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HOMOGENEOUS SPACES AND TRANSITIVE ACTIONS
BY ANALYTIC GROUPS

JAN VAN MILL

Abstract

If X is homogeneous, analytic, and strongly locally homogeneous, then there is an analytic group acting
transitively on X. There is an example of an analytic space on which some separable metrizable group acts
transitively, but on which no analytic group acts transitively.

1. Introduction

Note: all spaces under discussion are separable and metrizable. Let X be a homogeneous
space. It was asked in [8] whether there is a topological group G admitting a transitive action
on X. This question was recently answered in the negative in [9]. For X locally compact,
the question has an affirmative answer. If αX = X ∪ {∞} denotes its Alexandrov one-point
compactification, then for G one can take the subgroup of the homeomorphism group of αX
consisting of those homeomorphisms that fix ∞ (the topology is the compact-open topology).

A space X is strongly locally homogeneous (abbreviated: SLH) if it has an open base B
such that for all B ∈ B and x, y ∈ B there is a homeomorphism f : X → X which is supported
on B (that is, f is the identity outside B) and moves x to y. This notion is due to Ford [3].
Most of the well-known homogeneous spaces are SLH. An SLH-space does not need to be
either connected or homogeneous: the topological sum of the 1-sphere and the 2-sphere is
an easy counterexample. A connected SLH-space, however, is homogeneous. The pseudo-arc
is an example of a homogeneous continuum that is not SLH. It was shown in [8] that if X
is homogeneous and SLH, then there is a topological group G admitting a transitive (and
micro-transitive [1]) action on X.

A space is analytic if it is a continuous image of the space of irrational numbers. It is known
that every Polish space is analytic. The aim of this paper is, among other things, to show
that the results in [8] can be used quite easily to show that if X is homogeneous, SLH, and
Borel/analytic, then there is a Borel/analytic group acting transitively on X. Our main result
is an example of an analytic space on which some (separable metrizable) group acts transitively,
but on which no analytic group acts transitively.

2. Preliminaries

The collection of analytic subsets of a space X is denoted by Σ1
1(X). A space is X coanalytic

if there is a Polish space X̂ which contains X such that X̂ \ X ∈ Σ1
1(X). The collection of

coanalytic subsets of a space X is denoted by Π1
1(X). It is well known, and easy to prove, that

both Σ1
1(X) and Π1

1(X) are closed under countable unions and countable intersections. For
details about these concepts, see, for example, [5].

If X is a space, then H(X) denotes its group of homeomorphisms. The identity function on
a set X is denoted by 1X . If A ⊆ X, then H(X|A) = {h ∈ H(X) : h�A = 1A}. If X is compact,
then the compact-open topology on H(X) is Polish and compatible with its group structure.
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It is easy to see that the compact-open topology on H(X) coincides with the topology of
uniform convergence on H(X).

An action α of a topological group G on a space X is a continuous function

(g, x) �→ gx : G × X
α−→ X

such that ex = x for every x ∈ X and g(hx) = (gh)x for g, h ∈ G and x ∈ X (here, e denotes
the neutral element of G). It is easily seen that for each g ∈ G the function x �→ gx is a
homeomorphism of X whose inverse is the function x �→ g−1x. The action of G on X is
transitive if for all x, y ∈ X there is an element g ∈ G such that gx = y (and hence X is
homogeneous).

Lemma 2.1. Let G be a topological group, acting on a space X by the action α. If Y is a
space containing X, and K is compact in X, then α−1(K) is closed in G × Y.

Proof. Observe that

α−1(K) = {(g, g−1x) : g ∈ G, x ∈ K}.
Now let (gn, g−1

n xn)n be a sequence in α−1(K) converging to some element (g, y) ∈ G × Y .
Since K is compact, we may assume without loss of generality that xn → x for some x ∈ K.
Since g−1

n → g−1, we get g−1
n xn → g−1x; that is, y = g−1x, as required.

Let (X, �) be a metric space. For every x ∈ X and ε > 0, we put

Bε(x) = {y ∈ X : �(x, y) < ε}.
A zero-dimensional space X is strongly homogeneous if all of its nonempty clopen subsets are

homeomorphic. It is not difficult to see that every strongly homogeneous space is homogeneous.

Lemma 2.2. Let X be a strongly homogeneous space containing more than one point.
Then X admits a zero-dimensional compactification γX having the following property: for all
nonempty clopen subsets B and B′ of γX, there exists a homeomorphism f : B → B′ such that
f(B ∩ X) = B′ ∩ X.

Proof. Since X is strongly homogeneous, there are a countable subalgebra B of the Boolean
algebra of clopen subsets of X and a countable subgroup F of H(X) such that B is a base
and for all nonempty B,B′ ∈ B with X \ B 	= ∅ 	= X \ B′ there is an element f ∈ F such
that f(B) = B′. Let γX be the Stone space of B. Observe that every f ∈ F extends to a
homeomorphism f̄ : γX → γX. By applying the fact that X has no isolated points, it now
easily follows that γX is as required.

If X is a space, then K(X) denotes the space of nonempty compact subsets of X with
the Vietoris topology. The standard example of a coanalytic space that is not analytic is
K(Q), where Q denotes the space of rational numbers. This is due to Hurewicz [4] (see also [5,
Exercise 33.5]). It was shown by Michalewski [6, Theorem 7] that K(Q) is strongly homogeneous
(and hence homogeneous). By Lemma 2.2, we may consequently think of K(Q) as a dense subset
X of the Cantor set C, such that for all nonempty clopen subsets B and B′ of C, there is a
homeomorphism f : B → B′ such that f(B ∩ X) = B′ ∩ X.

Throughout the paper, N stands for the set of all positive integers. Let X and Y be spaces,
and let f : X → Y be continuous. Inverse images of one-point sets under f are called fibers of
f . We say that f is monotone if all fibers f−1(y) are connected.
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Let X be a space, and let A and B be two disjoint closed subsets of X. A partition between
A and B is a closed subset S ⊆ X such that X \ S can be written as the disjoint union of open
sets U and V with A ⊆ U and B ⊆ V .

3. Positive results

We will now sketch the proofs of our positive results. Since they follow rather easily from
the results in [8], we will be brief.

We adopt the terminology in [8, Corollary 3.2]. Let X be a space. For f, g ∈ H(X), we put

S(f, g) = {x ∈ X : f(x) = g(x)}.
Then S(f, g) is evidently a closed subset of X.

Proposition 3.1. Let X be homogeneous and SLH. Then there are a compactification
γX of X and a subset A of H(γX|X) such that

(i) the ‘natural action’ of A on X is transitive;
(ii) A is a continuous image of a closed subspace of N∞ ×H(γX) × X × X.

Proof. Let γX, G and W be as in [8, Corollary 3.2]. If X is finite, then there is nothing to
prove, so we assume without loss of generality that X is infinite. This implies that G is infinite
as well. We endow G with the discrete topology, and put

Z = {(gi)i, (hi)i, f, x, y) ∈ G∞ × G∞ ×H(γX) × X2 :

(∀ i ∈ N) (γX \ B1/i(x) ⊆ S(gi, f) and γX \ B1/i(y) ⊆ S(hi, f
−1)}.

It is left as an exercise to the reader to prove that Z is closed in

G∞ × G∞ ×H(γX) × X2 ≈ N∞ ×H(γX) × X2.

Claim 1. If ((gi)i, (hi)i, f, x, y) ∈ Z, then f ∈ H(γX|X).

Take an arbitrary p ∈ γX \ X. There is an i such that p 	∈ B1/i(x). This means that
p ∈ S(gi, f) ; that is, f(p) = gi(p) ∈ γX \ X. It follows similarly that f−1(p) ∈ γX \ X.

Take arbitrary x, y ∈ X. By applying [8, Lemma 3.4], we see that there are a sequence (gi)i

in G and a decreasing neighborhood base (Ui)i of x in γX such that
(i) the infinite left-product f = limi→∞ gi ◦ . . . ◦ g1 is a homeomorphism of γX such that

f(x) = y;
(ii) f(X) = X;
(iii) if p 	∈ Ui, then f(p) = gi ◦ . . . ◦ g1(p).
For every i, let αi = gi ◦ . . . ◦ g1, and βi = g−1

1 ◦ . . . ◦ g−1
i .

Claim 2. There are functions ξ, η : N → N such that ((αξ(n))n, (βη(n))n, f, x, y) ∈ Z.

Pick an arbitrary n ∈ N. There is an i ∈ N such that Ui ⊆ B1/n(x); hence by (3),

γX \ B1/n(x) ⊆ γX \ Ui ⊆ S(αi, f).

So put ξ(n) = i. This defines the function ξ, and η can be found in a similar way.
Let A be the image of Z under the projection G∞ × G∞ ×H(γX) × X2 → H(γX). Then by

Claims 1 and 2, A is as required.
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If G is a topological group and A ∈ Σ1
1(G), then the subgroup Ã of G generated by A belongs

to Σ1
1(G) as well. This is clear since Ã is the union of countably many continuous images of

finite powers of A, and Σ1
1(G) is closed under countable unions.

Theorem 3.2. Let X be homogeneous and SLH . If X is absolutely Borel/analytic, then
there is an absolutely Borel/analytic group G that acts transitively on X.

Proof. Let γX and A be as in Proposition 3.1 for X. Since A is analytic, so is the subgroup
A0 of H(γX|X) generated by A. Observe that A0 acts transitively on X since it contains A. So
we are done if the group that we are after must be analytic. For the remaining part of the proof,
assume that X is absolutely Borel. It is clear from the definition that H(γX|X) ∈ Π1

1(H(γX));
hence by the Lusin separation theorem [5, Theorem 14.7] there is a Borel set A1 in H(γX|X)
that contains A0. The subgroup A′

1 of H(γX|X) generated by A1 is analytic, and is contained
in H(γX|X). So by another application of the Lusin separation theorem there is a Borel subset
A2 of H(γX|X) containing A′

1, and so on. At the end of this process, H =
⋃

n<ω An is a Borel
subgroup of H(γX|X). (A similar trick is used in the proof of [2, Theorem 2.2.7].)

Since a zero-dimensional homogeneous space is evidently SLH, we get the following corollary.

Corollary 3.3. Let X be a homogeneous zero-dimensional absolute Borel set. Then there
is a (zero-dimensional) Borel group G that admits a transitive action on X.

(It is not completely obvious that the group G can be chosen to be zero-dimensional. However,
it is easily seen that the compactification γX in [8, Section 3] can be chosen to be zero-
dimensional, provided that X is. Then the group that we get from it is zero-dimensional. The
details of checking this are left to the reader.)

Remark 3.4. Let X be a homogeneous coanalytic SLH-space. We do not know whether
there is a coanalytic group which admits a transitive action on X.

Remark 3.5. Let X be a homogeneous Polish SLH-space. The question naturally arises
as to whether there is a Polish group acting transitively on X. This is indeed the case; see [9].
The group that we get from [8] is not Polish, but a suitable modification of it turns out to
be Polishable; that is, it has a stronger Polish group topology (see, for example, [10] for more
information on such groups).

4. Negative results

We will now construct an analytic space on which some topological group acts transitively,
but on which no analytic group acts transitively.

A space X is countable dense homogeneous if for all countable dense subsets D and E in X
there is a homeomorphism h : X → X with h(D) = E. By a standard back-and-forth technique,
it is easy to show that a Polish SLH-space is countable dense homogeneous. For details, see, for
example, [7, Theorem 1.6.9]. By noting that a connected countable dense homogeneous space
is homogeneous [7, Corollary 1.6.8], it is easy to verify that the same proof yields the following
stronger result.

Lemma 4.1. Let X be connected, Polish and SLH. If D and E are disjoint countable dense
subsets of X, then for all x, y ∈ X \ (D ∪ E) there is a homeomorphism f : X → X such that
f(D) = D, f(E) = E, and f(x) = y.
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Let S denote the 2-sphere S2. It is clear that S is SLH, and has the property that a nonempty
connected open subset remains connected after the removal of an arbitrary countable set.

Proposition 4.2. There are disjoint countable dense subsets D and E of S, and elements
f, fn ∈ H(S), n ∈ N, such that

(i) for every n ∈ N, fn(D) = D, fn(E) = E;
(ii) f(D) = D ∪ E;
(iii) limn→∞ fn = f.

Proof. To begin with, we define similar sets and homeomorphisms in R. To this end, put

D′ = Nπ + Q, E′ = Q.

Let (dn)n be a sequence of rational numbers converging to π. Define f ′, f ′
n ∈ H(R), n ∈ N, by

f ′
n(x) = x − dn, f ′(x) = x − π.

We extend these homeomorphisms over the two-point compactification [∞,∞] of R in the
trivial way. Observe that f ′

n(±∞) = ±∞, n ∈ N, and f ′(±∞) = ±∞. Consider the square
D = [−∞,+∞]2, and let

D = D′ × D′, E = E′ × E′.

Finally, define f, fn ∈ H(D), n ∈ N, by

f(x) =
(
f ′(x1), f ′(x2)

)
, fn(x) =

(
f ′

n(x1), f ′
n(x2)

)
.

An easy check shows that D, E, f and (fn)n are as required, except for the fact that they are
subsets or, respectively, homeomorphisms of D and not of S. But this can easily be fixed by
collapsing the boundary of D to a single point.

Theorem 4.3. There is an analytic space on which some topological group acts
transitively, but on which no analytic group acts transitively.

Proof. Let X ∈ Π1
1(C) \ Σ1

1(C) be such that for all nonempty clopen subsets B and B′ of
C there exists a homeomorphism h : B → B′ such that h(B ∩ X) = B′ ∩ X; see Section 2. In
addition, let D, E, (fn)n and f be as in Proposition 4.2. Put Z = C × S, and

Y = Z \ ((C × D) ∪ (X × E)).

Since Σ1
1(Z) is closed under countable intersections, we have Y ∈ Σ1

1(Z). It is clear that
Y 	∈ Π1

1(Z), since Z \ Y contains a closed copy of X. We claim that Y is as required.
For every x ∈ C and nonempty open connected set V in S, put SV (x) = ({x} × V ) ∩ Y .

Observe that SV (x) is connected, being homeomorphic to V minus a countable (dense) set.
Let U ⊆ C be clopen and nonempty. In addition, let V ⊆ S be nonempty open and connected.

Then

πU,V : (U × V ) ∩ Y → U

denotes the restriction to (U × V ) ∩ Y of the projection U × V → U .

Claim 1. πU,V is open, surjective and monotone.

This is clear, since π−1
U,V (x) = SV (x) is a dense connected subset of {x} × V for every x ∈ U .

Claim 2. If x ∈ C \ X and y ∈ X, then there is a homeomorphism g ∈ H(Z|Y ) such that
g(SS(x)) = SS(y).
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Partition C \ {x} into nonempty clopen sets {Rn : n ∈ N}. Similarly, partition C \ {y} into
nonempty clopen sets {Sn : n ∈ N}. We assume that for all n 	= m we have Rn 	= Rm and
Sn 	= Sm. For every n, let ξn : Rn → Sn be a homeomorphism such that ξn(Rn ∩ X) = Sn ∩ X.
Now define g : Z → Z by

g(p, q) =

{
(ξn(p), fn(q)) (p ∈ Rn, n ∈ N),

(y, f(q)) (p = x).

An easy check shows that g is as required.

Claim 3. If (a, b), (c, d) ∈ Y, then there is a homeomorphism g ∈ H(Z|Y ) such that
g(a, b) = (c, d).

By Claim 2, it suffices to consider the case when a = c ∈ X. By Lemma 4.1 there is a
homeomorphism η : S → S such that η(D) = D, η(E) = E, and η(b) = d. Now define g : Z → Z
by

g(x, y) = (x, η(y)).

Then g is clearly as required.
So we conclude that H(Z|Y ) acts transitively on Y . We will now show that such a group

cannot be chosen to be analytic. Striving for a contradiction, assume that G is an analytic
group acting transitively on Y by the action α : G × Y → Y .

Let z ∈ Z and g ∈ G be arbitrary. If U is a neighborhood of (g, z) in G × Z, then U intersects
G × Y since Y is dense in Z. This implies that the set

Θg,z =
⋂{α(U) : U is a neighborhood of (g, z) in G × Z}

is nonempty by compactness (here, ‘closure’ means closure in Z). We will prove that Θg,z is in
fact a singleton. By the continuity of α, this is certainly the case if z ∈ Y , for then α(g, z) = gz
is the unique element in Θg,z. So we assume that z ∈ Z \ Y and, striving for a contradiction,
we assume that Θg,z contains at least two distinct points, say z0 and z1.

Since Z \ Y is zero-dimensional, being the union of countably many closed zero-dimensional
subspaces [7, Theorem 3.2.8], there is a partition K in Z between {z0} and {z1} such that
K ⊆ Y ; see [7, Corollary 3.1.6]. Write Z \ K as L ∪ M , where L and M are disjoint open
subsets such that z0 ∈ L and z1 ∈ M .

Claim 4. α−1(L) ∩ α−1(M) ⊆ α−1(K) (here, ‘closure’ means closure in G × Z).

To prove this, assume that there is an element

(h, (p, q)) ∈ α−1(L) ∩ α−1(M) \ α−1(K). (1)

By Lemma 2.1, α−1(K) is closed in G × Z; hence there are open neighborhoods U of h in G,
V of p in C, and W of q in S such that

(U × (V × W )) ∩ α−1(K) = ∅. (2)

We may assume without loss of generality that V is clopen, and that W is connected. Consider
the map

πV,W : (V × W ) ∩ Y → V.

The function
φ = 1U × πV,W : U × ((V × W ) ∩ Y ) → U × V

is open, surjective and monotone (Claim 1). Since α is continuous, equation (2) consequently
implies that each fiber of φ is contained either in α−1(L) or in α−1(M). Since φ is open, there
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are complementary open subsets S and T of U × V such that

φ−1(S) ⊆ α−1(L), φ−1(T ) ⊆ α−1(M).

Hence {S × W,T × W} is an open partition of U × (V × W ), and we may assume without loss
of generality that

(h, (p, q)) ∈ S × W.

Observe that

α(S × W ) = α(φ−1(S)) ⊆ L,

and hence S × W is a neighborhood of (h, (p, q)) that misses α−1(M). But this contradicts
inclusion (1).

Now put

L′ = α−1(L) \ α−1(K), M ′ = α−1(M) \ α−1(K).

Then by Claim 4 and Lemma 2.1, L′ and M ′ are disjoint open subsets of G × Z that cover
(G × Z) \ α−1(K). In addition, L′ ∩ (G × Y ) = α−1(L) and M ′ ∩ (G × Y ) = α−1(M). Since
(g, z) ∈ G × (Z \ Y ), we may assume without loss of generality that (g, z) ∈ L′. But then L′ is
a neighborhood of (g, z) such that

α(L′) = α(α−1(L)) = L.

Hence

Θg,z ⊆ L ⊆ L ∪ K,

but this contradicts the fact that z1 ∈ Θg,z.

Claim 5. The action α : G × Y → Y can be extended to an action β : G × Z → Z.

Indeed, for (g, z) ∈ G × Z, let β(g, z) be the unique point in Θg,z. That β is continuous is
trivial, and that it is an action is easy to verify. (See also the proof of [2, Theorem 2.2.7].)

We are now ready for the final contradiction. Since β extends α and C × D is σ-compact,
we have

Z \ Y ⊇ β(G × (C × D)) ∈ Σ1
1(Z)

since G is analytic. But Z \ Y is in Π1
1(Z) \ Σ1

1(Z), and thus there are x ∈ X and p ∈ E such
that

(x, p) 	∈ β
(
G × (C × D)

)
. (3)

Now consider the set β(G × {(x, p)}). It clearly also belongs to Σ1
1(Z). Observe that by (3),

we have

β(G × {(x, p)}) ∩ (C × D) ⊆ β(G × {(x, p)}) ∩ β(G × (C × D)) = ∅. (4)

Hence β(G × {(x, p)}) ⊆ X × E. The projection X × E → X maps β(G × {(x, p)}) onto an
element of Σ1

1(Z). Since X 	∈ Σ1
1(Z), there is an element x′ ∈ X not contained in that

projection. As a consequence, by (4), we have

(β(G × {(x, p)}) ∩ ({x′} × (D ∪ E)) = ∅. (5)

Now take an arbitrary element q ∈ S \ (D ∪ E). Since G acts transitively on Y , there is an
element g ∈ G such that g(x, q) = (x′, q). By connectivity of S and zero-dimensionality of C,
the homeomorphism of Z that is associated to g maps {x} × S onto {x′} × S. This means that
(x, p) must be mapped onto an element of {x′} × (D ∪ E) — but we have just seen in (5) that
this is impossible.
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Remark 4.4. In the light of Theorem 4.3, it is quite natural to ask whether there is a Polish
space on which some topological group acts transitively, but on which no Polish group acts
transitively. We do not know the answer to this question. However, we recently constructed
an example of a homogeneous Polish space on which no (separable metrizable) group acts
transitively; see [9].
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