ontinuous ε : X → (0, 1) there exists a on-tinuous f : X → Y suh that d(f(x), F (x)) < ε(x) for every x ∈ X.5. Limitations in generalizing the results. In [9℄, Cauty provedthat there is a ertain separable metri linear spae E whih is an AR thatontains a losed linear subspae L whih is not an AR. In this setion wewill use this example among other things to illustrate the sharpness of ourresults. In the next setion we will state some open problems and make someomments whih we hope are illuminating.(A) The dimensional restrition in Theorem 4.1. It is natural to askwhether the dimensional restrition in Theorem 4.1 an be weakened to:
dimF (x) < ∞ for all x ∈ X. We will show in Example 5.2 below that thisannot be done.Let us say that a funtion f : X → Y is a σ-ontinuous seletion forthe funtion F : X ⇒ Y provided that f is a seletion for F and X anbe written as ⋃∞

n=1 Xn suh that, for eah n, Xn is losed in X and f |Xnis ontinuous (f. �oban [10℄). We will �rst show that ertain maps admit
σ-ontinuous seletions.



224 T. Dobrowolski and J. van MillLemma 5.1. Let E be a metri linear spae. If F : X ⇒ E is an LSC-funtion with losed and onvex values and dimF (x) < ∞ for every x ∈ X,then F admits a σ-ontinuous seletion.Proof. For every n, put
Xn = {x ∈ X : dimF (x) ≤ n − 1}.Then every Xn is losed by Lemma 3.3, and ⋃∞

n=1 Xn = X. Now �rst observethat by Theorem 4.1 the restrition F1 = F |X1 admits a ontinuous seletion
f1 : X1 → Y . De�ne F2 : X2 ⇒ Y by letting F2(x) = f1(x) for x ∈ X1, and
F2(x) = F (x) otherwise. Sine F2 is LSC, again by Theorem 4.1, there existsa ontinuous seletion f2 : X2 → Y for whih neessarily f2(x) = f1(x),
x ∈ X1. Proeeding indutively, we arrive at a sequene of maps fn : Xn → Ythat are ontinuous seletions of F |Xn. Clearly, the funtion f de�ned as thepointwise limit of the sequene (fn)n is the desired σ-ontinuous seletion.One would hope that the onstrution in the proof of Lemma 5.1 wouldlead in ertain ases to a global seletion that is ontinuous. But this is notthe ase in general, as the following example shows, even if the domain of thefuntion is as nie as the Hilbert ube Q. In fat, the example demonstratesmuh more. It shows that no hoie of ontinuous partial seletions resultsin a ontinuous limit funtion.Example 5.2. There are a metri linear spae E and an LSC-funtion
F from Q to E with �nite-dimensional ompat onvex values suh that Eontains a tower of losed subsets {En}n with the following properties:(1) Q =

⋃∞
n=1 Qn, where Qn = F⇐(En),(2) for every n, F |Qn : Qn ⇒ E admits a ontinuous seletion,(3) if for every n, fn : Qn → E is a seletion of F |Qn suh that f =

limn→∞ fn : Q→E is a well de�ned funtion, then f is not ontinuous.Proof. Consider the Cauty spae E. In [9℄ it was proved that E is thelinear span of a linearly independent ompat set (this will also be usedin �6), hene E is σ-ompat. Consequently, it follows from Cauty's on-strution, or by applying results from Dobrowolski [13℄ or van der Bijl andvan Mill [7℄, that there exists a ompat subspae K of E suh that the iden-tity mapping on K annot be approximated arbitrarily losely by maps into�nite-dimensional linear subspaes of E. We may think of K as being a sub-spae of Q as well. We laim that the identity mapping 1K on K annot beextended to a ontinuous funtion Q → E. For assume that this is not true,i.e., there is a ontinuous funtion α : Q → E whih restrits to the identityon K. It is lear that α an be approximated arbitrarily losely by mapsof the form βn ◦ πn, where πn : Q → I
n is the projetion, and βn : I

n → Eis ontinuous. But every ontinuous map from a �nite-dimensional ompat



Seletions and near-seletions 225spae into a metri linear spae E an be approximated arbitrarily loselyby ontinuous maps into �nite-dimensional linear subspaes of E. (This iswell known: see, e.g., [6, Lemma 2.1℄.) So this learly yields the desired on-tradition.Let A = {an : n ∈ N} be a ountable dense subset of K. For every n, weput
En = K ∪ span{a1, . . . , an}.Let f : K → K denote the identity mapping. We now de�ne F : Q ⇒ E asin the proof of Theorem 4.2 with aU ∈ K for every U ∈ U. It is lear that(1) holds, and (2) follows from Theorem 4.1. In addition, (3) holds as well,sine if there existed a sequene of seletions with ontinuous limit, then wewould be able to extend the identity mapping on K to a ontinuous funtion

Q → E.The best result known to us that does not put dimensional restritionson F is Proposition 5.3 below. Variations of this result are well known. Forompleteness' sake we will sketh a proof that is both standard and diret.Proposition 5.3. Let E be a metri linear spae. Then, for every loally�nite-dimensional spae X, every LSC-funtion F : X ⇒ E with ompleteonvex values has a ontinuous seletion.Proof. It is lear that by Remark 3.1 we may assume without loss ofgenerality that X is �nite-dimensional. Hene the theorem follows from theompliated Theorem 1.2 in Mihael [24℄. For a diret proof, one an modifythe simpler arguments in Mihael [23℄, or observe that we an simply re�neall open overs of the domain of our funtion by open overs of a �xedbounded order n. This will have the e�et that the onvex ombinationsthat we have to take in our metri linear spae will be ombinations of atmost n vetors, whih means that we an ontrol distanes in preisely thesame way as in the proof of Theorem 4.2. The details of heking this areleft to the reader.Remark 5.4. As an illustration of how Proposition 5.3 an be applied,let us onsider a metri linear spae E with a omplete linear subspae E′. Itis well known that if E′ is �nite-dimensional, then E and E/E′×E′ are hom-eomorphi (but not neessarily isomorphi). To get this from Proposition 5.3,simply observe that the funtion FE′ : E/E′ ⇒ E de�ned by F ([x]) = x+E′has a ontinuous seletion. This su�es for the proof (see, e.g., [5, Corol-lary 7.1 on p. 86℄). This result by the way is not best possible. It followsfrom Mihael [25, Corollary 7.3℄ that for E′, besides ompleteness, one onlyneeds loal onvexity. In (the onstrution of) Example 5.8 below we willsee that the funtion FE′ : E/E′ ⇒ E in general need not have a ontinuousseletion.



226 T. Dobrowolski and J. van Mill(B) Near-seletions without dimensional restritions. The following re-sult on near-seletions does not impose any dimensional restritions on F .Reall that a spae X is a C-spae if for every sequene A1, A2, . . . of openovers of X there are pairwise disjoint open families B1, B2, . . . in X suhthat Bi re�nes Ai for every i, and ⋃∞
i=1 Bi overs X. It is not di�ult toprove that a ountable-dimensional spae is a C-spae.Proposition 5.5. Let Y be a onvex subset of a metri linear spae E. If

X is a C-spae, then for every LSC-funtion F : X ⇒ Y with onvex values,and every ontinuous ε : X → (0, 1), there exists a map f : X → Y suh that
d(f(x), F (x)) < ε(x) for every x ∈ X.Proof. Let ε > 0. We will �rst prove that F admits an ε-near-seletion.By assumption, for eah n ∈ N, there exists a disjoint open family Un re�ningthe over {F⇐(B(y, ε/2n+1)) : y ∈ Y } suh that ⋃∞

n=1 Un overs X. Fix
n ∈ N. For every U ∈ Un pik an element yU ∈ Y suh that U ⊆ B(yU , ε/2n).The funtion fn :

⋃
Un → Y de�ned by

fn(x) = yU ⇔ x ∈ Uis evidently an ε/2n+1-near-seletion for F |
⋃

Un. Apply Lemma 3.5 to on-lude that F admits an ε-near-seletion. To get the general result, now applyLemma 3.6.Remark 5.6. We are indebted to the referee for pointing out that Propo-sition 5.5 is a onsequene of ompliated and muh more general results inUspenski�� [33℄. (Let us note that results in [33℄ yield the assertion of Proposi-tion 5.5 if the values F (x) are merely star-shaped. This is beause, for ε > 0,
B(F (x), ε) is star-shaped (hene, ontratible) provided F (x) is, and, forevery LSC-funtion F : X ⇒ Y , the set {(x, y) ∈ X × Y : y ∈ B(F (x), ε)}is open in X × Y .) Sine our proof is ompletely trivial, we deided to in-lude it. Let us also remark that Proposition 5.5 annot be extended beyondC-spaes (see Example 6.6).Remark 5.7. An immediate onsequene of Proposition 5.5, togetherwith the argument of Theorem 4.2, is that every onvex subset of a metrilinear spae is an absolute extensor for the lass of C-spaes. This is well-known, and stronger results are available in the literature (f. Addis andGresham [1, Theorem 4.1℄, Anel [2, Corollary C.5.10℄).This implies that if Y is both a onvex subset of a metri linear spae anda C-spae, then it is an AR. This is folklore and for the onveniene of thereader we sketh the proof. Indeed, let Z ontaining Y as a losed subspaebe suh that Z is an ANR and Z \ Y is a polytope (hene is ountable-dimensional). (For details, see, e.g., Hu [22, p. 53℄. It is not expliitly statedthere that the resulting spae is an ANR. That this is true is well knownand follows easily from the haraterization theorem in [22, p. 122℄. See



Seletions and near-seletions 227also Borsuk [8, p. 107℄.) Hene Z is a C-spae by Addis and Gresham [1,Theorem 2.1℄, and we an apply Remark 5.7 to onlude that Y is a retratof Z, hene Y is an ANR, and so an AR by ontratibility. We do not know ofa more elementary proof that onvex C-spaes (in partiular, onvex subsetsof ℵ0-dimensional metri linear spaes) are AR's.The following example shows that Proposition 5.3 does not hold in ase
X is an arbitrary strongly ountable-dimensional spae (or even, when X isa ountable union of �nite-dimensional ompata).Example 5.8. There are a metri linear spae E and a linear subspae Lof E suh that L is omplete and X = E/L is ℵ0-dimensional (hene stronglyountable-dimensional) while the standard LSC-funtion F = FL : X ⇒ Ede�ned by F ([x]) = x + L has the following properties:(1) F does not admit a ontinuous seletion,(2) for every ontinuous ε : X → (0, 1), there exists a ontinuous funtion

f : X → L suh that d(f(x), F (x)) < ε(x) for every x ∈ X.Proof. Dobrowolski and Kalton [14℄ proved that Cauty's onstrution in[9℄ an be used to onstrut an example of a omplete separable metri linearspae E′ whih is an AR, having a losed linear subspae L whih is not an AR(reall that the original Cauty spae is σ-ompat). Let A be a ountabledense subset of E′, and put E = span(L ∪ A). Then E is a dense linearsubspae of E′, whene E is an AR beause E′ is (see �2). Then X = E/Lis an ℵ0-dimensional metri linear spae and hene is strongly ountable-dimensional. Now if the standard LSC-funtion FL : X ⇒ E had a ontinuousseletion, then E would be homeomorphi to X ×L (f. [5, Corollary 7.1 onp. 86℄), whih would violate L being a non-AR. This proves (1). For (2),apply Proposition 5.5.Observe that the funtion F in the proof of Example 5.8 is even ontin-uous.6. Remarks and open questions. As announed in �5, we will statehere some open problems and make some further remarks that will put someof our results in their proper perspetives.(A) Convex-hereditary Absolute Retrats and (near-)seletions. It is triv-ial that the (�nite-dimensional) seletion property is hereditary with respetto onvex subsets. As a onsequene, every onvex subset of a metri linearspae with the �nite-dimensional seletion property is a �onvex-hereditaryAbsolute Retrat�. This means that the �nite-dimensional seletion propertyis stritly stronger than the AR-property in metri linear spaes. Simply on-sider Cauty's linear spae E and its linear subspae L that we used in �5, andapply Theorem 4.2. The near-seletion property and the �nite-dimensional



228 T. Dobrowolski and J. van Millnear-seletion property are not hereditary however, not even for losed linearsubspaes. To see this, again onsider the Cauty spaes E and L and againuse the fat that E is the linear span of a linearly independent ompat set.In suh a spae every onvex ompatum is �nite-dimensional (Dobrowolskiand Mogilski [15, Example on p. 657℄). But the near-seletion property andthe �nite-dimensional near-seletion property are hereditary on dense on-vex sets. The proof of this is similar to the standard proof that a dense linearsubspae of a metri linear AR is an AR (for a sketh of that proof, see �2).The only known onvex subsets of metri linear spaes that are onvex-hereditary Absolute Retrats are the ones that are loally onvex or areC-spaes (among them, the onvex subsets of ℵ0-dimensional metri linearspaes); see Remark 5.7. Sine every onvex set with the �nite-dimensionalseletion property is a onvex-hereditary Absolute Retrat, the following twoquestions are quite natural.Question 6.1. Let E be a metri linear spae. Are the following state-ments about E equivalent:(a) E is a onvex-hereditary Absolute Retrat.(b) E has the �nite-dimensional seletion property.() E has the seletion property.Question 6.2. Is the spae ℓp, 0 < p < 1, a onvex-hereditary AbsoluteRetrat?It is an intriguing problem whether Theorem 4.1 an be extended to thease where the LSC-funtion F has no dimensional restritions but instead
E is ℵ0-dimensional.Question 6.3. Let E be an ℵ0-dimensional metri linear spae. If F :
X ⇒ E is an LSC-funtion with omplete and onvex values, does F admita ontinuous seletion? If not, does E have the �nite-dimensional seletionproperty?We even do not know the answer if E is as simple as the spae of alleventually zero sequenes in ℓp, where 0 < p < 1. Atually, we do not knowa single example of a nonloally onvex metri linear spae E that has the�nite-dimensional seletion property.An interesting speial ase of Question 6.3 is the following:Question 6.4. Let E be an ℵ0-dimensional metri linear spae. If X isa ountable union of zero-dimensional subspaes, i.e., if X is ℵ0-dimensional,does every LSC F : X ⇒ E with �nite-dimensional ompat onvex valueshave a ontinuous seletion? What if X is equal to σ = {x ∈ Q : (∃N ∈
N)(∀n ≥ N)(xn = 0)}?



Seletions and near-seletions 229It follows from Uspenskij [33℄ (or Proposition 5.5) that a funtion F suhas in Question 6.4 has ε-near-seletions for every ε > 0. In fat, this evenholds for funtions F for whih the sets F (x) are (not neessarily ompat)star-shaped (see Remark 5.6).(B) Niely plaed subspaes in metri linear AR's. We showed in Theo-rem 4.2 that a onvex subset of a metri linear spae is an AR if and onlyif it has the �nite-dimensional near-seletion property. This prompts thefollowing entral question.Question 6.5. Let E be a metri linear spae. If E is an AR, does Ehave the near-seletion property? What if E = ℓp and 0 < p < 1?In �3 we used Cauty's spae to get a linear spae for whih the onlusionof the Mihael Seletion Theorem fails. A variation of this example willbe onstruted in Example 6.6 below. Consider the natural LSC funtion
FE′ : E/E′ ⇒ E for a losed linear subspae E′ of a metri linear spae
E ∈ AR. Then if FE′ admits a ontinuous seletion it follows that both
E′ and E/E′ are AR's (see Remark 5.4). If, however, FE′ has merely an
ε-near-seletion for every ε > 0 then E/E′ is an AR, as stated in Bessagaand Dobrowolski [4, p. 40℄, while E′ may not be an AR (see Example 5.8).Let us say that a losed linear subspae E′ of a metri linear spae E isniely plaed in E provided that FE′ has an ε-near-seletion for every ε > 0.Example 6.6. There exists a metri linear spae E homeomorphi to ℓ2and a losed linear subspae E′ of E whih is not niely plaed in E (henethe natural funtion FE′ : E/E′ ⇒ E does not have an ε-near-seletion forsome ε > 0).Proof. By a result of Terry [31℄, there is a so-alled ouniversal spae forseparable metri linear spaes, that is, a separable omplete metri linearspae Z suh that for every separable omplete metri linear spae E thereis a losed linear subspae Z ′ of Z suh that Z/Z ′ and E are isomorphi.Interestingly, Z is homeomorphi to ℓ2. Applying this for the ompletion
L̂ of the Cauty spae L (see �5), we get by the just quoted observation ofBessaga and Dobrowolski a losed linear subspae Z ′ of Z suh that FZ′ : L̂ =
Z/Z ′ ⇒ Z does not have an ε-near-seletion for some ε > 0.Remark 6.7. Let E′ be a losed linear subspae of a metri linear spae
E. If E is separable then E′ an be enlarged to a dense linear subspae E′′of E so that E′ is niely plaed in E′′. By Proposition 5.5, any dense E′′ forwhih E′′/E′ is ℵ0-dimensional will do.By applying Remark 6.7, the linear subspae Z ′ of Z from the onstru-tion of Example 6.6 an be enlarged to a dense linear subspae Z ′′ in whih
Z ′ is niely plaed; yet, Z ′ is not niely plaed in Z.



230 T. Dobrowolski and J. van MillFor the reader's onveniene, we provide a simple proof of the Bessaga andDobrowolski observation, whih we generalize to onvex sets. For a onvexset C in a metri linear spae E, let X = κ(C), where κ : E → E/E′ is thenatural quotient map. De�ne FC : X → C by FC([x]) = (x + E′)∩C. Thenwe have:Lemma 6.8. Assume that FC has an ε-near-seletion for every ε > 0.Then if C is an AR, so is X.Proof. Simply observe that κ|C : C → X admits ε-right inverses for every
ε > 0. Hene we an apply [22, Theorem 5.3℄ to onlude that X is an ANRand, therefore, an AR by ontratibility.For E = C, the assumption in Lemma 6.8 simply says that E′ is nielyplaed in E. It should be noted, however, that unlike FE′ , the funtion FCmay not be LSC, even in the ase when C is a losed one in a 3-dimensionalspae E (see Baushke and Borwein [3, Example 2.3℄). So, onstruting ε-near-seletions for FC may be a very di�ult task.Question 6.9. Are all losed linear subspaes E′ of ℓp, 0 < p < 1, nielyplaed in ℓp?(C) Near-seletions with stronger properties. Let Y be a onvex subsetof a metri linear spae E, and let F : X ⇒ Y be LSC with onvex values.We onsider the following statements about F :(I) For eah ε > 0 there is a ontinuous funtion f : X → Y suh that

d(f(x), F (x)) < ε for every x ∈ X.(II) For eah ontinuous ε : X → (0, 1) there is a ontinuous funtion
f : X → Y suh that d(f(x), F (x)) < ε(x) for every x ∈ X.(III) For every open over U of Y there exists a ontinuous funtion
f : X → Y suh that for every x ∈ X there exists an element
U ∈ U suh that f(x) ∈ U and U ∩ F (x) 6= ∅.(IV) For every ontinuous funtion δ : Y → (0, 1) there is a ontinuousfuntion f : X → Y suh that d(f(x), F (x)) < δ(f(x)) for every
x ∈ X.The reader an easily verify that (III)⇔(IV)⇒(I)⇔(II) (f. Lemma 3.6).This raises the interesting problem whether all four properties are equivalenteven if the values of F are not only onvex but also ompat. This does notseem to be trivial. Simply observe that (III) is �topologial�, but (I) is not.
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