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Abstract

We apply and develop an idea of E. van Douwen used to define D-spaces. Given a topological property P , the class P∗ dual
to P (with respect to neighbourhood assignments) consists of spaces X such that for any neighbourhood assignment {Ox : x ∈ X}
there is Y ⊂ X with Y ∈P and

⋃{Ox : x ∈ Y } = X. We prove that the classes of compact, countably compact and pseudocompact
are self-dual with respect to neighbourhood assignments. It is also established that all spaces dual to hereditarily Lindelöf spaces
are Lindelöf. In the second part of this paper we study some non-trivial classes of pseudocompact spaces defined in an analogous
way using stars of open covers instead of neighbourhood assignments.
© 2007 Elsevier B.V. All rights reserved.
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0. Introduction

A neighbourhood assignment in a space X is a family {Ox : x ∈ X} such that x ∈ Ox ∈ τ(X) for any x ∈ X.
Neighbourhood assignments are useful for defining covering properties. For example, a space X is Lindelöf if and
only if, for any neighbourhood assignment {Ox : x ∈ X} there is a countable Y ⊂ X such that

⋃{Ox : x ∈ Y }
= X. If we substitute “closed discrete” for “countable” then we obtain the definition of the class of D-spaces in-
troduced by van Douwen [6] and studied in [1,3–5,10] and other papers.

We generalize this idea of van Douwen by defining, for any class (or property) P , a dual class P∗ which consists of
spaces X such that, for any neighbourhood assignment {Ox : x ∈ X} there exists a subspace Y ⊂ X with

⋃{Ox : x ∈
Y } = X and Y ∈ P . It turns out that many classical covering properties are self-dual in this sense. For example,
compactness, pseudocompactness, countable compactness and the linear Lindelöf property are self-dual with respect
to neighbourhood assignments.
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A similar idea gives rise to new classes of spaces determined by stars of open covers. Namely, if P is a class (or
a property) of spaces then X is star-P (or star determined by P) if, for any open cover U of the space X, there is a
subspace Y ⊂ X with St(Y,U) = ⋃{U ∈ U : U ∩ Y �= ∅} = X and Y ∈P . This notion and some of its variations were
considered in [11–14], for a more detailed treatment see [15]. It was observed in [15] that star-pseudocompactness
is equivalent to pseudocompactness; however, the concepts of star-compactness and star-countable-compactness give
rise to new non-trivial classes of spaces.

It is well known that being star-finite is equivalent to countable compactness in the class of Hausdorff spaces [9], so
studying star properties basically consists of looking at generalizations of the class of countably compact spaces. We
show, among other things, that the classes determined by countable metrizable spaces, metrizable spaces, countably
compact and compact spaces provide distinct star properties.

The terms “star-compact”, “star-Lindelöf” and some others have been also used by some authors in a completely
different context. For example, in [7] the term “n-starcompact” was defined for any natural n; in the paper [16] the
relationship between n-starcompactness and n-pseudocompactness was studied. On the other hand, in the paper [2] the
terms “star-compact” and “star-Lindelöf” are equivalent to our terms “star-finite” and “star-countable”, respectively.
In particular, star-compactness in [2] coincides with countable compactness and hence gives no new class. This shows
that there is no established tradition in naming the above-mentioned notions; since the terminology of [15] seems
more direct and intuition-friendly to us, we use it systematically in this paper.

1. Notation and terminology

All spaces are assumed to be T1. If X is a space then τ(X) is its topology and τ ∗(X) = τ(X)\{∅}; given a set A ⊂ X

let τ(A,X) = {U ∈ τ(X): A ⊂ U}; we will write τ(x,X) instead of τ({x},X) for any x ∈ X. Given a family U of
subsets of X the star, St(A,U), of the set A with respect to U is the set

⋃{U ∈ U : A ∩ U �= ∅}.
If κ is an infinite cardinal then a space X is κ-compact if any open cover of X of cardinality at most κ has a

finite subcover. The extent, ext(X), of a space X is the supremum of cardinalities of closed discrete subspaces of X.
A space X is called κ-Lindelöf if any open cover of X has a subcover of cardinality at most κ . We say that X is
linearly Lindelöf if every nested open cover of X has a countable subcover.

A family N of (not necessarily open) subsets of a space X is a network of X if every open U ⊂ X is a union of a
subfamily of N . The spaces with a countable network are called cosmic. The symbols D stands for the discrete space
{0,1} and N = ω\{0}. The rest of our terminology is standard and follows [8].

2. Duality with respect to neighbourhood assignments

The notion of neighbourhood assignment makes it possible to define some interesting dual versions of well-known
properties. Sometimes it is non-trivial to determine whether the dual version coincides with the original property. The
following definition formalizes the main concept of this paper.

Definition 2.1. A class P∗ is dual to a class P (with respect to neighbourhood assignments) if a space X belongs to
P∗ if and only if for any neighbourhood assignment {Ox : x ∈ X} there is a subspace Y ⊂ X such that Y ∈ P and⋃{Ox : x ∈ Y } = X. If X is a member of the class P∗, then we say that X is dually P .

Remark 2.2. The D-property in the sense of van Douwen [6] is a subclass of the dual class of discrete spaces. It is
evident that the κ-Lindelöf spaces form the dual class of spaces of cardinality at most κ . Besides, any compact space
is dually finite and hence dually discrete.

Example 2.3. The space ω1 with its order topology is dually discrete. Consequently, a space can be

(a) dually metrizable (and hence dually paracompact) without being metacompact;
(b) dually realcompact but not realcompact;
(c) dually discrete without being a D-space.
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Proof. The space ω1 is countably compact and non-compact; this, evidently implies that ω1 is neither realcompact
nor a D-space. To see that it is dually discrete take any neighbourhood assignment {Oα: α < ω1} of the space ω1.
For any non-isolated point α ∈ ω1 there is f (α) < α such that (f (α),α] ⊂ Oα . The pressing-down lemma shows that
there is an uncountable A ⊂ ω1 and β < ω1 for which f (α) = β for any α ∈ A.

The space ω1 being scattered, there is a discrete uncountable B ⊂ A\(β + 1); it is clear that
⋃{Oα: α ∈ B} ⊃

ω1\(β +1) and, since the space β +1 is compact, we can choose a finite F ⊂ β +1 such that
⋃{Oα: α ∈ F } ⊃ β +1.

Then D = F ∪ B is a discrete subspace of ω1 such that
⋃{Oα: α ∈ D} = ω1. Thus ω1 is dually discrete; since any

discrete space of cardinality � ω1 is realcompact, the space ω1 is dually realcompact as well. �
Proposition 2.4. Given an infinite cardinal κ let Eκ be the class of spaces X such that ext(X) � κ . Then the class Eκ

is self-dual with respect to neighbourhood assignments.

Proof. Suppose that a space X is in the dual class to Eκ and there is a closed discrete D ⊂ X with |D| = κ+. If
x ∈ X\D let Ox = X\D; if x ∈ D then fix Ox ∈ τ(x,X) such that Ox ∩ D = {x}. For the neighbourhood assignment
{Ox : x ∈ X} there exists a subspace Y ⊂ X such that ext(Y ) � κ and

⋃{Ox : x ∈ Y } = X. However, y ∈ D implies
that y ∈ Ox if and only if y = x; this shows that D ⊂ Y and hence ext(Y ) � κ+ which is a contradiction. �
Theorem 2.5. Compactness, and κ-compactness are self-dual with respect to neighbourhood assignments for any
cardinal κ .

Proof. Suppose that X is dually (κ-)compact; if X is not (κ-)compact then there is an infinite cardinal λ (� κ) and a
cover U = {Uα: α < λ} ⊂ τ(X) of the space X such that α < β implies Uα ⊂ Uβ and Uα �= X for any α < λ. For any
x ∈ X let Ox = Uα where α is the first ordinal with x ∈ Uα .

There exists a (κ-)compact K ⊂ X such that
⋃{Ox : x ∈ K} = X. Since U also covers K , there is α < λ such that

K ⊂ Uα . It is clear that Ox ⊂ Uα for every x ∈ K so
⋃{Ox : x ∈ K} ⊂ Uα �= X, a contradiction. �

Theorem 2.6. Pseudocompactness (which, for non-Tychonoff spaces we identify with feeble compactness) is self-dual
with respect to neighbourhood assignments.

Proof. Suppose that a space X is not pseudocompact and take a discrete family {Un: n ∈ ω} ⊂ τ ∗(X). Choose a point
xn ∈ Un for every n ∈ ω. The sets W = X\{xn: n ∈ ω} and U = ⋃

n∈ω Un are open in X. If x ∈ U then there is a
unique n ∈ ω with x ∈ Un; let Ox = Un. If x ∈ X\U then let Ox = W .

If X is dually pseudocompact then there is a pseudocompact P ⊂ X such that
⋃{Ox : x ∈ P } = X. This, evidently,

implies that P ∩ Un �= ∅ for any n ∈ ω, so {Un ∩ P : n ∈ ω} ⊂ τ ∗(P ) is discrete which is a contradiction. �
Proposition 2.7. The class of linearly Lindelöf spaces is self-dual with respect to neighbourhood assignments.

Proof. Suppose that a space X is in the dual class of linearly Lindelöf spaces. If X is not linearly Lindelöf then there
is an uncountable regular cardinal λ and a cover U = {Uα: α < λ} ⊂ τ(X) of the space X such that α < β implies
Uα ⊂ Uβ and Uα �= X for any α < λ. For any x ∈ X let Ox = Uα where α is the first ordinal with x ∈ Uα .

There exists a linearly Lindelöf K ⊂ X such that
⋃{Ox : x ∈ K} = X. Since U also covers K , there is α < λ such

that K ⊂ Uα . It is clear that Ox ⊂ Uα for every x ∈ K so
⋃{Ox : x ∈ K} ⊂ Uα �= X, a contradiction. �

Theorem 2.8. If κ is an infinite cardinal and a space X is dually hereditarily κ-Lindelöf then X is κ-Lindelöf.

Proof. Take an open cover U = {Uα: α < λ} of the space X; given a point x ∈ X let α(x) = min{α < λ: x ∈ Uα}
and Ox = Uα(x). For the neighbourhood assignment {Ox : x ∈ X} there exists a set Y ⊂ X such that hl(Y ) � κ and⋃{Oy : y ∈ Y } = X. It turns out that

(∗) the set P = {α(y): y ∈ Y } has cardinality at most κ .
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Indeed, assume that A ⊂ Y is a set such that |A| = κ+ and α(x) �= α(y) for any distinct x, y ∈ A. Define a well-
order ≺ on the set A by declaring that x ≺ y if and only if α(x) < α(y). The space A is right-separated with respect to
this order because, for any point x ∈ A, its neighbourhood Uα(x) contains no y ∈ A with x ≺ y. Since no hereditarily
κ-Lindelöf space can have a right-separated subspace of cardinality κ+, we obtained a contradiction thus proving (∗).

Apply (∗) to choose a set Z ⊂ Y such that |Z| � κ and {α(x): x ∈ Z} = P . If y ∈ Y then there is z ∈ Z with α(z) =
α(y) and hence Oy = Uα(y) = Uα(z) = Oz. This shows that

⋃{Oz: z ∈ Z} = ⋃{Oy : z ∈ Y } = X so {Oz: z ∈ Z} is a
subcover of U of cardinality at most κ . �
Corollary 2.9. The following conditions are equivalent for any space X:

(a) X is dually countable;
(b) X is dually cosmic;
(c) X is dually hereditarily Lindelöf ;
(d) X is Lindelöf.

3. Star properties and pseudocompactness

In the paper [2] a space X was defined to be star compact (Lindelöf) if, for any open cover U of the space X,
there is a finite (countable) set A ⊂ X such that St(A,U) = X. In this interpretation, the notion of star compactness
coincides with countable compactness. On the other hand, in [15] a definition of the class of star-P spaces was given
for any property/class P . This notion gives, in case when P = “compact”, a new interesting subclass of the class of
pseudocompact spaces.

It is part of the folklore (see, e.g., [15]) that a space is pseudocompact if and only if it is star pseudocompact. As
a consequence, any star compact space is pseudocompact; since being star-finite is equivalent to countable compact-
ness [9], studying classes star determined by compactness-like properties actually means studying extensions of the
class of countably compact spaces. In particular, star compact spaces form a class which lies between pseudocompact
spaces and countably compact spaces. The purpose of this section is to give examples which show that the classes star
determined by some classical compactness-like properties are distinct whenever the properties are distinct.

Definition 3.1. [15] Given a class (or a property) P of topological spaces say that a space X is star-P if, for any open
cover U of the space X, there is a subspace Y ⊂ X such that Y ∈ P and St(Y,U) = X. The subspace Y will be called
a kernel of the cover U . If the name of the class/property P is long-winded then the term “star-P” becomes even more
cumbersome so we use the phrase “star determined by P” as a synonym.

It is natural to outline first some limits of “good” behaviour of star-P properties. Since we only deal with compact-
like properties P , the respective star-P spaces are all pseudocompact, so all positive results about them are basically
the same as positive results about pseudocompact spaces. The proof of the following proposition is straightforward
and left to the reader.

Proposition 3.2. If a class P of spaces is invariant under continuous maps then the class of star-P spaces is also
invariant under continuous maps. In particular, the classes of star compact spaces, spaces star determined by count-
ably compact spaces, spaces star determined by compact metrizable spaces and spaces star determined by compact
countable spaces are all preserved by continuous maps.

Remark 3.3. We cannot expect a good behaviour of star-P properties with respect to products because there exists
a countably compact space whose square is not pseudocompact. Therefore, the square of a star-P space can fail to
be star-P for any compact-like property P . Analogously, a closed subspace of a star-P space can fail to be star-P
because all non-trivial star-P spaces are not countably compact so they have an infinite closed discrete subspace which
is not even pseudocompact. It is easy to see that star-P properties are preserved by finite unions; however, any infinite
discrete sum of such spaces fails to be pseudocompact if the summands are non-empty. Therefore only finite discrete
sums preserve star-P properties.
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Proposition 3.4. There exists a pseudocompact first countable space which is not star determined by countably com-
pact spaces.

Proof. Take any maximal almost disjoint family M of infinite subsets of ω. Recall that the Mrowka space M which
corresponds to M has the underlying set ω ∪ {xA: A ∈ M} where ω is dense in M and all points of ω are isolated in
M while the topology at every xA ∈ M\ω is given by the local base {{xA} ∪ (A\F): F is a finite subset of A}. The
space M is pseudocompact and D = M\ω is a closed discrete subspace of M with |D| = w(M).

In the paper [7] a space X is called 1-starcompact if, for any open cover U of the space X, there is a finite V ⊂ U
such that St(V,U) = X. It is an easy exercise that any star compact space is 1-starcompact; this, together with Lem-
ma 2.2.4 of [7] shows that M is not 1-starcompact and hence not star compact. Clearly, every countably compact
subspace of M is countable and hence compact so M is not star determined by countably compact spaces. �
Theorem 3.5. There exists a non-star compact space X which is 1-starcompact in the sense of [7] (this is the same as
being 1 1

2 -starcompact in the sense of [15]) while X is star determined by countably compact spaces.

Proof. In the space ω∗ = βω\ω every infinite closed set has cardinality 2c and there are 2c-many infinite closed
subsets of ω∗. This makes it possible to construct, by a standard transfinite recursion, a set G ⊂ ω∗ such that every
compact subspace of G is finite and every compact subspace of H = ω∗\G is finite as well. It is easy to see that both
sets G and H are countably compact.

Choose a countably infinite discrete subspace D ⊂ G and let X = G\(D\D) (where closures are taken in ω∗). It
is clear that D is a closed discrete subspace of X so X is not countably compact. If X is star compact then, for any
U ⊂ τ(X) such that

⋃
U = X there is a compact K ⊂ X with St(K,U) = X. However, all compact subspaces of X

are finite so K has to be finite which proves that X is star finite and hence countably compact; this contradiction shows
that X is not star compact.

We will prove simultaneously that the space X is star determined by countably compact spaces and 1-starcompact;
to this end fix an open cover U of the space X. Refining U if necessary we can assume, without loss of generality, that
U = U0 ∪ U1 where U ∩ D = ∅ for any U ∈ U0 and U1 = {Ud : d ∈ D} where Ud ∩ D = {d} for any d ∈ D and the
family U1 is disjoint. Take a set O(U) ∈ τ(ω∗) such that O(U) ∩ X = U for any U ∈ U and let O = {O(U): U ∈ U}.

It is evident that the set M = ω∗\(⋃O) is compact and F = D\D ⊂ M . We claim that M\F is finite. Indeed, if
this is not true, then we can find a countably discrete infinite set C ⊂ M\F . The subspace D ∪ C being discrete we
conclude that D ∩ C = ∅ and therefore C is an infinite compact subspace of H which is a contradiction.

Since a countable family of non-empty open sets in ω∗ cannot form a π -base at a point of ω∗, there is W ∈
τ(M\F,ω∗) such that Ud\W �= ∅ for any d ∈ D; choose a point xd ∈ Ud\(W ∪{d}). Then {xd : d ∈ D}∩ (M\F) = ∅;
the set D ∪ {xd : d ∈ D} being discrete and D ∩ {xd : d ∈ D} = ∅ we also have D ∩ {xd : d ∈ D} = ∅. An immediate
consequence is that the compact space N = {xd : d ∈ D} is covered by the family O so there is a finite U ′ ⊂ U with
N ⊂ ⋃

U ′. Since N intersects all elements of U1, any element of U1 has to meet an element of U ′; as a consequence,
St(

⋃
U ′,U) ⊃ ⋃

U1. Observe also that the set K = {xd : d ∈ D} ∩ X is countably compact and St(K,U) ⊃ ⋃
U1.

The space X′ = X\D is countably compact so there is a finite set E ⊂ X′ for which St(E,U) ⊃ X\D. Therefore
L = E ∪ K is a countably compact subspace for which St(L,U) = X and hence the space X is star determined
by countably compact spaces. If we take a finite family U ′ ′ ⊂ U such that E ⊂ ⋃

U ′ ′ then V = U ′ ∪ U ′ ′ is a finite
subfamily of U such that St(

⋃
V,U) = X so X is 1-starcompact in the sense of [7]. �

Theorem 3.6. There exists a star compact space X which is not star determined by metrizable compact spaces and
hence X is not countably compact.

Proof. The proof is an easier version of the proof of Theorem 3.5. Choose a countably infinite discrete subspace
D ⊂ ω∗ = βω\ω and let X = ω∗\(D\D) (where again, closures are taken in ω∗). It is clear that D is a closed discrete
subspace of X so X is not countably compact. Every metrizable compact subspace of X is finite so the failure of X to
be countably compact implies that X is not star determined by metrizable compact spaces.

To see that X is star compact fix an open cover U of the space X. By refining U if necessary we can assume, without
loss of generality, that U = U0 ∪U1 where U ∩ D = ∅ for any U ∈ U0 and U1 = {Ud : d ∈ D} where Ud ∩ D = {d} for
any d ∈ D and the family U1 is disjoint. Choose xd ∈ Ud\{d} for any d ∈ D; the subspace D ∪ {xd : d ∈ D} is discrete
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and D ∩ {xd : d ∈ D} = ∅. As a consequence, D ∩ {xd : d ∈ D} = ∅. The set K = {xd : d ∈ D} ∩ X is compact and
St(K,U) ⊃ ⋃

U1.
As before, the space X′ = X\D is countably compact so there is a finite set E ⊂ X′ for which St(E,U) ⊃ X\D.

Therefore L = E ∪ K is a compact subspace for which St(L,U) = X and hence the space X is star compact. �
Corollary 3.7. The classes of pseudocompact spaces, the spaces star determined by countably compact spaces, star
compact spaces and countably compact spaces are all distinct.

In fact, even the classes star determined by countable and metrizable compact spaces are distinct; we will see this
later. Therefore it seems to be an interesting problem whether any two non-homeomorphic metrizable compact spaces
determine distinct star classes.

Proposition 3.8. The “Tychonoff plank” is star determined by convergent sequences, i.e., for every open cover U of
the Tychonoff plank P there is a convergent sequence S ⊂ P such that St(S,U) = P . Therefore, even a space star
determined by convergent sequences need not be countably compact.

Proof. Recall that the Tychonoff plank P is the subspace (ω1 + 1) × (ω + 1)\{(ω1,ω)} of the product (ω1 + 1) ×
(ω + 1). If U is an open cover of P , fix a set Un ∈ U such that (ω1, n) ∈ U for any n ∈ ω. There exists α < ω1 such
that (β,n) ∈ Un for any n ∈ ω and β � α. Clearly, the set S′ = {α} × (ω + 1) is a convergent sequence such that
St(S′,U) ⊃ W = ⋃

n∈ω Un.
The set P \W is closed in ω1 ×(ω+1) and hence countably compact so there is a finite F ⊂ P for which St(F,U) ⊃

P \W . Therefore S = S′ ∪ F is a convergent sequence with St(S,U) = P . �
Proposition 3.9. If a space X is not countably compact then, for any n ∈ N, the space X × n = X × {0, . . . , n − 1} is
not star determined by less than n convergent sequences.

Proof. The set Xi = X × {i} is open in X × n for any i < n; since Xi is not countably compact, it is not star finite [9]
and so we can find an open cover Ui of the space Xi such that there is no finite set K ⊂ Xi with St(K,Ui ) = Xi .

The family U = ⋃
i<nUi is an open cover of X × n. Suppose that k < n and U has a kernel S = ⋃

i<k Si where
Si is a convergent sequence for each i < k. There exists j < n such that Xj contains no limit points of S and hence
S′ = S ∩ Xj is finite. It is immediate that the set St(S\S′,U) does not meet Xj so St(S′,U) = St(S′,Uj ) = Xj which
is a contradiction with our choice of the family Uj . �
Corollary 3.10. If P is the Tychonoff plank then for any n ∈ N the space P × n is star determined by n-many
convergent sequences but not by (n − 1)-many convergent sequences.

Proof. That the space P × n is star determined by n-many convergent sequences is an easy consequence of Proposi-
tion 3.8. The space P is not countably compact so Proposition 3.9 can be applied to see that it is not star determined
by less than n convergent sequences. �
Proposition 3.11. Given a cardinal κ > ω, let Σ = {x ∈ D

κ : |x−1(1)| � ω} be a Σ -product in the Cantor cube D
κ .

Then, for any countable set A ⊂ D
κ , the space X = A ∪ Σ is star determined by metrizable compact spaces.

Proof. If U is an open cover of X then there is a countable U0 ⊂ U such that A ⊂ ⋃
U0. Since Σ is dense in X, there

is a countable set S ⊂ Σ which meets every element of U0. Since Σ is countably compact, there is a finite F ⊂ Σ such
that St(F,U) ⊃ Σ . The closure of any countable subset of Σ is compact and metrizable so K = F ∪ S is a metrizable
compact subspace of X such that St(K,U) = X. �
Theorem 3.12. There exists a space X which is star determined by metrizable compact spaces but not by compact
countable spaces.
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Proof. Let π0 : Dω1 → D
ω and π1 : Dω1 → D

ω1\ω be the natural projections; denote by Σ the subspace {x ∈ D
ω1 :

|x−1(1)| � ω} of D
ω1 . Take a faithfully indexed sequence S = {sn: n ∈ ω} ⊂ D

ω1\ω\π1(Σ) such that S converges to
a point s ∈ D

ω1\ω\(S ∪ π1(Σ)). We leave it to the reader to verify that

(∗) there is a disjoint family {On: n ∈ ω} ⊂ τ ∗(Dω) such that for any set D ⊂ D
ω with D ∩ On �= ∅ for all n ∈ ω, the

set D is uncountable.

Pick a point xn ∈ π−1
0 (On) such that π1(xn) = sn for any n ∈ ω; then the set D = {xn: n ∈ ω} does not meet Σ and

it follows from π1(D) ⊂ S that D ∩Σ = ∅. Therefore the set D is a closed discrete subspace of the space X = Σ ∪D.
By Proposition 3.11, the space X is star determined by metrizable compact spaces.

To see that X is not star determined by countable compact spaces observe that U = {Σ}∪ {π−1
0 (On)∩X: n ∈ ω} is

an open cover of X. If a set K ⊂ X is a compact kernel of U then K ∩π−1
0 (On) �= ∅ for each n ∈ ω. As a consequence,

π0(K) ∩ On �= ∅ for every n ∈ ω so (∗) implies that π0(K) = π0(K) is uncountable. Therefore K is uncountable as
well, i.e., U is a cover which witnesses that X is not star determined by compact countable spaces. �
4. Open problems

To show that this topic is far from being exhausted we present the following list of problems which might require
new methods for their solution.

Problem 4.1. Is Lindelöfness a self-dual property with respect to neighbourhood assignments?

Problem 4.2. Recall that a space X is weakly Lindelöf if, for any open cover U of the space X, there is a countable
U ′ ⊂ U such that

⋃
U ′ is dense in X. Is weak Lindelöfness a self-dual property with respect to neighbourhood

assignments?

Problem 4.3. Suppose that a space X is dually σ -compact, i.e., for any neighbourhood assignment {Ox : x ∈ X} of
the space X, there is a σ -compact subspace A ⊂ X such that

⋃{Ox : x ∈ A} = X? Must X be Lindelöf? How about
dually Lindelöf Σ -spaces?

Problem 4.4. Is it true that every Lindelöf space is dually second countable, i.e., for any neighbourhood assignment
{Ox : x ∈ X} of a Lindelöf space X, there is a second countable A ⊂ X such that

⋃{Ox : x ∈ A} = X? This is a
weakening of a van Douwen’s problem in which it is asked whether the set A can be made closed and discrete.

Problem 4.5. Suppose that a space X is dually separable, i.e., for any neighbourhood assignment {Ox : x ∈ X} there
is a separable subspace Y ⊂ X such that

⋃{Ox : x ∈ Y } = X. Must X be weakly Lindelöf?

Problem 4.6. Is any dually second countable (or dually cosmic) space a D-space? It is Lindelöf by Corollary 2.9(b)
but it is an open problem due to E. van Douwen as to whether every Lindelöf space is a D-space.

Problem 4.7. Suppose that X is a first countable space such that, for any neighbourhood assignment {Ox : x ∈ X}
there is a subspace Y ⊂ X such that c(Y ) = ω and

⋃{Ox : x ∈ Y } = X (i.e., X is in the class dual to the spaces
with the Souslin property). Is it true that |X| � c? A positive answer would generalize the Hajnal–Juhász inequality
|X| � 2χ(X)·c(X) for the case when χ(X) = c(X) = ω.

Problem 4.8. Is a star compact space metrizable if it has a Gδ-diagonal?

Problem 4.9. Suppose that K and L are metrizable compact spaces such that the classes star determined by K and L

coincide. Must K and L be homeomorphic?

Problem 4.10. Must every star compact topological group be countably compact?
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Problem 4.11. Is it true that any Tychonoff space embeds as a closed subspace in a space which is star determined by
convergent sequences?
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