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EXTREMAL PSEUDOCOMPACT ABELIAN GROUPS
ARE COMPACT METRIZABLE

W. W. COMFORT AND JAN VAN MILL

(Communicated by Alexander N. Dranishnikov)

Abstract. Every pseudocompact Abelian group of uncountable weight has
both a proper dense pseudocompact subgroup and a strictly finer pseudocom-
pact group topology.

1. Introduction

All topological groups here are assumed to satisfy the Hausdorff separation ax-
iom. A pseudocompact group G is said to be r-extremal [resp. s-extremal ] if G
admits no strictly finer pseudocompact group topology [resp. G has no proper
dense pseudocompact subgroup]. Early formulations of these notions appeared in
[6], [7]. From the fact that a pseudocompact space of countable weight is compact
and metrizable it follows readily (as in [7, 2.3]) that every pseudocompact group of
countable weight is both r-extremal and s-extremal. It is natural to ask whether
there are extremal pseudocompact groups of uncountable weight. This question
has generated much attention during the last two decades. See [1], [12] and [10]
for more information. An affirmative answer was given in [7] for zero-dimensional
Abelian groups. In [2] it was shown that no pseudocompact Abelian group of car-
dinality greater than c is s-extremal. For partial answers in the class of connected
groups, see for example [3], [12] and [1].

The aim of this paper is to answer the question for Abelian groups.

Theorem 1.1. A pseudocompact Abelian group of uncountable weight is neither
r-extremal nor s-extremal.

We keep this presentation short by invoking several essential results established
in the literature. We plan in [5] to present a polished, complete and self-contained
proof of Theorem 1.1.

We announced our results at the annual meeting of the American Mathematical
Society in January, 2006 [4].

2. Preliminaries

In this section we fix notation and we cite the results we need from the literature.
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The symbol wX denotes the weight of a topological space X. A subspace of a
space X is Gδ-dense in X if it meets every nonempty Gδ-subset of X. If X is a set
and κ a cardinal number, then [X]≤κ denotes {A ⊆ X : |A| ≤ κ}.

For Abelian groups we use additive notation. Let G be an Abelian group. If
A ⊆ G, then 〈〈A〉〉 denotes the subgroup of G generated by A. A subset X of G
is called independent if for every x ∈ X we have 〈〈{x}〉〉 ∩ 〈〈X \ {x}〉〉 = {0}. If A
is a subgroup of G, then a subset X of G is said to be independent over A if it is
independent and 〈〈X〉〉 ∩A = {0}. The cardinality of a maximal independent set of
elements of infinite order is called the torsion-free rank of G, here denoted r0(G).
It is known that r0(G) is an invariant of G, i.e., all such maximal independent
subsets of G have the same cardinality. It is clear that if h : G → H is a surjective
homomorphism, then r0(H) ≤ r0(G). See [11, pp. 85-86] for additional details.
The torsion subgroup of an Abelian group G is denoted by tG.

If G is a (not necessarily Abelian) totally bounded group, then G denotes its
(compact) Weil completion. It was shown in [8] that a topological group G is
pseudocompact if and only if it is Gδ-dense in G. Hence a dense subgroup of a
pseudocompact group G is pseudocompact if and only if it is Gδ-dense in G.

Let G be a topological group. Then

Λ(G) = {N ⊆ G : N is a closed, normal, Gδ-subgroup of G}.
Now we collect some information needed later in our proof of the main result.

Theorem 2.1. Let G be a pseudocompact group such that wG > ω, and let N ∈
Λ(G). Then

(a) [9, 3.3] G/N is compact and metrizable,
(b) [7, 6.2] N is pseudocompact, and
(c) [3, 2.7] wN = wG.

Lemma 2.2 ([3, 2.13(b),(c)]). Let G be a pseudocompact group and let G =⋃
n<ω An, where each An is a subgroup of G. Then there exist N ∈ Λ(G) and

n < ω such that An ∩ N is Gδ-dense in N .

Theorem 2.3 ([1, 4.4], [12, 3.7.1]). Let G be a pseudocompact Abelian group.
If G contains a proper, dense pseudocompact subgroup H such that G/H can be
mapped homomorphically onto some nondegenerate compact group, then G is not
r-extremal.

Theorem 2.4 ([1, 5.7], [12, 6.4.2]). Let G be a pseudocompact Abelian group of
uncountable weight. If there exists N ∈ Λ(G) such that no connected M ∈ Λ(G) is
contained in N , then G is neither r-extremal nor s-extremal.

Theorem 2.5 ([2, 4.5], [1, 5.10], [12, 7.3]). Let G be a pseudocompact Abelian
group of uncountable weight such that r0(G) > c. Then G is neither r-extremal nor
s-extremal.

3. Lemmas

In this section we collect some simple results to be used later. The technique
used in the proof of Lemma 3.1 is well-known, and was used in many earlier results.
See e.g., [3, 2, 12, 1]. For the benefit of the reader we provide the (simple) details.
(Note added September 15, 2006. The referee has pointed out that a proof of
Lemma 3.1 is also available in the preprint [10].)
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Lemma 3.1. Let G be a pseudocompact Abelian group, and let A be a Gδ-dense
subgroup of some N ∈ Λ(G) such that r0(N/A) ≥ c. Then G contains a Gδ-dense
subgroup H such that r0(G/H) ≥ c.

Proof. The conditions imply that there is a subset X of N \A of elements of infinite
order such that |X| = c and X is independent over A. Split X into two disjoint
sets X0 and X1, each of cardinality c.

By Theorem 2.1(a), the number of cosets of N in G is at most c. (In fact, either
|G/N | < ω or |G/N | = c.) Let {aα +N : α < λ} be a faithful enumeration of G/N .
We assume without loss of generality that a0 = 0. By recursion on α < λ we will
choose xα ∈ X0 ∪ {0} such that

〈〈X1〉〉 ∩ (〈〈{aβ + xβ : β ≤ α}〉〉 + A) = {0}.
Let x0 = 0. Let α < λ and suppose that xβ has been defined for all β < α. Put
Bα = 〈〈{aβ + xβ : β < α}〉〉. Then |Bα| < c and 〈〈X1〉〉 ∩ (Bα + A) = {0}. Suppose
that for every x ∈ X0 we have that

〈〈X1〉〉 ∩ (〈〈Bα ∪ {aα + x}〉〉 + A) 
= {0}.
Then for every x ∈ X0 there exist bx ∈ Bα, nx ∈ Z, px ∈ A and qx ∈ 〈〈X1〉〉 \ {0}
such that

(†) qx = bx + nx(aα + x) + px.

Note (since qx 
∈ Bα + A) that no nx is equal 0 . Since |X0| = c, there are distinct
x, y ∈ X0, n ∈ Z \ {0} and b ∈ Bα such that n = nx = ny and b = bx = by. But
then by subtracting the equation (†) for x and y, we get

n(x − y) = qx − qy + py − px ∈ 〈〈X1〉〉 + A,

which contradicts the independence of X over A. This completes the transfinite
recursion.

Now put B =
⋃

α<λ Bα. Then 〈〈X1〉〉 ∩ (B + A) = {0}, hence r0(G/(B + A)) ≥
|X1| = c. It is clear that B + A is Gδ-dense in G. �

Lemma 3.2. Let κ be an infinite cardinal. Suppose that A is a family of subsets
of 2κ with the following properties:

(1) if B ∈ [A]≤κ, then
⋂
B ∈ A, and

(2) each element of A has cardinality 2κ.
Then there is a countably infinite family B of subsets of 2κ such that

(i) B is pairwise disjoint, and
(ii) if A ∈ A and B ∈ B, then |A ∩ B| = 2κ.

Proof. We give 2κ the standard Tychonov product topology. Let V be the collection
of all nonempty clopen subsets V of 2κ for which there is an element A(V ) ∈ A
such that |V ∩ A(V )| < 2κ. Clearly, |V| ≤ κ. Let D = {A(V ) : V ∈ V}, Y =

⋂
D,

and Ṽ =
⋃
V . Now |V ∩ Y | ≤ |V ∩ A(V )| < 2κ for every V ∈ V , so∣∣∣Ṽ ∩ Y

∣∣∣ < 2κ

since 2κ has cofinality at least κ+. Then |Y | = 2κ by (1) and (2), hence |Y \ Ṽ | =
2κ. There is consequently a countably infinite pairwise disjoint family B of clopen
subsets of 2κ such that B ∩ (Y \ Ṽ ) 
= ∅ for every B ∈ B. To see that B is as
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required, pick arbitrary B ∈ B and A ∈ A. If |B ∩ A| < 2κ, then B ∈ V and hence
B ⊆ Ṽ , which contradicts the fact that B ∩ (Y \ Ṽ ) 
= ∅. �
Remark 3.3. The inclusion

⋃
B ⊆ 2κ is necessarily proper (since 2κ is compact).

Replacing any one element of B by the complement in 2κ of the union of the
remaining elements, we may hence assume without loss of generality that B is a
partition.

4. Proof of Theorem 1.1

We now present the proof of our main result. By Theorem 2.5, it suffices to
consider groups G of torsion-free rank at most c. Furthermore, by Theorem 2.4 we
may assume that every N ∈ Λ(G) contains a connected M ∈ Λ(G). Henceforth, let
G be a pseudocompact Abelian group of uncountable weight satisfying those two
conditions.

Lemma 4.1. If H is a nontrivial connected subgroup of G, then r0(H) = c.

Proof. It is clear that r0(H) ≤ c. Let 0 
= x ∈ H and let h be a continuous
homomorphism from H to T such that h(x) 
= h(0). Then h(H) = T since H (and
hence h(H)) is connected. It follows that c ≥ r0(H) ≥ r0(T) = c, as asserted. �

Since G ∈ Λ(G), there is a connected C ∈ Λ(G). Hence r0(C) = c by Theo-
rem 2.1(b),(c) and Lemma 4.1.

Let C be the closure of C in G. Then C is a compact, connected group, hence is
divisible [13, Theorem 24.25]. By [13, Theorem A.14] or [11, Theorem 23.1], there
is a cardinal number λ such that C is (algebraically) isomorphic to⊕

α<λ

Qα ⊕ tC,

where each Qα is a copy of the group of rational numbers Q. Then C/tC =⊕
α<λ Qα. Let π : C →

⊕
α<λ Qα be the natural homomorphism. For x ∈ C let

S(x) = {α < λ : π(x)α 
= 0α}, and for E ⊆ C let S(E) =
⋃

x∈E S(x).

Lemma 4.2. If N ∈ Λ(C), then |S(π(N))| = c.

Proof. Since N ∈ Λ(G), we may assume without loss of generality that N is con-
nected. Moreover, N is nontrivial by Theorem 2.1(c). So r0(N) = c by Lemma 4.1.
That |S(π(N))| = c is then clear. �

Writing S = S(π(C)), we have |S| = c. Hence λ ≥ c, and

C ⊆
⊕
α∈S

Qα ⊕
⊕
α�∈S

{0α} ⊕ tC.

For every β ∈ S, let ρβ :
⊕

α∈S Qα → Qβ be the projection.
For every nonempty A ⊆ S, put

G(A) = C ∩
( ⊕

α∈A

Qα ⊕
⊕
α�∈A

{0α} ⊕ tC
)
,

and let
A = {A ⊆ S : there is N ∈ Λ(C) such that N ⊆ G(A)}.

Lemma 4.3. A is closed under countable intersections, and every A ∈ A has size
c.
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Proof. That A is closed under countable intersections is clear, since if B is any
family of subsets of S, then ⋂

B∈B
G(B) = G(

⋂
B)

and Λ(G) is closed under countable intersections.
Now take an arbitrary A ∈ A. We want to prove that |A| = c. Take N ∈ Λ(C)

such that N ⊆ G(A). Then π(N) ⊆ A, so c = |S| ≥ |A| ≥ |π(N)| = c by
Lemma 4.2. �

By Lemma 3.2 and Remark 3.3, there consequently is a (faithfully indexed)
partition B = {Bn : n < ω} of S such that |Bn ∩ A| = c for each Bn ∈ B, A ∈ A.
For every n < ω, let

Vn = G
( ⋃

i≤n

Bi

)
.

Then V0 ⊆ V1 ⊆ · · · ⊆ Vn ⊆ · · · , and C =
⋃

n<ω Vn. By Theorem 2.1(b) and
Lemma 2.2, there exist N ∈ Λ(C) and m < ω such that H := Vm ∩ N is Gδ-
dense in N . We may assume without loss of generality that m = 0, i.e., that
Vm = V0 = G(B0).

Lemma 4.4. r0(N/H) ≥ c.

Proof. We will prove that there is a subset X of N of cardinality c such that
(1) each x ∈ X has infinite order,
(2) X is independent,
(3) 〈〈X〉〉 ∩ H = {0}

(hence 〈〈X〉〉 is isomorphic to
⊕

α<c
Zα, where each Zα is a copy of the group of

integers Z). Choose x0 ∈ N \ G(B0) and define W0 = B0. Let 0 < α < c and
suppose that xβ and Wβ have been defined for all β < α. Then, set

Wα = B0 ∪
⋃

β<α

S(xβ),

and observe that
|B1 ∩ Wα| =

∣∣∣B1 ∩
⋃

β<α

S(xβ)
∣∣∣ < c.

Hence Wα 
∈ A, since B1 meets every element of A in a set of size c, which means
that N 
⊆ G(Wα); let xα be any point in N \G(Wα). This completes the transfinite
construction.

We claim that X = {xα : α < c} satisfies (1), (2) and (3). To prove this, let
α < c, and let n ∈ Z \ {0} be arbitrary. By construction we have

xα 
∈ G
(
B0 ∪

⋃
β<α

S(xβ)
)
,

so S(xα) 
⊆ B0∪
⋃

β<α S(xβ); let γ ∈ S(xα) witness that relation. Then ργ(π(xα)) 
=
0 and ργ(π(xβ + h)) = 0 for every β < α and h ∈ H. Then clearly xα has infinite
order, and

nxα 
∈ 〈〈{xβ : β < α}〉〉 + H,

as required. �
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Now we complete the proof of Theorem 1.1. From Lemmas 3.1 and 4.4 we con-
clude that G has a proper dense pseudocompact subgroup H such that r0(G/H) ≥
c. This proves that G is not s-extremal. To see that G is not r-extremal, note
first that r0(G/H) ≥ c, so G/H contains a subgroup isomorphic to

⊕
α<c

Zα. The
latter can be mapped homomorphically onto T, and since homomorphisms into a
divisible group always extend by [13, Theorem A.7], we are done by Theorem 2.3.
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