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ABSTRACT 

We construct a hereditarily disconnected, complete C-space whose square 

is strongly infinite-dimensional, and a totally disconnected C-space which 

is not countable-dimensional (this space is not complete). 

1. I n t r o d u c t i o n  

All our spaces will be separable and metrizable. Our terminology follows 

Engelking [3], Kuratowski [8] and van Mill [9]. A space X is a C - s p a c e  if 

for every sequence .A1, .A2, . . .  of open covers of X there are pairwise disjoint 

open families B1,/32,.. .  in X such that  Bi refines Ai for every i, and Ui~I/3i 

covers X.  The w e a k l y  i n f i n i t e - d i m e n s i o n a l  s p a c e s  are the ones that  sat- 

isfy the weaker condition that  these refinements/3i exist in case the covers Ai 

all consist of at most two elements (no examples distinguishing these proper- 

ties are known). Any strongly i~ffinite-dimensional space (i.e., a space which is 
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not weakly infinite-dimensional) has an infinite essential family - -  a sequence 

{(Ai, Bi) : i E N} of pairs of disjoint closed sets such that if Li is an arbi- 

t rary partition between Ai and Bi for every i, then Nicx)=l L i r  9. A space 

is c o u n t a b l e - d i m e n s i o n a l  if it is a countable union of zero-dimensional sets. 

Such spaces are C-spaces. 

The product of two C-spaces may be strongly infinite-dimensional; cf. [11], 

[12]. However, the constructions in the literature illustrating this phenomenon 

are based on transfinite induction, producing spaces that  are not absolutely 

Borel. One of the main results of this paper is the following: 

Example 1.1: There is a complete C-space whose square is strongly infinite- 

dimensional. 

The complete C-space we construct is also hereditarily disconnected and, not 

being countable-dimensional, provides a partial answer to a question asked in 

[5]. We did not succeed in producing a totally disconnected such space (which 

would answer the question completely). However, giving up all good descriptive 

properties, we obtained the following: 

Example 1.2: There is a totally disconnected C-space which is not countable- 

dimensional. 

The main construction in this paper is based on an approach developed in 

the paper [10] concerning "splintered spaces" (although this notion will not 

be explicitly mentioned here), combined with Bing spaces, and some standard 

methods producing uncountable-dimensional C-spaces. 

We collect in w some auxiliary results needed for our main construction, 

which will be presented in w The spaces in Examples 1 and 2 are described in 

w167 and 5, respectively. 

ACKNOWLEDGEMENT: We are indebted to the referee for comments which 

improved the exposition. 

2. A u x i l i a r y  r e su l t s  

In our constructions, we shall deal with mappings p between spaces E and F,  

such that  

(1) p: E --~ F is a perfect surjection, 

(2) F is complete and zero-dimensional. 

In this section we shall make several preliminary observations that  will be used 

later. 
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LEMMA 2.1: Let p: E -~ F be a continuous closed surjection, where F is zero- 

dimensional If  A is an Fa-subset of E such that p(A) = F, then there is a 

countable collection B of closed subsets of E such that 

(i) U B  = A, 
(ii) the collection {p(B) : B c B} is pairwise disjoint. 

~o A Proof.' Let us write A as Ui=l i, where  each Ai is closed in E .  Pu t  A0 = 0 

and fix i _> 0 for a moment .  T h e  sets p(Ao) , . . .  ,p(Ai+l) are closed in F .  Since 

F is zero-dimensional,  there  is a countable  pairwise disjoint family Ci of  closed 

subsets of F with U ci = p (Ai+I )  \ U~=o p(Aj).  Then  

B = { p - l ( C )  NAi+I  : C C Ci,i >_ 0} 

is clearly as required. | 

LEMMA 2.2: Let p: E -* F be a continuous closed surjection for which there 

exists a countable collection A of closed subsets of E such that the collection 

{p(A) : A E A} is pairwise disjoint and covers F. I f  S(A)  is a G~-subset of A, 

for every A E .4, then UAeA S(A) is a G~-subset orE.  

Proof: For every A e ,4 let B(A) = p- l (p(A)) .  T h e n  B(A)  is closed since p is 

closed and continuous. In  addition, B(A)  \ S(A)  is an Fo-subse t  of E.  Hence 

E \  U S(A) = U B(A)  \ S(A)  
AE.A A E A  

is an Fo-subset  of E .  | 

Along wi th  the  perfect  surjection (1), we shall consider the  associated 

monotone-l ight  factor izat ion 

(3) p = u o v ,  v: E -* F* ,  u: F* -~ F ,  

where 

(4) v is monotone  and u is light; 

cf. [6, 3-37]. Let  us recall t ha t  bo th  maps  u and v are perfect ,  v has connected 

fibers and the fibers of u are zero-dimensional.  In  par t icular ,  since d im F = 0, 

(5) d i m E *  = 0. 

(This can be verified by a s t ra ight forward direct computa t ion .  Alternat ively,  

apply  [9, Theo rem 3.6.10].) 
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LEMMA 2.3: Let p: E --* F be a perfect surjection, where F is zero-dimensional. 

Then for every s > 0 the set A(r of  all points x E E,  such that the component 

of  x in E has diameter at  least e, is closed in E.  

Proof: Considering the factorization (3), (4), we have A(E) = v - I ( L ) ,  where L 

is the set of points in F* with fibers of diameter at least ~. Since L is closed, so 

is A(e). | 

Remark  2.4: Let us recall tha t  a function f :  X --* Y is of the first Baire class 

if and only if for every open subset U of Y we have tha t  f - 1  (U) is an F~-subset 

of X; cf. [7, p. 192]. 

Let p: E -~ F be a perfect surjection. Then by a selection theorem due to 

Kuratowski and Ryll-Nardzewski [8, w IX], there is a first Baire class function 

f :  F - ~  E with po  f ( t )  = t, for t C F.  

Let us note that  S = f ( F )  is a G~-set intersecting each fiber of p in precisely 

one point; cf. [2, p. 144, Exercise 9a]. Indeed, if B 1 , B 2 , . . .  are the closures of 

the elements of a countable base in E,  then 

(3<3 

E \ s = np-l(F \ 
i = l  

The following result, which is an essential element in our main construction, 

is based on a reasoning in the proof of [10, Lemma 3.5]. 

PROPOSITION 2.5: Let p: E --* F be a continuous map onto a complete zero- 

dimensional space F.  Let f :  F -* E be a first Baire class function with po f ( t ) = 

t for every t E F,  and let S = f ( F ) .  Then for each e > 0 there is a countable 

collection S of  closed subsets in E such that 

(i) mesh(S) _< e, 

(ii) p(A)  n p(B)  = ~ for all distinct A, B e S ,  

(iii) S c_ [.J S .  

Proof: Fix r > 0. Let A be a nonempty closed subset of F.  We claim that  

there is a nonempty relatively clopen subset V of A such that  diam f ( V )  < E. 

Indeed, since f is of the first Baire class, there is a point x C A at which f [A is 

continuous; cf. [8, w Given a neighborhood g of f ( x )  in E of diameter 

less than  ~, there is a clopen neighborhood V of x in F such that  f ( V N A )  C_ U. 

Then V is clearly as required. 

Using this, we construct by transfinite induction on a < Wl closed sets W~ in 

F such that  
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(6) if F \ Uz < ,  w~ ~ O, then Wa is a nonempty relatively clopen subset of 

F \ 
(7) d i amf (Wa)  < e. 

Observe that  by (6) we have that  Uz<a W~ is open in F for every a < wl. So 

there is an ordinal ~ < wl such that  F = Ua<r wa.  Now for every a < ~, let Aa 
be the closure of f(W,~) in S. Then A~ is contained in p- l (W~);  therefore the 

collection 8 = {Aa : a < ~} is pairwise disjoint and hence as required. I 

PROPOSITION 2.6: Let p: E --* F, f: F --~ E and S = f (F )  be as in 

Proposition 2.5 and, in addition, let p be perfect. Then the union C(S) of 

the continua in E that intersect S is a G~-subset orE. 

Proof: Let us begin with the observation that  for any closed A in E, the union 

A* of the continua in E that  intersect A is closed. This follows readily from the 

monotone-light factorization (3), (4), as A* = v- l (v(A)) .  

Now, for every n, let Sn be the collection described in Proposition 2.5 for 

e = l /n ,  and let Cn(S) be the union of the continua in E that  intersect USn.  

Then C~(S) is the union of the sets A* with A C Sn. Using the fact that F is 

zero-dimensional, we get p(A*) = p(A) for every A E Sn. Since the collection 

{p(A) : A E S~} is a partition of F,  it follows that  

E \ C n ( S )  = U (P-I(P(A)) \ A*). 
A E ,S,~ 

So we are done once we establish the following: 

(,) c(s) = N 
n = l  

Indeed, take an arbitrary x E Nn~ On(S), and let t = p(x). Then for each n 

there are Sn C ,Sn and a continuum Cn in E such that  x E Ca and Ca M Sn ~ ~. 

Since Ca C p - i ( t )  it follows that  Sn Vlp-l( t)  r 0; hence t E p(Sn). The 

collection 8n is pairwise disjoint and hence f ( t )  C Sn. So we conclude that  

o(f( t) ,Cn) < 1In. A subsequence of the sequence Ca ,C2, . . .  converges to a 

continuum C C_ p- l ( t )  which contains both x and f ( t ) .  Hence x c C(S). The 

reverse inclusion being trivial, this proves (*). I 

Another important element of our main construction is described in the 

following: 
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PROPOSITION 2.7: Let p: E --* F, f: F --* E and S = f ( F )  be as in 

Proposition 2.6. In addition, let W be a G~-subset of E with W M p- l ( t )  

finite for every t E F. Then there is G~-subset T of E such that: 

(i) T Mp-l( t )  is a singleton for every t E F,  say T A p - l ( t )  = {~(t)}, 

(ii) for all t E T, there is a (possibly degenerate) subcontinuum of p - l ( t )  that 

contains both f ( t )  and ~(t), 

(iii) i f  the component o f f ( t )  in E is nontrivial, then ~(t) ~ S U W,  

(iv) T M S is zero-dimensional. 

Proof: Let us consider the monotone-light factorization (3), (4), and put D -- 

v(S). Then v - l (D)  -- C(S) is the set introduced in Proposition 2.6. Hence the 

restriction ~r of v to C(S) is a perfect monotone map onto the zero-dimensional 

space D. Clearly, ~r(S) -- D, and for each s E S, the component of E containing 

the point s coincides with the fiber 7r-l(zr(s)). In addition, D is a G~-subset 

of F*, since E \ C(S) is an Pc-set by Proposition 2.6 and v takes closed sets to 

closed sets. 

Let 
Do = {d E D : 7r-l(d) is a singleton}, 

and let 
L = I r - l (D \ Do) \ (S U W). 

Observe that  Do is a G~-subset of D, zr being perfect. So L is an F~-subset of 

C(S), and since zr - l (d)  for d E D \ D0 is a nontrivial continuum, zr(L) = D \ D0. 
Since D is zero-dimensional, there are by Lemma 2.1 closed sets L1, L2, . . .  in 

zr- l(D \ Do) such that  L = Ui~l Li, and the sets 

Di -- lr(Li), i - -  1 ,2 , . . .  

are pairwise disjoint (and cover n \ Do since r ( i )  = n \ Do). The map 

~rrLi: Li --* Di is perfect; therefore for every i we may choose a G~-subset 

Ti of Li intersecting each fiber of ~r rLi in exactly one point; cf. Remark 2.4. It 

follows by Lemma 2.2 that  

c o  

7r - ' ( n  \ Do) \ U Ti 
i ~ l  

is an Pc-subset of zr-l(D \ Do) and hence of C(S). As a consequence, 

o o  

T = Tr-l(Do) U U Ti 
i=1 
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is a G~-subset of C(S). Then T satisfies (i) - (iii). To check (iv), let us notice 

that  T A S  = 7r-l(Do) and since the fibers r r - l (d) ,  d E Do, are singletons, T N S  

is homeomorphic to Do. II 

We shall close this section with a description of a mapping which will be the 

starting point of our main construction, given in the next section. 

PROPOSITION 2.8: There are a continuous smjection p: M --* K from a compact 

space onto the Cantor set K and a first Baire class function f:  K --* M such 

that 

(i) p o  f ( t )  = t for e w r y  t e K, 

(ii) f (K)  is strongly infinite-dimensional, 

(iii) M \ f (K)  is countable-dimensional. 

In addition, M contains disjoint dosed sets A and B such that all partitions in 

M between A and B meet  f (K)  in a strongly infinite-dimensional set. 

Proo~ By Rubin, Schori and Walsh [13], there are a compact space X and 

a continuous surjection g: X --~ K such that  for every subset S _C X with 

g(S) = K we have that  S is strongly infinite-dimensional. By Remark 2.4, there 

is a first Baire class function f :  K --~ X such that  g o f ( t )  = t for every t ~ K and 

S = f (K)  is a G~-subset of X.  Let {(Ai, B i ) :  i E N} be an essential sequence 

of pairwise disjoint closed subsets of S. Let ~: S --* I[ be a continuous function 

such that  ~(A1) = 0 and ~(B1) -- 1. Since the space S is completely metrizable, 

it has a compactification 7S whose remainder is countable-dimensional; cf. [9, 

Theorem 3.13.7]. 

Now consider the product Y = 7S x K x ]I, and the function ~: S --* Y 

defined by ~(s) = (s, g(s), ~o(s)). Then ~ is evidently an embedding. Observe 

that  ~(S) is a closed subspace of S x K x lk As a consequence, the compact 

space M = ~(S) has the property that  M \ ~(S) is contained in ('yS \ S) x K x 

and hence is countable-dimensional. Now let p: M -+ K be the restriction of 

the projection Y -+ K to M,  and f = ~ o f .  Observe tha t  ~(A1) and ~(B1) have 

disjoint closures in M. So if L is an arbi trary parti t ion between A = ~(A1) and 

B = ~(B1) in M,  then L N ~ ( S )  is a parti t ion between ~(A1) and ~(B1) in ~(S), 

and hence is strongly infinite-dimensional by [9, Theorem 3.1.9]. So M , p  and f 

are as required. II 

3. T h e  c o n s t r u c t i o n  

Throughout this section, p: M -+ K, f :  K -+ M and tile pair of closed sets A, B 

in M are as in Proposition 2.8. 
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By a well-known result of Bing [1] (cf., [9, Theorem 3.8.1]), one can choose a 

partition N between A and B in M all of whose subcontinua are hereditarily 

indecomposable, i.e., whenever C, D are continua in N with nonempty intersec- 

tion, either C C_ D or D c_ C. The set F = f - l ( N )  is a G~-subset of ]K, f being 

of the first Baire class. Observe that  f ( F )  = N M f(lK). Put 

E = N N p - l ( f - l ( i ) )  = N Mp-I(F)  

and, to simplify the notation, we shall denote by 

p: E - *  F, f : F ~ E 

the restrictions of p and f to E and F,  respectively. Observe that  p: E -~ F 

is perfect and surjective. Moreover, S = f ( F )  is strongly infinite-dimensional, 

E \ S is countable-dimensional, and each continuum in E is hereditarily inde- 

composable. 
By induction, we will construct G~-subsets Sj and Hj in E, for j E N, with 

the following properties: 
(1) Sj intersects each fiber of p in exactly one point, 

(2) for t E F the points in Sj Np -1 (t) and S n p  -1 (t) are joined by a continuum 

in p - l ( t )  of diameter at most 1/j,  
(3) Sj n S is zero-dimensional, 

(4) Si M Sj C_ S for i C j ,  
O O  

(5) Ui>j si  c_ Hj and N j=l Hj = S. 
We pick for every j E N a collection Sj of closed subsets of E with the properties 

in Proposition 2.5 for ~ = 1/j.  We may assume that  every element of Sj+I is 

contained in an element of Sj. 
Put  So = S, and assume that  the sets So , . . . ,  Sj-1 are defined for certain 

j C N. Consider the collection Sj and fix an element A �9 Sj. Applying 

Proposition 2.7 to the restrictions prA: A --* p(A), fFp(A): p(A) -~ A, and 
W = (Ui<j si) n A, we get a G~-set TA C_ A intersecting each fiber of prA in 

exactly one point, such that  

(6) for all t �9 p(A), there is a (possibly degenerate) subcontinuum ofp -1 (t)r~A 

that  contains the singleton sets S M p-1 (t) and TA r~ p-~ (t), 
(7) if for t �9 p(A) the component of f ( t )  in p - l ( t )  M A is nontrivial, then the 

unique point contained in T A n  p-1 (t) does not belong to S U W, 

(8) T A n  S is zero-dimensional. 
Since the sets p(A), A �9 Sj, are closed and pairwise disjoint, and mesh(,~j) < 

l / j ,  

Sj = U{TA:  A �9 Sj} 
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is a Gs-subset of E by Lemma 2.2, and has the properties (1) - (4). To complete 

the construction, we let 

-5 --U 5 
Then again by Lemma 2.2, it follows that  H 5 is a G~-subset of E.  Note that  

O 0  
Ui_>5 si c_ Hi,  since Si refines 8 5 if j _< i. In addition, we claim that  Aj=I H 5 = 

OO OO 
Aj=I U~J ~- S. To see this, first observe that  trivially S _C ~/=1 US/ �9  Con- 

(3O 
versely, pick an arbitrary x C Aj=I U'~5, and put x I = f(p(x)). By (ii) of 

Proposition 2.5, every element of S 5 that  contains x also contains x t. Since 

mesh(Sj) _< 1/j for every j ,  this implies that  x = x', i.e., x E S. 

We shall justify Examples 1 and 2 by considering the spaces 

(8) Xz~ = s u U { S j :  j �9 A}, 

where /k  is an infinite set of natural numbers. 

THEOREM 3.1: XA is a complete C-space. 

Proof." Since, by (5), 

OO 

xA  -- r l  u u { s , :  i A n  {1,2, . . .  , j  - 1}}), 
j = l  

the space Xzx is a G~-subset of E,  and so it is completely metrizable. 

Let us check that Xz~ is a C-space. We shall first check that  each L C S that  

is closed in Xz~ is countable-dimensional. Striving for a contradiction, assume 

that there is such L that is not countable-dimensional, and put 

K : -L rl p-1  (p(L)),  

where the closure is taken in E. Since the restriction pl = prK: K --* p(K) is 

perfect and p(K) is zero-dimensional, the set of all points in L that  belong to 

a nontrivial continuum in K is not countable-dimensional. This follows easily 

from the fact that  if x E K is such that the component of x in the (compact) 

fiber (ff)-l(p(x)) is trivial, then K is zero-dimensional at x. Using this and 

(2) and (3), one finds a point x E L and nontrivial continua C, C1, C2, . . . ,  all 

containing x, such that  C C_ K,  diam Cj < 1/j and (Cj M Sj) \ S # 0 for every 

j .  Pick j C /k  with 1/j < diam C. Then, the continua in E being hereditarily 

indecomposable, we must have C i c_ C since Cj and C meet. So there is a point 

y E L V) (Xzx \ L) which contradicts the fact that  L is closed in Xzx. 

Now, let .A1,A2,.. .  be a sequence of open covers of XA. First write Xzx \ S 

as [.joOn=l Zn, where each Zn is zero-dimensional. By following the hint in [4, 



218 J. VAN MILL AND R. POL Isr. J. Math. 

Problem 6.3.D], there is for every n a pairwise disjoint family of open subsets 

X Bn of XA covering Zn and refining .A2n. Then L = A \ U n = l  [J Bn is contained 

in S, closed in XA, and hence by the above is countable-dimensional. So by the 

same argument, there is for every n a pairwise disjoint family of open subsets 

B' n of XA refining A2n+I such that  L C (J~-I [J B'n" | 

4. C o n s t r u c t i o n  o f  E x a m p l e  1 

Let A0 and/~1 be the sets of even and odd natural numbers, respectively, and 

let 

X = Xz~o G Xzxl 

be the topological sum of the spaces Xz~o and XA1 defined in (8),w 

Then X is a complete C-space. Since by (4) and (8),w Xz~o N XA~ = S, the 

intersection of Xzxo • Xz~I with the diagonal of X • X can be identified with 

S. Hence S embeds in the square X • X as a closed subspace, and since S is 

strongly infinite-dimensional, so is X x X. 

5. C o n s t r u c t i o n  o f  E x a m p l e  2 

Let us consider the space 
O O  

XN = S U U Si. 
i = l  

It will be convenient to denote S by So. By the Cantor-Bendixson Theorem ([3, 

Problem 1.7.11]), we may assume without loss of generality that  So is perfect. 

By a simple transfinite induction, we can partition So into a family {Bi : i > 0} 

of Bernstein sets, i.e., each Bi intersects every Cantor set in So. Since S is 

uncountable-dimensional, we may assume without loss of generality that  B0 is 

uncountable-dimensionM as well. Observe that  p(Si)  = F for every i > 0. So 

we may pick for every i > 1 a set T~ c Si such that  p(T~) -- p(Bi),  and we put 

OO 

Y = Bo U U T~. 
i=1 

Observe that  plY:  Y ---* F is a continuous bijection; hence Y is totally 

disconnected. 

As in the proof of Theorem 3.1, we will prove that  if L C_ B0 is closed in Y, 

then L is countable-dimensional. This will suffice since Y contains B0, which is 

not countable-dimensional. 
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Striving for a contradiction, assume that  there is such an L that  is not 

countable-dimensional. Let L denote the closure of L in E.  Since the restriction 

p [L: n --* p(L) is perfect and p(L) is zero-dimensional, the set A of all points in 

that  do not belong to a nontrivial continuum in L is a zero-dimensional G~- 

subset of L. Indeed, let us consider the monotone-light factorization p [L -- u o v 

described in (3), (4) in w with E = L, F = p(L). By Lemma 2.3, A is a G~-set 

in L. Since u is monotone, u-l(u(a)) = {a} for a E A, and hence u embeds A 

into a zero-dimensional space; cf. (5) in w 

Hence L \ (A U [.Jj~l Sj) is uncountable-dimensional, by (3) in w For every 

x E L let Cx be the component of x in L. Observe that  Cx is a continuum in 

p-lp(x), since p [L: L --~ p(L) is perfect and p(L) is zero-dimensional. For every 
O O  O O  x E L \ (A U [.Jj=l Sj) we have that  diamC~ > 0. Hence, L \ (A U [.Jj=l Sj) 

being uncountable, there are an uncountable subset Z of L \ (A U [Jj~--1 Si) and 

an r > 0 such that  for every x E Z, d iamCz > ~. 

By a e m m a  2.3, also for each x E Z,  diam Cx > c. Since ( Z n S ) \ ( A u [ J ~ =  1 Si) 
is a Borel set containing Z, and hence uncountable, it contains a Cantor set T. 

In effect, we get a Cantor set T C L A  S with d iamCx > ~ for x E T. 

Pick j so that  1/j < r The Cantor set T intersects Bj,  and let x belong to 

this intersection. Since x �9 Bj, there is y �9 Tj C Sj with p(y) = p(x). By (2) 

inw there is a continuum C in p-lp(x) joining x and y with d i a m C  < 1/j. The 

continua in E being hereditarily indecomposable, we must have C _C Cx, since 

C and Cx meet. So y �9 L N (Y \ L), which contradicts the fact that  L is closed 

in Y. 
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