FUNDAMENTA
MATHEMATICAE
192 (2006)

Selections and near-selections in metric linear spaces
without local convexity

by

Tadeusz Dobrowolski (Pittsburg, KS) and Jan van Mill (Amsterdam)

Abstract. We characterize the AR property in convex subsets of metric linear spaces
in terms of certain near-selections.

1. Introduction. All spaces under discussion are metrizable.

As is well known, every locally convex metric linear space is an Abso-
lute Retract (abbreviated AR; Dugundji [18]). (Since we restrict ourselves
to metrizable spaces, every AR is an Absolute Extensor, i.e., a space that
can play the role of R in the classical Tietze-Urysohn Theorem, and vice
versa.) The local convexity assumption in this result is not essential, as the
P-spaces (0 < p < 1) show. Other examples can be found within the class
of Ng-dimensional metric linear spaces, i.e., metric linear spaces having a
countable Hamel basis. This follows from Haver’s Theorem in [20] that ev-
ery locally contractible space that is a countable union of finite-dimensional
compacta is an Absolute Neighborhood Retract (abbreviated: ANR). The
formidable problem of whether every metric linear space is an AR was finally
settled by Cauty [9] with a negative answer. Detecting the AR-property in
infinite-dimensional metric linear spaces and topological groups is usually
the first step towards proving that they are, in fact, homeomorphic to an
infinite-dimensional manifold (see, e.g., Dobrowolski and Torurnczyk [17]).
But even for a space as concrete as the group of all homeomorphisms of the
3-cell, it is unknown whether it is an AR.

The usual and well known proof of the fact that every locally convex
metric linear space is an AR, is by applying the so-called Dugundji Extension

2000 Mathematics Subject Classification: 55M15, 54C60.

Key words and phrases: metric linear space, locally convex, compact convex set, se-
lection, near-selection, finite-dimensional, C-space.

The first-named author gratefully acknowledges support from grant B 61-541 of the
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) during the summer of
2004.

[215]



216 T. Dobrowolski and J. van Mill

Formula [5, p. 57]. It seems less well known that this result can also be
proved by a (near-)selection argument (cf. [5, p. 92|, [26, 1.4.13], [28, p.
232]; see also the proof of Theorem 4.2 below). The aim of this paper is
to characterize the AR-property in convex subsets of metric linear spaces
in terms of certain near-selections. Roughly speaking, our characterization
theorem states that a convex set in a metric linear space is an AR if and only
if lower semicontinuous functions with finite-dimensional compact convex
values in it admit near-selections.

For some of our results it suffices that the spaces under consideration
are merely paracompact since that is the only thing used in the proofs. We
do not aim at full generality and so our results are sometimes not stated in
their most general form.

We are indebted to Ernie Michael, Pavel Semenov, Valentin Gutev and
the referee for helpful comments.

2. Preliminaries. We adopt the usual terminology with respect to par-
titions of unity (Dugundji [19]). So, if f: X — R is continuous, then the
support of f is the closed set {x € X : f(x) # 0}. If {k; : i € I} is a parti-
tion of unity on a space X, then the supports of the x; form a locally finite
closed covering of X. Hence, in particular, for each € X there are only
finitely many ¢ € I with x;(z) # 0. The following central result on partitions
of unity will be used several times without explicit reference: for each open
cover U ={U; : i € I} of a space X there is a partition of unity {x; : 7 € I'}

on X such that Iii_l(o, 1] C U; for every i € I. Such a partition of unity is
said to be subordinated to U. See [19, p. 170] for details.

If (X,d) is a space and x € X, then B(xz,¢) (respectively, B(A,¢)) ab-
breviates the open ball about x (respectively, about A C X) of radius e.

Let E be a metric linear space. We will always consider F equipped with
a translation invariant metric d induced by a so-called F-norm |-| on E (that
is, d(z,y) = |x — y|). We require that such a norm is increasing on each ray
emanating from the origin (or, equivalently, |tz| < |z| for all real numbers
t with [t| < 1). See, e.g., [29, Theorem 1.24| for details. A subset X of E is
called complete if the metric d restricted to X is a complete metric. Clearly,
every complete subset of E is closed in E and every compact subset of E is
complete. The zero vector of £ will be denoted by O.

If F is a metric linear space that is an AR, then so are all of its dense
linear subspaces. This can be seen as follows. First one observes that if L is
a dense linear subspace of E then E'\ L is locally homotopy negligible in E
(this is folklore, for a proof see, e.g., Dobrowolski and Mogilski [16, Lemma
3.1]). It then suffices to apply Torunczyk’s [32, Theorem 3.1|. The same can
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be said about dense convex sets of arbitrary convex sets in metric linear
spaces. We will use this fact frequently without explicit reference.

3. Set-valued functions. Let X and Y be sets. By writing F': X =Y
we shall mean that F' is a set-valued function from X to Y. That is, F'(z) is
a nonempty subset of Y for every z € X.

Let X and Y be topological spaces and let F': X = Y. For every V C Y
we put

FE(V)={zeX:F(x)nV #0}.

Then F is lower semicontinuous (abbreviated LSC) provided that for every
open subset U of Y, F<=(U) is open in X. In addition, a (continuous) selec-
tion for F' is a (continuous) function f: X — Y such that f(x) € F(z) for
every ¢ € X.

REMARK 3.1. Let E be a metric linear space. In addition, let F': X = F
be a function such that for every z € X, F(x) is convex. Assume that X
has an open cover U such that for every U € U the function F|U has a
continuous selection, say fi7. Hence continuous selections for F' exist locally.
We claim that in this situation F' has in fact a global continuous selection.

Let {ky}ueu be a partition of unity subordinated to U. Then the function
f defined by the formula

f@) =) {ru()fu(z) : Uel, zcU}

is a continuous selection for F'. This useful observation, perhaps due to Cor-
son and Lindenstrauss [11, proof of Theorem 2.1|, will be used without ex-
plicit reference below.

REMARK 3.2. The famous Michael Selection Theorem from [23] asserts
that if F': X = FE is LSC, where FE is a locally convex metric linear space
and every F(z) is both complete and convex, then F' admits a continuous
selection. Continuous selections are important tools in topology and func-
tional analysis. There are several versions of the Michael Selection Theorem
which all assume local convexity in one form or another. We could not find
an example in the literature of a metric linear space for which the conclusion
of the Michael Selection Theorem fails. Let us present such an example. By
Cauty [9], there is a metric linear space Z that is not an AR. By passing to
the completion of Z, we may assume that the Cauty space Z is complete.
We may assume that Z is a closed subspace of some AR X (see |26, Lemma
1.2.3]). Set F(z) ={z} forz € Zand F(x) =Zforx ¢ Z. Then F': X = Z
is LSC and does not have a continuous selection, since otherwise Z would be
a retract of X.

We now formulate and prove four simple lemmas.
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LEMMA 3.3. Let E be a metric linear space. In addition, let F': X = FE
be an LSC-function such that for every x € X, F(x) is a finite-dimensional
convex set. Then, for everyn € N, X, = {z € X : dimF(z) < n — 1} is
closed in X.

Proof. We will show that {x € X : dim F(x) > n} is open. Pick an
arbitrary z( such that dim F'(xz¢) > n. We may assume that F'(xo) contains
the origin. Then F(z¢) contains n linearly independent vectors vy, ..., v,.
Take pairwise disjoint open balls B; = B(v;,r;) so that for every choice
of x; € B, i = 1,...,n, the set {z1,...,x,} is linearly independent. Let
U=F<(By)N---NF<(B,), and observe that U is an open neighborhood
of xg. Then, for every z € U, we have F(z) N B; # 0, i = 1,...,n. Hence,
F(x) contains at least n linearly independent vectors and, consequently,
dim F(z) > n. =

Let X and (Y,d) be spaces. If F': X = Y and € > 0, then a continuous
function f: X — Y is called an e-near-selection of F if d(f(x),F(x)) < ¢
for every x € X. (So a continuous selection can be thought of as a “0-near-
selection” provided every F'(z) is closed in Y'.) This is the central concept in
this paper.

We are primarily interested here in e-near-selections in the case that Y
is a convex subspace of a metric linear space E, F' has convex values, and d
is the metric on Y we get from an arbitrary F-norm on E.

LEMMA 3.4. Let X and (Y,d) be spaces, let F': X =Y be LSC, and let
e > 0. In addition, let Xy be a subset of X for which there exists a map
f: X =Y such that f|X¢ is an e-near-selection for F'|Xy. Then there is a
neighborhood U, of Xy such that f|U. is a 2e-near-selection of F|Us.

Proof. 1t is easy to see that
U.= |J 1 (B(f(),0) NFE(B(f(x),e))

r€Xo

is as required. =
We now present a controlled version of Remark 3.1 for near-selections.

LEMMA 3.5. LetY be a convexr subspace of a metric linear space and let
F: X =Y be an LSC-function with convex values. Moreover, assume that
X can be written as \J;- | Uy such that for every n € N, U, is open and
F|U,, admits an e, -near-selection F,,: U, — Y. Then there is a continuous
function f: X — Y such that d(f(x), F(x)) < > {en : x € U,} for every
reX.

Proof. Define F,(z) for every x € X by letting F,(x) = Fy,(x) if z € Uy,
and F,(z) =0if z & U,,.
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For the open cover {U,, : n € N} of X we pick an arbitrary partition of
unity {A\, }nen subordinated to it, and define the function f: X — Y by the
formula f(x) =Y 0% A\p(2) Fp(2).

It is clear that f is well defined and continuous. Take an arbitrary z € X,
and let A = {n € N : \,(x) > 0}. By construction, for every n € A
there exists an element 2, € F(z) such that |z, — F,,(2)| < en. Put 2z =
> nea M(2)2n. Then z € F(x) since F(x) is convex, and

@) =2 < 3 Mal@)(Fal@) —2)| < 3 [Fale) — 2] < 3 e

neA neA neA
as required. m

LEMMA 3.6. LetY be a convex subspace of a metric linear space E, and
let F': X =Y be an LSC-function with conver values. Then the following
conditions are equivalent:

(1) F admits for every e > 0 an e-near-selection f: X — Y.

(2) For every continuous function e: X — (0,1) there exists a contin-
uous function f: X — Y such that d(f(z), F(z)) < e(x) for every
reX.

Proof. For (1)=-(2),let e: X — (0, 1) be continuous, and for every n > 0,

put
Dp={zeX:27"2 < g(z) <27}
In addition, for every n > 0 let f,: X — Y be a 2~ ("3)_near-selection
of F'. There exists by Lemma 3.5 a continuous function f: X — Y such that
d(f(z), F(z)) < 3{2="*3) . 2 € D,, n € N} for every z € X. To prove
that f is a near-selection for F' which is controlled by the function ¢, take
an arbitrary z € X, and let n(z) = min{n > 0: z € D,}. Observe that if
x € Dy, then m € {n(x),n(x) + 1}. Hence
1 1 1
d(f(l‘),F(ZE)) < on(x)+3 - on(x)+4 < on(x)+2 < E(:L‘)’

as required.

Since (2)=-(1) is trivial, this completes the proof. =

4. Main results. In this section we will present our main results, The-
orems 4.1 and 4.2. In Theorem 4.1 we show that certain LSC-maps have a
continuous selection. This result is then used in Theorem 4.2 to prove our
characterization of the AR-property in convex subsets of metric linear spaces
in terms of near-selections.

In [25, Corollary 7.3], Michael proved that if G is a topological group, and
H a closed subgroup isomorphic to the additive group of a Fréchet space,
then the natural quotient map from G to G/H has a cross-section. For the
special case that G is a complete metric linear space, see [5, Prop. 7.1 on
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p. 87] (the proof presented there is due to Toruriczyk). Theorem 4.1 below
and its proof are inspired by these results.

We will use the following elementary but useful fact due to Carathéodory.
Let E be an n-dimensional metric linear space. Then if = lies in the convex
hull of a set F' C F, then x lies in the convex hull of some subset of F' that
contains at most n + 1 points [30, p. 3|. This easily implies that for every
r > 0 the convex hull of the ball B(0,r) in E is contained in B(0, (n + 1)r).

THEOREM 4.1. Let E be a metric linear space E. Suppose that F: X = E
is an LSC-function with closed and convex values. If there is an open cover
U of X such that for every U € U, max{dim F(z) : z € U} < oo, then F
admits a continuous selection.

Proof. We will first prove the theorem in the special case that U = {X}.
Let n € N be such that dim F'(z) < n for all z € X. By induction on

k > 0 we will construct a sequence of (not necessarily continuous) functions
fr: X — F so that
(1) fx(z) € F(z), z € X,
(2) for every g € X there exists a neighborhood V:cké of zy such that
| fr(z) — fr(zo)| < 1/2% whenever z € V',
(3) Ifi(@) = fo-1(2)| < 1/28 + (n+1)/2" 1z € X.
Having constructed this sequence, we let f denote its pointwise limit. Ob-
serve that for every z € X, f(x) is well defined and belongs to F(z) since
F(x) being finite-dimensional and convex is complete with respect to any

F-norm |- | on E. Moreover, for every z € V¥ |

[f (@) = f(@o)| < [f(2) = fr(@)| + [fr(x) = fr(zo)| + | fr(z0) — f(20)|
< (n+1)/282 432k

This yields the continuity of f.

Assuming the F-norm |-| is bounded by 1, for £ = 0, we see that condition
(2) is satisfied with V2 = X, 29 € X, and any selection fo: X — E of F.

Suppose fo, ..., fx—1 have been constructed for some k > 1. Let 6 > 0
be so small that (2n 4 1)§ < 1/2F+2,

Consider for a fixed xg € X its open neighborhood
(i) Usy = Vzg ' NF(B(fr-1(20),9))-

Since by (i), F(2) N B(fr—1(x0),0) # 0 for every x € U,,, there is a (possibly
discontinuous) selection gy,: Uy, — E for the function F'|U,, which, for
every x € Uy, satisfies

(i) |92 (x) = fr—1(z0)| < 0.
Let gy, |(X \ Uy,) be an arbitrary constant function. By (ii),
(iii) diam gz, (Uy,) < 20,
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and by (i) and (2),

() 1900 @)~ fi1(2)] < g (2)— fir ol +1 i1 (20) —fir ()] < 0+ 5

for every x € Uy,.
Let P = {py, : *o € X} be a partition of unity subordinated to the open
cover {Uy, : xo € X }. Define fk' X — E by the formula

= > Pag()gao (x
To€EX
and notice that (1) holds (here we use the convexity of F(x)).

Fix 2 € X, and write E(z) = {zp € X : 2 € p;,}(0,1]} and E'(z) =
{xo € X : € pzy (0,1]}; observe that E(z) C E'(z) and that E’(z) is finite.
Clearly,

fe(@) = fia @) = Y pao(2)(ga (@) = fum1 ().
zo€E(x)
Since all differences gz, (z) — fyx—1(z) for xop € E(x) belong to an n-dimen-
sional linear subspace of E and are by (iv) of F-norm smaller than r =
§ +27k+1 it follows by the remark preceding this theorem that |fy(z) —
fr—1(z)| < (n+ 1)r, which yields (3).
Fix y € X and define
Vo= () PO\ |J  pw(0,1).
20€E(y) 2o €X\E' (y)
It is clear that Vj, is a neighborhood of y since {m txp € X}isa
locally finite closed cover of X. Now pick an arbitrary x € V,,. Our aim is to
estimate | fx(y) — fx(x)|. To this end, first observe that E(x) C E’(y). Hence
if zy € E(z), then
2 €ppy(0,1] C Usy, Y € pa (0,1] C Usy,
and hence by (iii),
|90 (%) — ao (y)] < 26.

Observe that for g € E(x) we have g,,(y) — gz0(x) € F(y) — F(z) and
dim(F(y) — F(z)) < 2n. Hence again by the remark preceding this theorem,

) | Y pa@) 9 ®) — gan@))| < 20+ 1) 28
ToEE(x)

Let Vyk be a neighborhood of y that is contained in V} such that for every
T € Vyk,

(v [ @)~ peo )] < oy

zo€E' (y)
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We claim that Vyk has the properties required in (2). To prove this, let
x € Vyk be arbitrary. By (v), (vi) and E(z) C E’(y) (hence p,,(z) = 0 if
zo € E'(y) \ E(z)) we clearly have

@) = @I =] D P@ga) = D paol@)gen(@)]

zo€E'(y) zo€E(x)
S( > W) = Y pzo(w)gxo(y)(

2o€E (y) zo€E' (y)
Y @ ®) = D pra(@)ga ()]

zo€E(x) zo€E(x)

1
§W+(2n+1).25§2—k.

Hence this completes the proof of the special case. To prove the general case
from the special case, simply apply Remark 3.1. u

The usual way of obtaining a continuous selection is to take the limit
of a uniformly convergent sequence of (continuous) near-selections. In the
proof of Theorem 4.1, a continuous selection was constructed as the limit
of a sequence of possibly discontinuous selections. The other places that we
found where a similar method was used are: Curtis [12], Michael [25], and
Torunczyk [5, Prop. 7.1 on p. 87].

Repov§ and Semenov recently observed in [27, Theorem 1.6(2)| that the
condition that each F'(x) is closed in Theorem 4.1 is redundant.

Let Y be a convex subset of a metric linear space (F,d). We say that
Y has the (finite-dimensional) selection property if, for every space X, ev-
ery LSC-function F': X = Y with (finite-dimensional) compact and convex
values has a continuous selection.

We say that Y has the (finite-dimensional) near-selection property if, for
every space X, every LSC-function F': X = Y with (finite-dimensional) com-
pact and convex values has, for every € > 0, a continuous e-near-selection.
Sometimes near-selections exist and are useful in situations where contin-
uous selections may not exist. See, e.g., Haver [21] for examples of such
situations. For comments on the “hereditariness” of the (finite-dimensional)
near-selection property, see §6.

We now come to the second main result in this paper.

THEOREM 4.2. Let Y be a conver subset of a metric linear space E.
Then Y is an AR if and only if Y has the finite-dimensional near-selection
property.

Proof. Assume first that Y is an AR. Let F': X = Y be an LSC-function
such that for every x € X, F(z) is a finite-dimensional convex compactum.
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Fix € > 0, and, for every n € N, put
Xp={re X :dimF(z) <n-—1}.

Observe that | J72; X, = X, and every X, is closed in X by Lemma 3.3,
By Theorem 4.1, there exists a continuous selection f,: X,, — E of F|X,.
Clearly, f,(X,) CY.AsY isan AR, we can extend f, toamap f,: X — Y.
Using Lemma 3.4, we can find an open set U, of X such that f,|U, is an
g/2™-near-selection of F'|U,. Now Lemma 3.5 does the job.

Conversely, let f: A — Y be a map of a closed subset A of a space X.
Let U be a locally finite open cover of X \ A so that there exists for every
U € U an element ay € A with d(z,ay) < 2d(z, A) for all x € U (so U is a
Dugundji cover of X \ A, see [26, Lemma 1.4.12]). Define F: X = Y by

B {f(z)} for x € A,
F(z) = {conv{f(aU) cx €U €U} otherwise.

It is easy to see that Fis LSC ([26, Theorem 1.4.13]). Hence, there exists for
every € > 0 a continuous function f.: X — Y such that d(f.(z), F(z)) < e

for every x € A. Since Y is locally equiconnected, f extends to a map
f: X =Y by Dobrowolski [13, Lemma 1]. m

So by Lemma 3.6 we get:

COROLLARY 4.3. Let the convexr subset Y of the metric linear space E
be an AR and F': X = Y an LSC-function with compact finite-dimensional
convex values. Then for every continuous e: X — (0,1) there exists a con-
tinuous f: X — Y such that d(f(x), F(x)) < e(x) for every xz € X.

5. Limitations in generalizing the results. In [9], Cauty proved
that there is a certain separable metric linear space E which is an AR that
contains a closed linear subspace L which is not an AR. In this section we
will use this example among other things to illustrate the sharpness of our
results. In the next section we will state some open problems and make some
comments which we hope are illuminating.

(A) The dimensional restriction in Theorem 4.1. It is natural to ask
whether the dimensional restriction in Theorem 4.1 can be weakened to:
dim F'(z) < oo for all z € X. We will show in Example 5.2 below that this
cannot be done.

Let us say that a function f: X — Y is a o-continuous selection for
the function F': X = Y provided that f is a selection for F' and X can
be written as |J;-; X,, such that, for each n, X,, is closed in X and f|X,
is continuous (cf. Coban [10]). We will first show that certain maps admit
o-continuous selections.
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LEMMA 5.1. Let E be a metric linear space. If F': X = E is an LSC-
function with closed and convex values and dim F(x) < oo for every x € X,
then F' admits a o-continuous selection.

Proof. For every n, put
Xp={re X :dimF(zx) <n-—1}.

Then every X, is closed by Lemma 3.3, and | J,- ; X,, = X. Now first observe
that by Theorem 4.1 the restriction F; = F'|X; admits a continuous selection
fi: X1 — Y. Define Fy: Xy = Y by letting Fy(z) = fi(x) for z € X4, and
F5(z) = F(z) otherwise. Since F» is LSC, again by Theorem 4.1, there exists
a continuous selection fo: Xo — Y for which necessarily fo(z) = fi(x),
x € X;. Proceeding inductively, we arrive at a sequence of maps f,,: X,, — Y
that are continuous selections of F'| X,,. Clearly, the function f defined as the
pointwise limit of the sequence (fy,), is the desired o-continuous selection. m

One would hope that the construction in the proof of Lemma 5.1 would
lead in certain cases to a global selection that is continuous. But this is not
the case in general, as the following example shows, even if the domain of the
function is as nice as the Hilbert cube Q). In fact, the example demonstrates
much more. It shows that no choice of continuous partial selections results
in a continuous limit function.

EXAMPLE 5.2. There are a metric linear space F and an LSC-function
F from () to E with finite-dimensional compact convex values such that E
contains a tower of closed subsets {E,, }, with the following properties:

(1) Q@ =U,2, Qn, where Q,, = F<(E,),

(2) for every n, F|Q,: @, = E admits a continuous selection,

(3) if for every n, fn: @, — E is a selection of F|Q, such that f =
limy, o0 frn: @ — FE is a well defined function, then f is not continuous.

Proof. Consider the Cauty space E. In [9] it was proved that E is the
linear span of a linearly independent compact set (this will also be used
in §6), hence F is o-compact. Consequently, it follows from Cauty’s con-
struction, or by applying results from Dobrowolski [13] or van der Bijl and
van Mill [7], that there exists a compact subspace K of E such that the iden-
tity mapping on K cannot be approximated arbitrarily closely by maps into
finite-dimensional linear subspaces of E. We may think of K as being a sub-
space of () as well. We claim that the identity mapping 15 on K cannot be
extended to a continuous function () — E. For assume that this is not true,
i.e., there is a continuous function a: () — F which restricts to the identity
on K. It is clear that o can be approximated arbitrarily closely by maps
of the form [, o m,, where m,: @ — I" is the projection, and G,: I" — E
is continuous. But every continuous map from a finite-dimensional compact



Selections and near-selections 225

space into a metric linear space E can be approximated arbitrarily closely
by continuous maps into finite-dimensional linear subspaces of E. (This is
well known: see, e.g., [6, Lemma 2.1].) So this clearly yields the desired con-
tradiction.
Let A = {a, : n € N} be a countable dense subset of K. For every n, we
put
E, = K Uspan{ay,...,an}.

Let f: K — K denote the identity mapping. We now define F': QQ = F as
in the proof of Theorem 4.2 with ay € K for every U € U. It is clear that
(1) holds, and (2) follows from Theorem 4.1. In addition, (3) holds as well,
since if there existed a sequence of selections with continuous limit, then we

would be able to extend the identity mapping on K to a continuous function
Q— FE. u

The best result known to us that does not put dimensional restrictions
on F' is Proposition 5.3 below. Variations of this result are well known. For
completeness’ sake we will sketch a proof that is both standard and direct.

PROPOSITION 5.3. Let E be a metric linear space. Then, for every locally
finite-dimensional space X, every LSC-function F: X = FE with complete
convez values has a continuous selection.

Proof. 1t is clear that by Remark 3.1 we may assume without loss of
generality that X is finite-dimensional. Hence the theorem follows from the
complicated Theorem 1.2 in Michael [24]. For a direct proof, one can modify
the simpler arguments in Michael [23], or observe that we can simply refine
all open covers of the domain of our function by open covers of a fixed
bounded order n. This will have the effect that the convex combinations
that we have to take in our metric linear space will be combinations of at
most n vectors, which means that we can control distances in precisely the
same way as in the proof of Theorem 4.2. The details of checking this are
left to the reader. m

REMARK 5.4. As an illustration of how Proposition 5.3 can be applied,
let us consider a metric linear space F with a complete linear subspace E’. It
is well known that if E’ is finite-dimensional, then F and E/E’ x E’ are hom-
eomorphic (but not necessarily isomorphic). To get this from Proposition 5.3,
simply observe that the function Fg/: E/E’ = E defined by F([z]) = z+ E’
has a continuous selection. This suffices for the proof (see, e.g., |5, Corol-
lary 7.1 on p. 86]). This result by the way is not best possible. It follows
from Michael [25, Corollary 7.3] that for E’, besides completeness, one only
needs local convexity. In (the construction of) Example 5.8 below we will
see that the function Fgr: E/E’ = E in general need not have a continuous
selection.
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(B) Near-selections without dimensional restrictions. The following re-
sult on near-selections does not impose any dimensional restrictions on F.
Recall that a space X is a C-space if for every sequence A, As,... of open
covers of X there are pairwise disjoint open families By, Bs,... in X such
that B; refines A; for every i, and |J;2, B; covers X. It is not difficult to
prove that a countable-dimensional space is a C-space.

PROPOSITION 5.5. LetY be a convex subset of a metric linear space E. If
X is a C-space, then for every LSC-function F: X = Y with convex values,
and every continuous €: X — (0,1), there exists a map f: X — Y such that

d(f(x), F(x)) < e(x) for every z € X.

Proof. Let € > 0. We will first prove that F' admits an e-near-selection.
By assumption, for each n € N, there exists a disjoint open family U,, refining
the cover {F<(B(y,e/2"™)) : y € Y} such that [J72, U, covers X. Fix
n € N. For every U € U,, pick an element yy € Y such that U C B(yy,e/2").
The function f,: |JU, — Y defined by

falx)=yy & xz€U

is evidently an /2" !-near-selection for F||JU,. Apply Lemma 3.5 to con-
clude that F' admits an e-near-selection. To get the general result, now apply
Lemma 3.6. =

REMARK 5.6. We are indebted to the referee for pointing out that Propo-
sition 5.5 is a consequence of complicated and much more general results in
Uspenskir [33]. (Let us note that results in [33] yield the assertion of Proposi-
tion 5.5 if the values F'(z) are merely star-shaped. This is because, for € > 0,
B(F(z),¢) is star-shaped (hence, contractible) provided F(z) is, and, for
every LSC-function F': X = Y, the set {(z,y) € X xY :y € B(F(x),e)}
is open in X x Y.) Since our proof is completely trivial, we decided to in-
clude it. Let us also remark that Proposition 5.5 cannot be extended beyond
C-spaces (see Example 6.6).

REMARK 5.7. An immediate consequence of Proposition 5.5, together
with the argument of Theorem 4.2, is that every convex subset of a metric
linear space is an absolute extensor for the class of C-spaces. This is well-
known, and stronger results are available in the literature (cf. Addis and
Gresham [1, Theorem 4.1], Ancel [2, Corollary C.5.10]).

This implies that if Y is both a convex subset of a metric linear space and
a C-space, then it is an AR. This is folklore and for the convenience of the
reader we sketch the proof. Indeed, let Z containing Y as a closed subspace
be such that Z is an ANR and Z \ Y is a polytope (hence is countable-
dimensional). (For details, see, e.g., Hu [22, p. 53]. It is not explicitly stated
there that the resulting space is an ANR. That this is true is well known
and follows easily from the characterization theorem in [22, p. 122|. See
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also Borsuk [8, p. 107]|.) Hence Z is a C-space by Addis and Gresham |1,
Theorem 2.1], and we can apply Remark 5.7 to conclude that Y is a retract
of Z, hence Y is an ANR, and so an AR by contractibility. We do not know of
a more elementary proof that convex C-spaces (in particular, convex subsets
of Np-dimensional metric linear spaces) are AR’s.

The following example shows that Proposition 5.3 does not hold in case
X is an arbitrary strongly countable-dimensional space (or even, when X is
a countable union of finite-dimensional compacta).

EXAMPLE 5.8. There are a metric linear space E and a linear subspace L
of E such that L is complete and X = E/L is Xg-dimensional (hence strongly
countable-dimensional) while the standard LSC-function F' = Fr: X = FE
defined by F([z]) = x + L has the following properties:

(1) F does not admit a continuous selection,
(2) for every continuous : X — (0, 1), there exists a continuous function

f: X — L such that d(f(z), F(x)) < e(z) for every z € X.

Proof. Dobrowolski and Kalton [14] proved that Cauty’s construction in
[9] can be used to construct an example of a complete separable metric linear
space E’ which is an AR, having a closed linear subspace L which is not an AR
(recall that the original Cauty space is o-compact). Let A be a countable
dense subset of E’, and put E = span(L U A). Then F is a dense linear
subspace of E’, whence E is an AR because E’ is (see §2). Then X = E/L
is an Ng-dimensional metric linear space and hence is strongly countable-
dimensional. Now if the standard LSC-function Fy,: X = E had a continuous
selection, then E would be homeomorphic to X x L (cf. [5, Corollary 7.1 on
p. 86]), which would violate L being a non-AR. This proves (1). For (2),
apply Proposition 5.5. =

Observe that the function F' in the proof of Example 5.8 is even contin-
uous.

6. Remarks and open questions. As announced in §5, we will state
here some open problems and make some further remarks that will put some
of our results in their proper perspectives.

(A) Convez-hereditary Absolute Retracts and (near-)selections. It is triv-
ial that the (finite-dimensional) selection property is hereditary with respect
to convex subsets. As a consequence, every convex subset of a metric linear
space with the finite-dimensional selection property is a “convex-hereditary
Absolute Retract”. This means that the finite-dimensional selection property
is strictly stronger than the AR-property in metric linear spaces. Simply con-
sider Cauty’s linear space F and its linear subspace L that we used in §5, and
apply Theorem 4.2. The near-selection property and the finite-dimensional
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near-selection property are not hereditary however, not even for closed linear
subspaces. To see this, again consider the Cauty spaces F and L and again
use the fact that FE is the linear span of a linearly independent compact set.
In such a space every convex compactum is finite-dimensional (Dobrowolski
and Mogilski [15, Example on p. 657]). But the near-selection property and
the finite-dimensional near-selection property are hereditary on dense con-
vex sets. The proof of this is similar to the standard proof that a dense linear
subspace of a metric linear AR is an AR (for a sketch of that proof, see §2).

The only known convex subsets of metric linear spaces that are convex-
hereditary Absolute Retracts are the ones that are locally convex or are
C-spaces (among them, the convex subsets of Rp-dimensional metric linear
spaces); see Remark 5.7. Since every convex set with the finite-dimensional
selection property is a convex-hereditary Absolute Retract, the following two
questions are quite natural.

QUESTION 6.1. Let E be a metric linear space. Are the following state-
ments about E equivalent:

(a) F is a convex-hereditary Absolute Retract.
(b) E has the finite-dimensional selection property.
(c) E has the selection property.

QUESTION 6.2. Is the space P, 0 < p < 1, a convex-hereditary Absolute
Retract?

It is an intriguing problem whether Theorem 4.1 can be extended to the
case where the LSC-function F' has no dimensional restrictions but instead
FE is Ng-dimensional.

QUESTION 6.3. Let F be an Ng-dimensional metric linear space. If F':
X = FE is an LSC-function with complete and convex values, does I’ admit
a continuous selection? If not, does E have the finite-dimensional selection
property?

We even do not know the answer if E is as simple as the space of all
eventually zero sequences in ¢P, where 0 < p < 1. Actually, we do not know
a single example of a nonlocally convex metric linear space F that has the
finite-dimensional selection property.

An interesting special case of Question 6.3 is the following:

QUESTION 6.4. Let E be an Ng-dimensional metric linear space. If X is
a countable union of zero-dimensional subspaces, i.e., if X is Ng-dimensional,
does every LSC F': X = F with finite-dimensional compact convex values
have a continuous selection? What if X is equal to 0 = {z € Q : (3N €
N)(Vn > N)(xz, =0)}?
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It follows from Uspenskij [33] (or Proposition 5.5) that a function F' such
as in Question 6.4 has e-near-selections for every € > 0. In fact, this even
holds for functions F' for which the sets F'(x) are (not necessarily compact)
star-shaped (see Remark 5.6).

(B) Nicely placed subspaces in metric linear AR’s.  'We showed in Theo-
rem 4.2 that a convex subset of a metric linear space is an AR if and only
if it has the finite-dimensional near-selection property. This prompts the
following central question.

QUESTION 6.5. Let E be a metric linear space. If E is an AR, does F
have the near-selection property? What if £ = /P and 0 < p < 17

In §3 we used Cauty’s space to get a linear space for which the conclusion
of the Michael Selection Theorem fails. A variation of this example will
be constructed in Example 6.6 below. Consider the natural LSC function
Fg: E/E" = E for a closed linear subspace E’ of a metric linear space
E € AR. Then if Fg admits a continuous selection it follows that both
E' and E/E' are AR’s (see Remark 5.4). If, however, Fg: has merely an
e-near-selection for every £ > 0 then F/FE’ is an AR, as stated in Bessaga
and Dobrowolski [4, p. 40|, while E/ may not be an AR (see Example 5.8).
Let us say that a closed linear subspace E’ of a metric linear space E is
nicely placed in E provided that Fpr has an e-near-selection for every € > 0.

EXAMPLE 6.6. There exists a metric linear space E homeomorphic to £2
and a closed linear subspace E’ of E which is not nicely placed in E (hence
the natural function Fg: E/E’ = E does not have an e-near-selection for
some ¢ > 0).

Proof. By a result of Terry [31], there is a so-called couniversal space for
separable metric linear spaces, that is, a separable complete metric linear
space Z such that for every separable complete metric linear space E there
is a closed linear subspace Z' of Z such that Z/Z’ and E are isomorphic.
Interestingly, Z is homeomorphic to ¢2. Applying this for the completion
L of the Cauty space L (see §5), we get by the just quoted observation of
Bessaga and Dobrowolski a closed linear subspace Z’ of Z such that Fy : L=
7Z/Z" = Z does not have an e-near-selection for some ¢ > 0. m

REMARK 6.7. Let E’ be a closed linear subspace of a metric linear space
E. If E is separable then E’ can be enlarged to a dense linear subspace E”
of E so that E’ is nicely placed in E”. By Proposition 5.5, any dense E” for
which E”/E’ is Xp-dimensional will do.

By applying Remark 6.7, the linear subspace Z’ of Z from the construc-
tion of Example 6.6 can be enlarged to a dense linear subspace Z” in which
Z' is nicely placed; yet, Z’ is not nicely placed in Z.
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For the reader’s convenience, we provide a simple proof of the Bessaga and
Dobrowolski observation, which we generalize to convex sets. For a convex
set C' in a metric linear space E, let X = k(C), where k: E — E/E’ is the
natural quotient map. Define F©: X — C by FY([z]) = (z + E')NC. Then
we have:

LEMMA 6.8. Assume that FC has an e-near-selection for every € > 0.
Then if C' is an AR, so is X.

Proof. Simply observe that x|C: C'— X admits e-right inverses for every
e > 0. Hence we can apply [22, Theorem 5.3| to conclude that X is an ANR
and, therefore, an AR by contractibility. =

For E = C, the assumption in Lemma 6.8 simply says that E’ is nicely
placed in E. It should be noted, however, that unlike Fp, the function F¢
may not be LSC, even in the case when C is a closed cone in a 3-dimensional
space E (see Bauschke and Borwein [3, Example 2.3]). So, constructing e-
near-selections for F¢ may be a very difficult task.

QUESTION 6.9. Are all closed linear subspaces E’ of /P, 0 < p < 1, nicely
placed in /P?

(C) Near-selections with stronger properties. Let Y be a convex subset
of a metric linear space F, and let F': X = Y be LSC with convex values.
We consider the following statements about F":

(I) For each € > 0 there is a continuous function f: X — Y such that

d(f(x),F(x)) < ¢ for every x € X.

(IT) For each continuous e: X — (0,1) there is a continuous function
f: X — Y such that d(f(x), F(x)) < &(z) for every z € X.

(III) For every open cover U of Y there exists a continuous function
f: X — Y such that for every x € X there exists an element
U € U such that f(z) € U and U N F(z) # 0.

(IV) For every continuous function é: Y — (0, 1) there is a continuous
function f: X — Y such that d(f(x), F(x)) < 6(f(x)) for every
z e X.

The reader can easily verify that (III)<(IV)=(I)<(II) (cf. Lemma 3.6).
This raises the interesting problem whether all four properties are equivalent
even if the values of F' are not only convex but also compact. This does not
seem to be trivial. Simply observe that (III) is “topological”, but (I) is not.
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