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SUM THEOREMS FOR OHIO COMPLETENESSBYD. BASILE, J. VAN MILL and G. J. RIDDERBOS (Amsterdam)Abstrat. We present several sum theorems for Ohio ompleteness. We prove thatOhio ompleteness is preserved by taking σ-loally �nite losed sums and also by takingpoint-�nite open sums. We provide ounterexamples to show that Ohio ompleteness ispreserved neither by taking loally ountable losed sums nor by taking ountable opensums.1. Introdution. All spaes under onsideration are Tikhonov. A topo-logial spae X is alled Ohio omplete if for every ompati�ation γX of

X there is a Gδ-subset S of γX suh that X ⊆ S and, for every y ∈ S \ X,there is a Gδ-subset of γX whih ontains y and misses X.Ohio ompleteness was introdued by Arhangel′ski�� in [1℄ to study gen-eralized metrizability properties of remainders of ompati�ations. It wasshown in [1℄ that among the Ohio omplete spaes are all �eh-ompletespaes, Lindelöf spaes, p-spaes and spaes with a Gδ-diagonal. D. Basileand J. van Mill [2℄ have studied the behaviour of Ohio ompleteness withrespet to taking produts and losed subspaes.In [2℄ it is shown that the disjoint sum of Ohio omplete spaes is againOhio omplete. In this paper we prove more sum theorems for Ohio omplete-ness. Below we prove that Ohio ompleteness is preserved by taking σ-loally�nite losed sums. This generalizes the disjoint sum theorem from [2℄, and italso follows that a ountable losed sum of Ohio omplete subspaes is Ohioomplete. Moreover, we also prove that Ohio ompleteness is preserved bytaking point-�nite open sums.In the �nal setion of this paper, we provide several examples of non-Ohio omplete spaes to show the sharpness of our results. We provide anexample of a spae whih is not Ohio omplete but whih is overed by aloally ountable family of losed subspaes all of whih are Ohio omplete.This shows that there is no loally ountable losed sum theorem for Ohioompleteness. We also provide an example of a �rst ountable homogeneousspae whih is not Ohio omplete. This shows that the statement �Every2000 Mathematis Subjet Classi�ation: 54D35, 54B05, 54B25, 54G20.Key words and phrases: Ohio omplete, sum theorems, ompati�ation.[1℄



2 D. BASILE ET AL.�rst ountable topologial group is Ohio omplete� annot be generalizedto homogeneous spaes. Sine every �rst ountable spae is an open imageof a metrizable spae, it follows that Ohio ompleteness is not preserved bytaking open images. Finally, we present an example of a non-Ohio ompletespae whih is overed by a ountable olletion of open and Ohio ompletesubspaes.Our examples indiate that there is an essential di�erene between sumtheorems for open and for losed subspaes. Note that any spae X is theunion of a point-�nite family of losed and Ohio omplete subspaes, namelythe family {{x} : x ∈ X}. So any example of a non-Ohio omplete spaeshows that there is no point-�nite losed sum theorem for Ohio ompleteness.This ontrasts with the point-�nite open sum theorem for Ohio omplete-ness whih we will prove below. Furthermore, as mentioned before, we shallprovide a ounterexample to a ountable open sum theorem for Ohio om-pleteness. So although Ohio ompleteness is preserved by taking ountablelosed sums, this property is not preserved by taking ountable open sums.We would like to thank the referee for some helpful omments and re-marks.2. Preliminaries. Ohio ompleteness was introdued by Arhangel′ski��in [1℄ as a property of remainders of ompati�ations of spaes. In thispreliminary setion we show that one may also study the Ohio ompletenessproperty in a muh wider setting. This leads to several haraterizations ofOhio ompleteness. We also prove that the Ohio ompleteness property istransitive.We say that a subspae X of a spae Z is Ohio embedded in Z if thereis a Gδ-subset S of Z suh that X ⊆ S and, for every y ∈ S \ X, thereis a Gδ-subset of Z whih ontains y and misses X. So a spae X is Ohioomplete if and only if X is Ohio embedded in γX for every ompati�ation
γX of X.As in [2℄, we all a ompati�ation γX a good ompati�ation of X if
X is Ohio embedded in γX. Given spaes X and Z suh that X is Ohioembedded in Z, we say that a Gδ-subset S of Z is good with respet to Xif S ontains X and every point in S \ X an be separated from X by a
Gδ-subset of Z.For a spae Z we shall study the olletion of all Ohio embedded sub-spaes of Z. Of ourse, this olletion ontains all Ohio omplete subspaesof Z. The following propositions provide some more properties of the olle-tion of Ohio embedded subspaes. We omit the simple proofs.Proposition 2.1. If X is either a Gδ- or an Fσ-subset of Z, then Xis Ohio embedded in Z.



SUM THEOREMS FOR OHIO COMPLETENESS 3Proposition 2.2. If X ⊆ Y ⊆ Z and X is Ohio embedded in Z, then
X is Ohio embedded in Y .We now prove that the Ohio ompleteness property is transitive.Proposition 2.3. If X is Ohio embedded in Y and Y is Ohio embeddedin Z, then X is Ohio embedded in Z.Proof. By hypothesis, we may �x a Gδ-subset R of Y and a Gδ-subset Sof Z suh that R is good with respet to X and S is good with respet to Y .We may �x a Gδ-subset R̃ of Z suh that R = Y ∩ R̃. We laim that the
Gδ-subset R̃ ∩ S of Z is good with respet to X. So pik an arbitrary point
p ∈ (R̃∩S)\X. There are two ases to onsider. First assume that p ∈ Y . Inthis ase, p ∈ R and therefore p is separated from X by a Gδ-subset T of Y .We may �x a Gδ-subset T̃ of Z suh that T = Y ∩ T̃ . But then T̃ separatesthe point p from X.Seondly, suppose that p 6∈ Y . Then p ∈ S \ Y , hene by the hoie of S,the point p an be separated from Y by a Gδ-subset T of Z. Sine X ⊆ Y ,the set T also separates p from X. This ompletes the proof.Proposition 2.4. Let X be a spae. The following are equivalent :

(1) X is Ohio omplete,
(2) X is Ohio embedded in Z whenever X is a dense subspae of Z,
(3) X is Ohio embedded in Z whenever X is a subspae of Z.Proof. The impliation (3)⇒(1) is obvious. We �rst prove (1)⇒(2). Solet X be a dense subspae of Z. The �eh�Stone ompati�ation βZ of Zis also a ompati�ation of X (sine X is dense in Z). But then X is Ohioembedded in βZ by (1). Sine X ⊆ Z ⊆ βZ, it follows from Proposition 2.2that X is Ohio embedded in Z.Finally, we prove (2)⇒(3). So let X be a subspae of Z. Closures aretaken in Z. The set X is a losed subspae of Z and X is dense in X. By (2)it follows that X is Ohio embedded in X . Sine X is losed in Z, it followsfrom Proposition 2.1 that X is Ohio embedded in Z.So we see that X is Ohio embedded in X and X is Ohio embedded in Z.By Proposition 2.3, it follows that X is Ohio embedded in Z.Corollary 2.5. If X is Ohio embedded in Y , Y ⊆ Z and Y is Ohioomplete, then X is Ohio embedded in Z.Proof. This follows from Propositions 2.3 and 2.4.It was asked in [2, Question 3.3℄ whether a losed subspae of an Ohioomplete spae is again Ohio omplete, and it was proved there (see[2, Theorem 3.1℄) that this is the ase for C∗-embedded subspaes. We do not



4 D. BASILE ET AL.know the answer to [2, Question 3.3℄, but the following proposition providessome good ompati�ations of Fσ- and Gδ-subsets of Ohio omplete spaes.Proposition 2.6. Let X ⊆ Y ⊆ Z and suppose that Y is Ohio om-plete. If γZ is any ompati�ation of Z, then X
γZ is a good ompati�a-tion of X in eah of the following ases:

(1) X is an Fσ-subset of Z,
(2) X is a Gδ-subset of Z.Proof. If X is either an Fσ- or a Gδ-subset of Z, then it is a subset ofsimilar kind of Y . So in either ase it follows from Proposition 2.1 that Xis Ohio embedded in Y . By Corollary 2.5, we also know that X is Ohioembedded in γZ. Sine X ⊆ X

γZ
⊆ γZ, it follows from Proposition 2.2 that

X is Ohio embedded in X
γZ .We do not know whether a Gδ-subspae of an Ohio omplete spae isagain Ohio omplete, but we shall prove below (see Corollary 3.4) that theassertion �Every losed subset of an Ohio omplete spae is again Ohio om-plete� is equivalent to the assertion �Every Fσ-subspae of an Ohio ompletespae is again Ohio omplete�.Question 2.7. Is a Gδ-subspae of an Ohio omplete spae again Ohioomplete?3. Closed sum theorems for Ohio ompleteness. A family A ofsubsets of a spae X is alled loally �nite provided that for every x ∈ Xthere is a neighbourhood U of x suh that the set {A ∈ A : A ∩ U 6= ∅}is �nite. A family A of subsets of X is alled σ-loally �nite if A is theountable union of loally �nite families, i.e. A =

⋃
n∈ω An where eah Anis loally �nite.For a subspae Y of Z, showing that Y is Ohio embedded in Z usuallyonsists of two tasks: the �rst is to �nd a speial Gδ-subset S of Z whihontains Y , and seondly one needs to prove that S is good with respetto Y . The following lemma provides Gδ-subsets ontaining Y that are onlygood with respet to ertain subsets of Y .Lemma 3.1. Let X ⊆ Y ⊆ Z and suppose that X is the union of afamily F of losed subspaes of Y . Suppose moreover that every element of

F is Ohio embedded in Z, and that the family F is loally �nite in Y . Thenthere is a Gδ-subset S of Z whih ontains Y and suh that every point of
S \ Y an be separated from X by a Gδ-subset of Z.Proof. Let F = {Xi : i ∈ I} be the loally �nite family onsisting oflosed subspaes of Y suh that X =

⋃
F and suh that Xi is Ohio embedded



SUM THEOREMS FOR OHIO COMPLETENESS 5in Z, for every i ∈ I. For every y ∈ Y , �x an open neighbourhood Ũy of yin Z suh that if Uy = Y ∩ Ũy, then {i ∈ I : Xi ∩ Uy 6= ∅} is �nite.We will �rst �nd a Gδ-subset of Z ontaining Y and then we will provethat this Gδ-subset has the required properties. All losures are taken in Z.Note that by Proposition 2.2, Xi is Ohio embedded in X i for every i ∈ I,so we may �x a Gδ-subset Si of X i whih is good with respet to Xi. Theset Xi \ Si is an Fσ-subset of X i and hene of Z, so we may �x a olletion
{Fi,n : n ∈ ω} of losed subsets of Z suh that X i \ Si =

⋃
n∈ω Fi,n. Notethat sine eah Xi is a losed subset of Y , it follows that for every i ∈ I and

n ∈ ω, Y ∩ Fi,n = ∅. For every n ∈ ω, we de�ne
Gn =

⋃

i∈I

Fi,n.The set G =
⋃

n∈ω Gn is an Fσ-subset of Z, so its omplement is a Gδ-subsetof Z. We laim that G∩Y = ∅. To see this, note that if y ∈ Y and y ∈ Gn forsome n ∈ ω, then the set {i ∈ I : Fi,n ∩ Ũy 6= ∅} is in�nite. Sine Fi,n ⊆ X i,it then follows that the olletion {i ∈ I : Xi ∩ Uy 6= ∅} is in�nite, and thisis impossible.We now de�ne our Gδ-subset of Z as follows: let U =
⋃
{Ũy : y ∈ Y } andlet S = U \G. Sine G∩ Y = ∅ and U is an open subset of Z ontaining Y ,it follows that S is a Gδ-subset of Z ontaining Y . We will now prove thatthis Gδ-subset has the required properties.So �x z ∈ S \ Y . Then z ∈ Ũy for some y ∈ Y . Let J = {i ∈ I : z ∈ Xi}and K = {i ∈ I : X i ∩ Ũy 6= ∅}. Note that J ⊆ K and K is �nite by thehoie of Ũy. Sine z 6∈ G, it follows that z ∈ Sj for all j ∈ J . Sine Sj is a

Gδ-subset of Xj whih is good for Xi, for every j ∈ J we may �x a Gδ-subset
Tj of Z suh that z ∈ Tj and Tj ∩ Xj = ∅. Now let

T = Ũy ∩
⋂

j∈J

Tj ∩
⋂

k∈K\J

(Z \ Xk).It is not hard to verify that T is a Gδ-subset of Z whih ontains z andmisses X. Sine z ∈ S was arbitrary, this shows that the Gδ-set S has therequired properties, and this ompletes the proof.Theorem 3.2. Let X be the union of a σ-loally �nite family F of losedsubspaes. If X ⊆ Z and every element of F is Ohio embedded in Z, then
X is Ohio embedded in Z.Proof. Let F =

⋃
n∈ω Fn, where eah Fn is loally �nite in X. For n ∈ ω,let Xn =

⋃
Fn. Applying Lemma 3.1, for every n ∈ ω we �nd a Gδ-subset Snof Z ontaining X suh that every point in Sn \X an be separated from Xnby a Gδ-subset of Z.



6 D. BASILE ET AL.Now let S =
⋂

n∈ω Sn. It is lear that S is a Gδ-subset of Z whihontains X. We will show that S is good with respet to X. So let z ∈ S \X.For every n ∈ ω we may �nd a Gδ-subset Tn of Z suh that z ∈ Tn and
Xn ∩ Tn = ∅. But then T =

⋂
n∈ω Tn is a Gδ-subset of Z whih separates zfrom X.Corollary 3.3. Let X be the union of a σ-loally �nite family of losedsubspaes. If every element of the family is ontained in an Ohio ompletesubspae of X, then X is itself Ohio omplete.Proof. Fix a σ-loally �nite family F of losed subspaes of X suh that

X =
⋃

F, and suh that every element of F is ontained in an Ohio ompletesubspae of X. To show that X is Ohio omplete, we �x an arbitrary om-pati�ation γX of X. First note that by Proposition 2.1 and Corollary 2.5,every element of F is Ohio embedded in γX. So it follows from the previ-ous theorem that X is Ohio embedded in γX. Sine γX was an arbitraryompati�ation of X, this ompletes the proof.It follows that if X is the union of a loally �nite family of losed andOhio omplete subspaes, then X is itself Ohio omplete. This generalizesthe disjoint sum theorem proved in [2℄. We also see that if X is the ountableunion of losed and Ohio omplete subspaes, then X is Ohio omplete. SoOhio ompleteness is also preserved by taking ountable losed sums. Thisyields the following equivalene.Corollary 3.4. Let X be Ohio omplete. Then the following statementsare equivalent :
(1) every losed subset of X is Ohio omplete,
(2) every Fσ-subset of X is Ohio omplete.4. Open sum theorems for Ohio ompleteness. It is a well knownfat that a �nite union of Gδ-subsets is again a Gδ-subset ([5, p. 26℄). Thisfat yields the following observation.Proposition 4.1. Suppose G is a �nite over of X onsisting of Gδ-subsets of X. If X ⊆ Z and every element of G is Ohio embedded in Z,then X is Ohio embedded in Z.Proof. Let G = {Gi : i ∈ I}, where I is �nite. For every i ∈ I, we may �xa Gδ-subset Si of Z whih is good with respet to Gi. Note that sine Gi is a

Gδ-subset of X, we may assume without loss of generality that Si ∩X = Gi.Then S =
⋃

i∈I Si is a Gδ-subset of Z sine it is a �nite union of Gδ-subsetsof Z. We laim that S is good with respet to X. First of all, note that
X ⊆ S, sine Gi ⊆ Si for i ∈ I. So it remains to verify that every point in
S \ X an be separated from X by a Gδ-subset of Z.



SUM THEOREMS FOR OHIO COMPLETENESS 7So �x an arbitrary point z ∈ S \ X. Then z ∈ Si \ Gi for some i ∈ I. Soby onstrution, there is a Gδ-subset T of Z suh that z ∈ T and T ∩Gi = ∅.But then, sine Si ∩ X = Gi, the set Si ∩ T is a Gδ-subset of Z whihseparates z from X.Corollary 4.2. Let G be a �nite over of X whose members are Gδ-subsets. If every element of G is ontained in an Ohio omplete subspaeof X, then X is itself Ohio omplete.Proof. Fix an arbitrary ompati�ation γX of X. Sine every elementof G is ontained in an Ohio omplete subspae of X, it follows from Proposi-tion 2.1 and Corollary 2.5 that every element of G is Ohio embedded in γX.So by the previous proposition, X is Ohio embedded in γX. Sine γX wasan arbitrary ompati�ation of X, this shows that X is Ohio omplete.So in partiular, if X is overed by a �nite family of open and Ohioomplete subspaes, then X is also Ohio omplete.The following lemma is well known (see [10, Lemma 3℄). For ompletenesswe inlude the simple proof. Reall that a family A of subsets of X is alledpoint-�nite if for every x ∈ X, the set {A ∈ A : x ∈ A} is �nite.Lemma 4.3. Let G be a family of Gδ-subsets of a spae X. If there isa point-�nite family U = {U(G) : G ∈ G} of open subsets of X suh that
G ⊆ U(G) for all G ∈ G, then ⋃

G is also a Gδ-subset of X.Proof. Fix the point-�nite family U = {U(G) : G ∈ G} of open subsetsof X suh that G ⊆ U(G) for all G ∈ G. For every G ∈ G, we �x a dereasingsequene (Gn)n∈ω of open subsets of U(G) (and hene of X) suh that G =⋂
n∈ω Gn. We now let Wn =

⋃
{Gn : G ∈ G} and W =

⋂
n∈ω Wn. Note that

W is a Gδ-subset of X.We will prove that ⋃
G = W . Clearly, ⋃ G ⊆ W . For the reverse inlusion,let x ∈ W be arbitrary. By hypothesis, the set F = {G ∈ G : x ∈ U(G)} is�nite. Suppose, aiming at a ontradition, that x 6∈

⋃
F. Sine F is �nite, wemay �nd an index n ∈ ω so large that x 6∈ Gn for all G ∈ F. Then x 6∈ Wn,whih is a ontradition, sine x ∈ W . So it follows that x ∈

⋃
F and hene

x ∈
⋃

G.We now ome to the main result of this setion.Theorem 4.4. Let U be a point-�nite open over of X. If X ⊆ Z andevery element of U is Ohio embedded in Z, then X is Ohio embedded in Z.Proof. Let U = {Ui : i ∈ I}, and for every i ∈ I, �x an open set Ũi of Zsuh that Ui = X ∩ Ũi. We let Y be the subspae of Z given by
Y = {z ∈ Z : {i ∈ I : z ∈ Ũi} is �nite}.



8 D. BASILE ET AL.Note that sine U is a point-�nite over of X, we have X ⊆ Y . We now provethat X is Ohio embedded in Z in two steps; �rst we show that X is Ohioembedded in Y and then we show that Y is Ohio embedded in Z.Claim 1. X is Ohio embedded in Y .Proof. For U ∈ U we have U ⊆ Y ⊆ Z, so it follows from Proposition 2.2that every element of U is Ohio embedded in Y . So for every i ∈ I, we may�x a Gδ-subset Si of Y whih is good with respet to Ui. Without loss ofgenerality, we may assume that Si ⊆ Ũi ∩ Y . Let S =
⋃
{Si : i ∈ I}. Byde�nition of Y , the family {Ũi ∩ Y : i ∈ I} is a point-�nite family of opensubsets of Y . So it follows from Lemma 4.3 that S is a Gδ-subset of Y . Weleave it to the reader to verify that S is good with respet to X. ◭Claim 2. Y is Ohio embedded in Z.Proof. We will show that Z is good with respet to Y . So suppose that

z ∈ Z \ Y . By de�nition, the set {i ∈ I : z ∈ Ũi} is in�nite. So we may �x aountably in�nite subset J of I suh that z ∈ Ũj for every j ∈ J . But then
T =

⋂
j∈J Ũj is a Gδ-subset of Z whih separates z from Y . ◭It now follows from Proposition 2.3 that X is Ohio embedded in Z.Corollary 4.5. Let U be a point-�nite open over of X. If every ele-ment of U is ontained in an Ohio omplete subspae of X, then X is itselfOhio omplete.Proof. Fix an arbitrary ompati�ation γX of X. By Proposition 2.1and Corollary 2.5, the assumptions imply that every element of U is Ohioembedded in γX. So it follows from the previous theorem that X is Ohioembedded in γX. Sine γX was an arbitrary ompati�ation of X, thisproves that X is Ohio omplete.So in partiular it follows from the previous result that if X is overed bya loally �nite family of open and Ohio omplete subspaes, then X is alsoOhio omplete. Reall that a spae X is (ountably) metaompat if every(ountable) open over of X has a point-�nite open re�nement. A spae Xis (ountably) submetaompat if for every (ountable) open over U of X,there is a ountable olletion E of losed subsets of X suh that for every

E ∈ E, there exists an open over UE of X re�ning U and point-�nite on E.Gittings proved in [7℄ that ountable submetaompatness is equivalent toountable metaompatness.Corollary 4.6. Let X be a (ountable) submetaompat spae and U a(ountable) open over of X. If every element of U is ontained in an Ohioomplete subspae of X, then X is itself Ohio omplete.



SUM THEOREMS FOR OHIO COMPLETENESS 9Proof. We may �x a ountable olletion E of losed subsets of X and forevery E ∈ E an open over UE of X re�ning U and point-�nite on E. Nowlet γX be an arbitrary ompati�ation of X. By Theorem 3.2 it su�esto prove that eah E ∈ E is Ohio embedded in γX. Fix E ∈ E. It followsfrom Propositions 2.1 and 2.3 that for every U ∈ UE, the set U ∩ E is Ohioembedded in γX. Sine {U ∩ E : U ∈ UE} is a point-�nite open over of E,it follows from Theorem 4.4 that E is Ohio embedded in γX. This ompletesthe proof.With respet to ountable open overs, the following orollary is the mostgeneral result of this setion. Note that if Question 2.7 has a positive answer,then the ountable ase of the previous result follows from the next.Corollary 4.7. Let X be a ountably submetaompat spae and let Ube a σ-point-�nite open over of X. If every element of U is Ohio omplete,then X is also Ohio omplete.Proof. Note that X is ountably metaompat by [7, Theorem 2.2℄. Let
X =

⋃
n∈ω Un, where every Un is the union of a point-�nite family of openand Ohio omplete subspaes of X. By Corollary 4.5, every Un is Ohioomplete. Sine X is ountably metaompat, there exists a point-�nite openre�nement V of the over {Un : n ∈ ω}. Applying Corollary 4.5 for a seondtime shows that X is Ohio omplete.Let U be a ountable open over of the spae X. It follows from theprevious result that if X is ountably submetaompat and every memberof U is Ohio omplete, then X is also Ohio omplete. Note that amongthe ountably submetaompat spaes are all ountably ompat, ountablyparaompat and ountably subparaompat spaes. In general, there is noountable open sum theorem for Ohio ompleteness: in the �nal setion ofthis paper we present an example of a non-Ohio omplete spae whih isovered by ountably many open and Ohio omplete subspaes.5. Examples. In this setion we provide some simple examples of spaesthat are not Ohio omplete. The following simple observation is used in everyexample.Lemma 5.1. Let X be an Ohio omplete subspae of Z. If X is not a

Gδ-subset of Z, then Z \ X ontains a non-empty Gδ-subset of Z.Proof. Sine X is Ohio omplete, it follows from Proposition 2.4 that Xis Ohio embedded in Z. So we may �x a Gδ-subset S of Z whih is good withrespet to X. Sine X is not a Gδ-subset of Z, the set S \ X is non-empty.Sine every point of S \X an be separated from X by a Gδ-subset of Z, itfollows that Z \ X ontains a non-empty Gδ-subset of Z.



10 D. BASILE ET AL.The �rst simple example shows that a spae whih is the union of twoOhio omplete subspae, one open and the other losed, need not be Ohioomplete.Example 5.2. Let Y be an unountable disrete spae and let αY =
Y ∪ {∞} be its one-point ompati�ation. The example is the subspae Xof the produt Z = αY × αY where X = (Y × Y ) ∪ {(∞,∞)}. Note thatboth Y × Y and {(∞,∞)} are Ohio omplete.If G is a Gδ-subset of Z whih ontains the point (∞,∞), then G∩(Z\X)is non-empty, so X is not a Gδ-subset of Z. Similarly, Z \ X ontains nonon-empty Gδ-subset of Z, so it follows from Lemma 5.1 that X is not Ohioomplete.A family A of subsets of a spae X is alled loally ountable providedthat for every x ∈ X, there is a neighbourhood U of x suh that the set
{A ∈ A : A ∩ U 6= ∅} is ountable. Note that every σ-loally �nite family isloally ountable. In view of Corollary 3.3 it is natural to ask whether Ohioompleteness is preserved by taking loally ountable losed sums. We nowprovide an example to show that this is not the ase.The spaes ω1 and ω1+1 arry the usual order topology. Whenever α <
β ≤ ω1, then (α, β), [α, β] and (α, β] denote the usual intervals in ω1+1.Example 5.3. Let L be the set of all limit ordinals in ω1. We let Z =
ω1 × (ω1 + 1) and X be the subspae of Z given by

X = (ω1 × ω1) ∪ (L × {ω1}).To avoid onfusion with intervals, we denote elements of Z by 〈α, β〉. We useLemma 5.1 to show that X is not Ohio omplete. Sine every losed subsetof ω1 that misses L is �nite, it follows that L is not a Gδ-subset of ω1. Butthen X is not a Gδ-subset of Z. To onlude that X is not Ohio omplete,observe that Z \ X ontains no non-empty Gδ-subset of Z.It remains to verify that X is the union of a loally ountable family oflosed and Ohio omplete subspaes of X. Let π be the projetion of X ontothe �rst oordinate. That is, π : X → ω1 is given by π(〈α, β〉) = α. We letthe losed over A of X be given by
A = {π−1(α) : α ∈ ω1}.Note that the �bers of π are homeomorphi to ω1+1 or to ω1, whih areboth Ohio omplete spaes sine they are (loally) ompat. Furthermore,sine ω1 is loally ountable in itself and π is ontinuous, it follows that Ais loally ountable in X.It follows from Corollary 3.3 that if the family {{x} : x ∈ X} is σ-loally�nite in X, then X × Y is Ohio omplete whenever Y is Ohio omplete. Inpartiular, if X is either ountable or disrete and Y is Ohio omplete, then
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X ×Y is Ohio omplete. In the previous example we have made good use ofthe fat that the family {{α} : α ∈ ω1} is loally ountable but not σ-loally�nite in ω1. This raises the following question:Question 5.4. Suppose that X is Ohio omplete. Is ω1 × X also Ohioomplete?We shall now provide several examples of �rst ountable spaes that arenot Ohio omplete. In the following theorem we use a modi�ation of the wellknown Aleksandrov dupliate to obtain examples of �rst ountable non-Ohioomplete spaes.Theorem 5.5. Suppose X is a dense Lindelöf subspae of Z suh thatevery Gδ-subset of Z ontaining X is unountable. Then there is a non-Ohioomplete spae Y whih satis�es the following onditions:
(1) If X is �rst ountable, then so is Y .
(2) If X is zero-dimensional , then so is Y .Proof. The spae ω1+2 arries the usual order topology, it is the disjointsum of the spae ω1+1 and the point ω1+1. The set W is given by Z×(ω1+2)and Y is given as the following subset of W :

Y = (Z × ω1) ∪ (X × {ω1+1}).We de�ne a topology on W as follows: basi open neighbourhoods of pointsof the form 〈z, α〉, where z ∈ Z and α ∈ ω1+1, are of the form {z} × Uwhere U is an open subset of ω1+1. Basi open neighbourhoods of points ofthe form 〈z, ω1+1〉 are given by
U(z) = (U × (ω1+2)) \ ({z} × (ω1+1)),where U is an open neighbourhood of z in Z. We leave it to the reader toverify that these sets may serve as a basis for a Tikhonov topology on W . Wepoint out that the topology on W may be viewed as a resolution topology(see [6℄ and [11℄ for details on resolutions). The subset Y is given the subspaetopology inherited from W and it is not hard to verify that (2) holds. For (1),assume that X is �rst ountable. Sine X is dense in Z, it follows that Z is�rst ountable at every point of X (see for example [9, 2.7℄). Now it followseasily that Y is also �rst ountable.We shall now show that Y is not Ohio omplete. Sine {z} × (ω1+1)is homeomorphi to ω1+1, no point of the set Z × {ω1} an be separatedfrom Y by a Gδ-subset of W . Using the tehniques of Lemma 5.1, non-Ohioompleteness of Y follows from the following observation:Claim 1. Whenever G is a non-empty Gδ-subset of W ontaining Ythen G ∩ (Z × {ω1}) 6= ∅.
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⋂

n∈ω Gn be a Gδ-subset ontaining Y , where eah Gnis an open subset of W . Note that the losed subspae X × {ω1+1} of Wis homeomorphi to X. Sine X is Lindelöf, for every n ∈ ω we may �nd aountable subset Fn of X and for eah x ∈ Fn an open neighbourhood Ux,nof x in Z suh that
X × {ω1+1} ⊆

⋃
{Ux,n(x) : x ∈ Fn} ⊆ Gn.For n ∈ ω, we let Un =

⋃
{Ux,n : x ∈ Fn} and U =

⋂
n∈ω Un. We alsolet F =

⋃
n∈ω Fn. Note that sine eah Fn is ountable, the set F is alsoountable. Sine U is a Gδ-subset of Z whih ontains X, we see that U \ Fis unountable, so in partiular it is non-empty. Now let z ∈ U \ F . It is nothard to realize that in this ase we have

{z} × (ω1+2) ⊆ G,so that 〈z, ω1〉 ∈ G ∩ (Z × {ω1}), and this proves the laim. ◭As indiated before, this proves the theorem.From this theorem follow many examples of �rst ountable non-Ohioomplete spaes. For instane, the set of rationals Q is a Lindelöf subspaeof the reals. Sine Q is not a Gδ-subset of the reals, it follows that every
Gδ-set ontaining Q is unountable. Seondly, in the previous theorem wemay also take X = Z = C, where C is the usual Cantor set. Sine C isompat and unountable, the previous theorem yields a �rst ountable zero-dimensional non-Ohio omplete spae Y . It was proved by Dow and Pearl[4℄ that in this ase Y ω is homogeneous. One veri�es easily that sine Y isnot Ohio omplete, neither is Y ω. So Y ω is an example of a homogeneous�rst ountable spae whih is not Ohio omplete.It is well known that every �rst ountable topologial group is metriz-able (see for example [8, Theorem 8.3℄). Sine every metrizable spae is Ohioomplete, it follows that �rst ountable topologial groups are Ohio om-plete. The last example demonstrates that this is not true in general for �rstountable homogeneous spaes.The fat that non-Ohio omplete �rst ountable spaes exist yields thefollowing:Corollary 5.6. Ohio ompleteness is not preserved by open mappings.Proof. Every �rst ountable spae is the image of a metrizable spaeunder an open mapping. This was proved by Ponomarev (see for example[5, Problem 4.2.D℄). We have just provided an example of a �rst ountablespae whih is not Ohio omplete. Sine every metrizable spae is Ohioomplete, the statement follows.Our �nal example shows that there is no ountable open sum theoremfor Ohio ompleteness. We present an example of a non-Ohio omplete, zero-



SUM THEOREMS FOR OHIO COMPLETENESS 13dimensional and �rst ountable spae whih is overed by ountably manyopen and Ohio omplete subspaes.Example 5.7. The example is a slight modi�ation of [3, Example 2.4℄.For eah q ∈ Q, let A(q) be a maximal family of one-to-one funtions fromthe set N of natural numbers into the set P of irrationals, suh that
(1) If a ∈ A(q), then |a(n) − q| < 1/n for all n ∈ N.
(2) If a, b ∈ A(q) are di�erent, then a(N) ∩ b(N) is �nite.We �x an unountable disrete spae Y and let αY = Y ∪{∞} be its one-point ompati�ation. Put A =

⋃
{A(q) : q ∈ Q} and let Z = A∪ (P×αY ).For a ∈ A and k ∈ N, we let

U(a, k) = {a} ∪
⋃

{a(n) × αY : n ≥ k}.The olletion B, whih serves as a base for a topology on Z, is given by
B = {U(a, k) : a ∈ A, k ∈ N}∪{R×U : R ⊆ P, U is an open subset of αY }.From now on we onsider Z with the topology generated by B. It is easilyveri�ed that Z is Hausdor� and loally ompat and hene Tikhonov. We let
X be the subspae of Z wih is given by A∪ (P× Y ). We shall show that Xis the union of ountably many open and Ohio omplete subspaes but that
X itself is not Ohio omplete. Note that for p ∈ P, the subspae {p} × αYof Z is homeomorphi to αY and therefore Z \ X ontains no non-empty
Gδ-subset of Z. So by Lemma 5.1, to show that X is not Ohio omplete itsu�es to show that X is not a Gδ-subset of Z:Claim 1. X is not a Gδ-subset of Z.Proof. If X is a Gδ-subset of Z, then A is a Gδ-subset of the subspae
A ∪ (P × {∞}) of Z. This subspae is just the spae Z4 in [3, Example 2.4℄and it is proved there that A is not a Gδ-subset of Z4. It follows that X isnot a Gδ-subset of Z. ◭We now show that X is the union of ountably many open and Ohioomplete subspaes. For eah q ∈ Q, we let Xq = A(q)∪(P×Y ). It is not hardto verify that Xq is an open subspae of X and of ourse X =

⋃
{Xq : q ∈ Q}.It remains to verify that eah Xq is Ohio omplete.Claim 2. For eah q ∈ Q, the spae Xq is Ohio omplete.Proof. Fix q ∈ Q. Note that both A(q) and P×Y are disrete subspaesof Xq. Sine a disrete spae is Ohio omplete, we see that Xq is the union oftwo Ohio omplete subspaes. The spae P × Y is learly an open subspaeof Xq, and as in [3, Example 2.4℄, the set A(q) is a Gδ-subset of Xq. It followsfrom Corollary 4.2 that Xq is Ohio omplete. ◭
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