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SUM THEOREMS FOR OHIO COMPLETENESSBYD. BASILE, J. VAN MILL and G. J. RIDDERBOS (Amsterdam)Abstra
t. We present several sum theorems for Ohio 
ompleteness. We prove thatOhio 
ompleteness is preserved by taking σ-lo
ally �nite 
losed sums and also by takingpoint-�nite open sums. We provide 
ounterexamples to show that Ohio 
ompleteness ispreserved neither by taking lo
ally 
ountable 
losed sums nor by taking 
ountable opensums.1. Introdu
tion. All spa
es under 
onsideration are Tikhonov. A topo-logi
al spa
e X is 
alled Ohio 
omplete if for every 
ompa
ti�
ation γX of

X there is a Gδ-subset S of γX su
h that X ⊆ S and, for every y ∈ S \ X,there is a Gδ-subset of γX whi
h 
ontains y and misses X.Ohio 
ompleteness was introdu
ed by Arhangel′ski�� in [1℄ to study gen-eralized metrizability properties of remainders of 
ompa
ti�
ations. It wasshown in [1℄ that among the Ohio 
omplete spa
es are all �e
h-
ompletespa
es, Lindelöf spa
es, p-spa
es and spa
es with a Gδ-diagonal. D. Basileand J. van Mill [2℄ have studied the behaviour of Ohio 
ompleteness withrespe
t to taking produ
ts and 
losed subspa
es.In [2℄ it is shown that the disjoint sum of Ohio 
omplete spa
es is againOhio 
omplete. In this paper we prove more sum theorems for Ohio 
omplete-ness. Below we prove that Ohio 
ompleteness is preserved by taking σ-lo
ally�nite 
losed sums. This generalizes the disjoint sum theorem from [2℄, and italso follows that a 
ountable 
losed sum of Ohio 
omplete subspa
es is Ohio
omplete. Moreover, we also prove that Ohio 
ompleteness is preserved bytaking point-�nite open sums.In the �nal se
tion of this paper, we provide several examples of non-Ohio 
omplete spa
es to show the sharpness of our results. We provide anexample of a spa
e whi
h is not Ohio 
omplete but whi
h is 
overed by alo
ally 
ountable family of 
losed subspa
es all of whi
h are Ohio 
omplete.This shows that there is no lo
ally 
ountable 
losed sum theorem for Ohio
ompleteness. We also provide an example of a �rst 
ountable homogeneousspa
e whi
h is not Ohio 
omplete. This shows that the statement �Every2000 Mathemati
s Subje
t Classi�
ation: 54D35, 54B05, 54B25, 54G20.Key words and phrases: Ohio 
omplete, sum theorems, 
ompa
ti�
ation.[1℄



2 D. BASILE ET AL.�rst 
ountable topologi
al group is Ohio 
omplete� 
annot be generalizedto homogeneous spa
es. Sin
e every �rst 
ountable spa
e is an open imageof a metrizable spa
e, it follows that Ohio 
ompleteness is not preserved bytaking open images. Finally, we present an example of a non-Ohio 
ompletespa
e whi
h is 
overed by a 
ountable 
olle
tion of open and Ohio 
ompletesubspa
es.Our examples indi
ate that there is an essential di�eren
e between sumtheorems for open and for 
losed subspa
es. Note that any spa
e X is theunion of a point-�nite family of 
losed and Ohio 
omplete subspa
es, namelythe family {{x} : x ∈ X}. So any example of a non-Ohio 
omplete spa
eshows that there is no point-�nite 
losed sum theorem for Ohio 
ompleteness.This 
ontrasts with the point-�nite open sum theorem for Ohio 
omplete-ness whi
h we will prove below. Furthermore, as mentioned before, we shallprovide a 
ounterexample to a 
ountable open sum theorem for Ohio 
om-pleteness. So although Ohio 
ompleteness is preserved by taking 
ountable
losed sums, this property is not preserved by taking 
ountable open sums.We would like to thank the referee for some helpful 
omments and re-marks.2. Preliminaries. Ohio 
ompleteness was introdu
ed by Arhangel′ski��in [1℄ as a property of remainders of 
ompa
ti�
ations of spa
es. In thispreliminary se
tion we show that one may also study the Ohio 
ompletenessproperty in a mu
h wider setting. This leads to several 
hara
terizations ofOhio 
ompleteness. We also prove that the Ohio 
ompleteness property istransitive.We say that a subspa
e X of a spa
e Z is Ohio embedded in Z if thereis a Gδ-subset S of Z su
h that X ⊆ S and, for every y ∈ S \ X, thereis a Gδ-subset of Z whi
h 
ontains y and misses X. So a spa
e X is Ohio
omplete if and only if X is Ohio embedded in γX for every 
ompa
ti�
ation
γX of X.As in [2℄, we 
all a 
ompa
ti�
ation γX a good 
ompa
ti�
ation of X if
X is Ohio embedded in γX. Given spa
es X and Z su
h that X is Ohioembedded in Z, we say that a Gδ-subset S of Z is good with respe
t to Xif S 
ontains X and every point in S \ X 
an be separated from X by a
Gδ-subset of Z.For a spa
e Z we shall study the 
olle
tion of all Ohio embedded sub-spa
es of Z. Of 
ourse, this 
olle
tion 
ontains all Ohio 
omplete subspa
esof Z. The following propositions provide some more properties of the 
olle
-tion of Ohio embedded subspa
es. We omit the simple proofs.Proposition 2.1. If X is either a Gδ- or an Fσ-subset of Z, then Xis Ohio embedded in Z.



SUM THEOREMS FOR OHIO COMPLETENESS 3Proposition 2.2. If X ⊆ Y ⊆ Z and X is Ohio embedded in Z, then
X is Ohio embedded in Y .We now prove that the Ohio 
ompleteness property is transitive.Proposition 2.3. If X is Ohio embedded in Y and Y is Ohio embeddedin Z, then X is Ohio embedded in Z.Proof. By hypothesis, we may �x a Gδ-subset R of Y and a Gδ-subset Sof Z su
h that R is good with respe
t to X and S is good with respe
t to Y .We may �x a Gδ-subset R̃ of Z su
h that R = Y ∩ R̃. We 
laim that the
Gδ-subset R̃ ∩ S of Z is good with respe
t to X. So pi
k an arbitrary point
p ∈ (R̃∩S)\X. There are two 
ases to 
onsider. First assume that p ∈ Y . Inthis 
ase, p ∈ R and therefore p is separated from X by a Gδ-subset T of Y .We may �x a Gδ-subset T̃ of Z su
h that T = Y ∩ T̃ . But then T̃ separatesthe point p from X.Se
ondly, suppose that p 6∈ Y . Then p ∈ S \ Y , hen
e by the 
hoi
e of S,the point p 
an be separated from Y by a Gδ-subset T of Z. Sin
e X ⊆ Y ,the set T also separates p from X. This 
ompletes the proof.Proposition 2.4. Let X be a spa
e. The following are equivalent :

(1) X is Ohio 
omplete,
(2) X is Ohio embedded in Z whenever X is a dense subspa
e of Z,
(3) X is Ohio embedded in Z whenever X is a subspa
e of Z.Proof. The impli
ation (3)⇒(1) is obvious. We �rst prove (1)⇒(2). Solet X be a dense subspa
e of Z. The �e
h�Stone 
ompa
ti�
ation βZ of Zis also a 
ompa
ti�
ation of X (sin
e X is dense in Z). But then X is Ohioembedded in βZ by (1). Sin
e X ⊆ Z ⊆ βZ, it follows from Proposition 2.2that X is Ohio embedded in Z.Finally, we prove (2)⇒(3). So let X be a subspa
e of Z. Closures aretaken in Z. The set X is a 
losed subspa
e of Z and X is dense in X. By (2)it follows that X is Ohio embedded in X . Sin
e X is 
losed in Z, it followsfrom Proposition 2.1 that X is Ohio embedded in Z.So we see that X is Ohio embedded in X and X is Ohio embedded in Z.By Proposition 2.3, it follows that X is Ohio embedded in Z.Corollary 2.5. If X is Ohio embedded in Y , Y ⊆ Z and Y is Ohio
omplete, then X is Ohio embedded in Z.Proof. This follows from Propositions 2.3 and 2.4.It was asked in [2, Question 3.3℄ whether a 
losed subspa
e of an Ohio
omplete spa
e is again Ohio 
omplete, and it was proved there (see[2, Theorem 3.1℄) that this is the 
ase for C∗-embedded subspa
es. We do not



4 D. BASILE ET AL.know the answer to [2, Question 3.3℄, but the following proposition providessome good 
ompa
ti�
ations of Fσ- and Gδ-subsets of Ohio 
omplete spa
es.Proposition 2.6. Let X ⊆ Y ⊆ Z and suppose that Y is Ohio 
om-plete. If γZ is any 
ompa
ti�
ation of Z, then X
γZ is a good 
ompa
ti�
a-tion of X in ea
h of the following 
ases:

(1) X is an Fσ-subset of Z,
(2) X is a Gδ-subset of Z.Proof. If X is either an Fσ- or a Gδ-subset of Z, then it is a subset ofsimilar kind of Y . So in either 
ase it follows from Proposition 2.1 that Xis Ohio embedded in Y . By Corollary 2.5, we also know that X is Ohioembedded in γZ. Sin
e X ⊆ X

γZ
⊆ γZ, it follows from Proposition 2.2 that

X is Ohio embedded in X
γZ .We do not know whether a Gδ-subspa
e of an Ohio 
omplete spa
e isagain Ohio 
omplete, but we shall prove below (see Corollary 3.4) that theassertion �Every 
losed subset of an Ohio 
omplete spa
e is again Ohio 
om-plete� is equivalent to the assertion �Every Fσ-subspa
e of an Ohio 
ompletespa
e is again Ohio 
omplete�.Question 2.7. Is a Gδ-subspa
e of an Ohio 
omplete spa
e again Ohio
omplete?3. Closed sum theorems for Ohio 
ompleteness. A family A ofsubsets of a spa
e X is 
alled lo
ally �nite provided that for every x ∈ Xthere is a neighbourhood U of x su
h that the set {A ∈ A : A ∩ U 6= ∅}is �nite. A family A of subsets of X is 
alled σ-lo
ally �nite if A is the
ountable union of lo
ally �nite families, i.e. A =

⋃
n∈ω An where ea
h Anis lo
ally �nite.For a subspa
e Y of Z, showing that Y is Ohio embedded in Z usually
onsists of two tasks: the �rst is to �nd a spe
ial Gδ-subset S of Z whi
h
ontains Y , and se
ondly one needs to prove that S is good with respe
tto Y . The following lemma provides Gδ-subsets 
ontaining Y that are onlygood with respe
t to 
ertain subsets of Y .Lemma 3.1. Let X ⊆ Y ⊆ Z and suppose that X is the union of afamily F of 
losed subspa
es of Y . Suppose moreover that every element of

F is Ohio embedded in Z, and that the family F is lo
ally �nite in Y . Thenthere is a Gδ-subset S of Z whi
h 
ontains Y and su
h that every point of
S \ Y 
an be separated from X by a Gδ-subset of Z.Proof. Let F = {Xi : i ∈ I} be the lo
ally �nite family 
onsisting of
losed subspa
es of Y su
h that X =

⋃
F and su
h that Xi is Ohio embedded



SUM THEOREMS FOR OHIO COMPLETENESS 5in Z, for every i ∈ I. For every y ∈ Y , �x an open neighbourhood Ũy of yin Z su
h that if Uy = Y ∩ Ũy, then {i ∈ I : Xi ∩ Uy 6= ∅} is �nite.We will �rst �nd a Gδ-subset of Z 
ontaining Y and then we will provethat this Gδ-subset has the required properties. All 
losures are taken in Z.Note that by Proposition 2.2, Xi is Ohio embedded in X i for every i ∈ I,so we may �x a Gδ-subset Si of X i whi
h is good with respe
t to Xi. Theset Xi \ Si is an Fσ-subset of X i and hen
e of Z, so we may �x a 
olle
tion
{Fi,n : n ∈ ω} of 
losed subsets of Z su
h that X i \ Si =

⋃
n∈ω Fi,n. Notethat sin
e ea
h Xi is a 
losed subset of Y , it follows that for every i ∈ I and

n ∈ ω, Y ∩ Fi,n = ∅. For every n ∈ ω, we de�ne
Gn =

⋃

i∈I

Fi,n.The set G =
⋃

n∈ω Gn is an Fσ-subset of Z, so its 
omplement is a Gδ-subsetof Z. We 
laim that G∩Y = ∅. To see this, note that if y ∈ Y and y ∈ Gn forsome n ∈ ω, then the set {i ∈ I : Fi,n ∩ Ũy 6= ∅} is in�nite. Sin
e Fi,n ⊆ X i,it then follows that the 
olle
tion {i ∈ I : Xi ∩ Uy 6= ∅} is in�nite, and thisis impossible.We now de�ne our Gδ-subset of Z as follows: let U =
⋃
{Ũy : y ∈ Y } andlet S = U \G. Sin
e G∩ Y = ∅ and U is an open subset of Z 
ontaining Y ,it follows that S is a Gδ-subset of Z 
ontaining Y . We will now prove thatthis Gδ-subset has the required properties.So �x z ∈ S \ Y . Then z ∈ Ũy for some y ∈ Y . Let J = {i ∈ I : z ∈ Xi}and K = {i ∈ I : X i ∩ Ũy 6= ∅}. Note that J ⊆ K and K is �nite by the
hoi
e of Ũy. Sin
e z 6∈ G, it follows that z ∈ Sj for all j ∈ J . Sin
e Sj is a

Gδ-subset of Xj whi
h is good for Xi, for every j ∈ J we may �x a Gδ-subset
Tj of Z su
h that z ∈ Tj and Tj ∩ Xj = ∅. Now let

T = Ũy ∩
⋂

j∈J

Tj ∩
⋂

k∈K\J

(Z \ Xk).It is not hard to verify that T is a Gδ-subset of Z whi
h 
ontains z andmisses X. Sin
e z ∈ S was arbitrary, this shows that the Gδ-set S has therequired properties, and this 
ompletes the proof.Theorem 3.2. Let X be the union of a σ-lo
ally �nite family F of 
losedsubspa
es. If X ⊆ Z and every element of F is Ohio embedded in Z, then
X is Ohio embedded in Z.Proof. Let F =

⋃
n∈ω Fn, where ea
h Fn is lo
ally �nite in X. For n ∈ ω,let Xn =

⋃
Fn. Applying Lemma 3.1, for every n ∈ ω we �nd a Gδ-subset Snof Z 
ontaining X su
h that every point in Sn \X 
an be separated from Xnby a Gδ-subset of Z.



6 D. BASILE ET AL.Now let S =
⋂

n∈ω Sn. It is 
lear that S is a Gδ-subset of Z whi
h
ontains X. We will show that S is good with respe
t to X. So let z ∈ S \X.For every n ∈ ω we may �nd a Gδ-subset Tn of Z su
h that z ∈ Tn and
Xn ∩ Tn = ∅. But then T =

⋂
n∈ω Tn is a Gδ-subset of Z whi
h separates zfrom X.Corollary 3.3. Let X be the union of a σ-lo
ally �nite family of 
losedsubspa
es. If every element of the family is 
ontained in an Ohio 
ompletesubspa
e of X, then X is itself Ohio 
omplete.Proof. Fix a σ-lo
ally �nite family F of 
losed subspa
es of X su
h that

X =
⋃

F, and su
h that every element of F is 
ontained in an Ohio 
ompletesubspa
e of X. To show that X is Ohio 
omplete, we �x an arbitrary 
om-pa
ti�
ation γX of X. First note that by Proposition 2.1 and Corollary 2.5,every element of F is Ohio embedded in γX. So it follows from the previ-ous theorem that X is Ohio embedded in γX. Sin
e γX was an arbitrary
ompa
ti�
ation of X, this 
ompletes the proof.It follows that if X is the union of a lo
ally �nite family of 
losed andOhio 
omplete subspa
es, then X is itself Ohio 
omplete. This generalizesthe disjoint sum theorem proved in [2℄. We also see that if X is the 
ountableunion of 
losed and Ohio 
omplete subspa
es, then X is Ohio 
omplete. SoOhio 
ompleteness is also preserved by taking 
ountable 
losed sums. Thisyields the following equivalen
e.Corollary 3.4. Let X be Ohio 
omplete. Then the following statementsare equivalent :
(1) every 
losed subset of X is Ohio 
omplete,
(2) every Fσ-subset of X is Ohio 
omplete.4. Open sum theorems for Ohio 
ompleteness. It is a well knownfa
t that a �nite union of Gδ-subsets is again a Gδ-subset ([5, p. 26℄). Thisfa
t yields the following observation.Proposition 4.1. Suppose G is a �nite 
over of X 
onsisting of Gδ-subsets of X. If X ⊆ Z and every element of G is Ohio embedded in Z,then X is Ohio embedded in Z.Proof. Let G = {Gi : i ∈ I}, where I is �nite. For every i ∈ I, we may �xa Gδ-subset Si of Z whi
h is good with respe
t to Gi. Note that sin
e Gi is a

Gδ-subset of X, we may assume without loss of generality that Si ∩X = Gi.Then S =
⋃

i∈I Si is a Gδ-subset of Z sin
e it is a �nite union of Gδ-subsetsof Z. We 
laim that S is good with respe
t to X. First of all, note that
X ⊆ S, sin
e Gi ⊆ Si for i ∈ I. So it remains to verify that every point in
S \ X 
an be separated from X by a Gδ-subset of Z.



SUM THEOREMS FOR OHIO COMPLETENESS 7So �x an arbitrary point z ∈ S \ X. Then z ∈ Si \ Gi for some i ∈ I. Soby 
onstru
tion, there is a Gδ-subset T of Z su
h that z ∈ T and T ∩Gi = ∅.But then, sin
e Si ∩ X = Gi, the set Si ∩ T is a Gδ-subset of Z whi
hseparates z from X.Corollary 4.2. Let G be a �nite 
over of X whose members are Gδ-subsets. If every element of G is 
ontained in an Ohio 
omplete subspa
eof X, then X is itself Ohio 
omplete.Proof. Fix an arbitrary 
ompa
ti�
ation γX of X. Sin
e every elementof G is 
ontained in an Ohio 
omplete subspa
e of X, it follows from Proposi-tion 2.1 and Corollary 2.5 that every element of G is Ohio embedded in γX.So by the previous proposition, X is Ohio embedded in γX. Sin
e γX wasan arbitrary 
ompa
ti�
ation of X, this shows that X is Ohio 
omplete.So in parti
ular, if X is 
overed by a �nite family of open and Ohio
omplete subspa
es, then X is also Ohio 
omplete.The following lemma is well known (see [10, Lemma 3℄). For 
ompletenesswe in
lude the simple proof. Re
all that a family A of subsets of X is 
alledpoint-�nite if for every x ∈ X, the set {A ∈ A : x ∈ A} is �nite.Lemma 4.3. Let G be a family of Gδ-subsets of a spa
e X. If there isa point-�nite family U = {U(G) : G ∈ G} of open subsets of X su
h that
G ⊆ U(G) for all G ∈ G, then ⋃

G is also a Gδ-subset of X.Proof. Fix the point-�nite family U = {U(G) : G ∈ G} of open subsetsof X su
h that G ⊆ U(G) for all G ∈ G. For every G ∈ G, we �x a de
reasingsequen
e (Gn)n∈ω of open subsets of U(G) (and hen
e of X) su
h that G =⋂
n∈ω Gn. We now let Wn =

⋃
{Gn : G ∈ G} and W =

⋂
n∈ω Wn. Note that

W is a Gδ-subset of X.We will prove that ⋃
G = W . Clearly, ⋃ G ⊆ W . For the reverse in
lusion,let x ∈ W be arbitrary. By hypothesis, the set F = {G ∈ G : x ∈ U(G)} is�nite. Suppose, aiming at a 
ontradi
tion, that x 6∈

⋃
F. Sin
e F is �nite, wemay �nd an index n ∈ ω so large that x 6∈ Gn for all G ∈ F. Then x 6∈ Wn,whi
h is a 
ontradi
tion, sin
e x ∈ W . So it follows that x ∈

⋃
F and hen
e

x ∈
⋃

G.We now 
ome to the main result of this se
tion.Theorem 4.4. Let U be a point-�nite open 
over of X. If X ⊆ Z andevery element of U is Ohio embedded in Z, then X is Ohio embedded in Z.Proof. Let U = {Ui : i ∈ I}, and for every i ∈ I, �x an open set Ũi of Zsu
h that Ui = X ∩ Ũi. We let Y be the subspa
e of Z given by
Y = {z ∈ Z : {i ∈ I : z ∈ Ũi} is �nite}.



8 D. BASILE ET AL.Note that sin
e U is a point-�nite 
over of X, we have X ⊆ Y . We now provethat X is Ohio embedded in Z in two steps; �rst we show that X is Ohioembedded in Y and then we show that Y is Ohio embedded in Z.Claim 1. X is Ohio embedded in Y .Proof. For U ∈ U we have U ⊆ Y ⊆ Z, so it follows from Proposition 2.2that every element of U is Ohio embedded in Y . So for every i ∈ I, we may�x a Gδ-subset Si of Y whi
h is good with respe
t to Ui. Without loss ofgenerality, we may assume that Si ⊆ Ũi ∩ Y . Let S =
⋃
{Si : i ∈ I}. Byde�nition of Y , the family {Ũi ∩ Y : i ∈ I} is a point-�nite family of opensubsets of Y . So it follows from Lemma 4.3 that S is a Gδ-subset of Y . Weleave it to the reader to verify that S is good with respe
t to X. ◭Claim 2. Y is Ohio embedded in Z.Proof. We will show that Z is good with respe
t to Y . So suppose that

z ∈ Z \ Y . By de�nition, the set {i ∈ I : z ∈ Ũi} is in�nite. So we may �x a
ountably in�nite subset J of I su
h that z ∈ Ũj for every j ∈ J . But then
T =

⋂
j∈J Ũj is a Gδ-subset of Z whi
h separates z from Y . ◭It now follows from Proposition 2.3 that X is Ohio embedded in Z.Corollary 4.5. Let U be a point-�nite open 
over of X. If every ele-ment of U is 
ontained in an Ohio 
omplete subspa
e of X, then X is itselfOhio 
omplete.Proof. Fix an arbitrary 
ompa
ti�
ation γX of X. By Proposition 2.1and Corollary 2.5, the assumptions imply that every element of U is Ohioembedded in γX. So it follows from the previous theorem that X is Ohioembedded in γX. Sin
e γX was an arbitrary 
ompa
ti�
ation of X, thisproves that X is Ohio 
omplete.So in parti
ular it follows from the previous result that if X is 
overed bya lo
ally �nite family of open and Ohio 
omplete subspa
es, then X is alsoOhio 
omplete. Re
all that a spa
e X is (
ountably) meta
ompa
t if every(
ountable) open 
over of X has a point-�nite open re�nement. A spa
e Xis (
ountably) submeta
ompa
t if for every (
ountable) open 
over U of X,there is a 
ountable 
olle
tion E of 
losed subsets of X su
h that for every

E ∈ E, there exists an open 
over UE of X re�ning U and point-�nite on E.Gittings proved in [7℄ that 
ountable submeta
ompa
tness is equivalent to
ountable meta
ompa
tness.Corollary 4.6. Let X be a (
ountable) submeta
ompa
t spa
e and U a(
ountable) open 
over of X. If every element of U is 
ontained in an Ohio
omplete subspa
e of X, then X is itself Ohio 
omplete.



SUM THEOREMS FOR OHIO COMPLETENESS 9Proof. We may �x a 
ountable 
olle
tion E of 
losed subsets of X and forevery E ∈ E an open 
over UE of X re�ning U and point-�nite on E. Nowlet γX be an arbitrary 
ompa
ti�
ation of X. By Theorem 3.2 it su�
esto prove that ea
h E ∈ E is Ohio embedded in γX. Fix E ∈ E. It followsfrom Propositions 2.1 and 2.3 that for every U ∈ UE, the set U ∩ E is Ohioembedded in γX. Sin
e {U ∩ E : U ∈ UE} is a point-�nite open 
over of E,it follows from Theorem 4.4 that E is Ohio embedded in γX. This 
ompletesthe proof.With respe
t to 
ountable open 
overs, the following 
orollary is the mostgeneral result of this se
tion. Note that if Question 2.7 has a positive answer,then the 
ountable 
ase of the previous result follows from the next.Corollary 4.7. Let X be a 
ountably submeta
ompa
t spa
e and let Ube a σ-point-�nite open 
over of X. If every element of U is Ohio 
omplete,then X is also Ohio 
omplete.Proof. Note that X is 
ountably meta
ompa
t by [7, Theorem 2.2℄. Let
X =

⋃
n∈ω Un, where every Un is the union of a point-�nite family of openand Ohio 
omplete subspa
es of X. By Corollary 4.5, every Un is Ohio
omplete. Sin
e X is 
ountably meta
ompa
t, there exists a point-�nite openre�nement V of the 
over {Un : n ∈ ω}. Applying Corollary 4.5 for a se
ondtime shows that X is Ohio 
omplete.Let U be a 
ountable open 
over of the spa
e X. It follows from theprevious result that if X is 
ountably submeta
ompa
t and every memberof U is Ohio 
omplete, then X is also Ohio 
omplete. Note that amongthe 
ountably submeta
ompa
t spa
es are all 
ountably 
ompa
t, 
ountablypara
ompa
t and 
ountably subpara
ompa
t spa
es. In general, there is no
ountable open sum theorem for Ohio 
ompleteness: in the �nal se
tion ofthis paper we present an example of a non-Ohio 
omplete spa
e whi
h is
overed by 
ountably many open and Ohio 
omplete subspa
es.5. Examples. In this se
tion we provide some simple examples of spa
esthat are not Ohio 
omplete. The following simple observation is used in everyexample.Lemma 5.1. Let X be an Ohio 
omplete subspa
e of Z. If X is not a

Gδ-subset of Z, then Z \ X 
ontains a non-empty Gδ-subset of Z.Proof. Sin
e X is Ohio 
omplete, it follows from Proposition 2.4 that Xis Ohio embedded in Z. So we may �x a Gδ-subset S of Z whi
h is good withrespe
t to X. Sin
e X is not a Gδ-subset of Z, the set S \ X is non-empty.Sin
e every point of S \X 
an be separated from X by a Gδ-subset of Z, itfollows that Z \ X 
ontains a non-empty Gδ-subset of Z.



10 D. BASILE ET AL.The �rst simple example shows that a spa
e whi
h is the union of twoOhio 
omplete subspa
e, one open and the other 
losed, need not be Ohio
omplete.Example 5.2. Let Y be an un
ountable dis
rete spa
e and let αY =
Y ∪ {∞} be its one-point 
ompa
ti�
ation. The example is the subspa
e Xof the produ
t Z = αY × αY where X = (Y × Y ) ∪ {(∞,∞)}. Note thatboth Y × Y and {(∞,∞)} are Ohio 
omplete.If G is a Gδ-subset of Z whi
h 
ontains the point (∞,∞), then G∩(Z\X)is non-empty, so X is not a Gδ-subset of Z. Similarly, Z \ X 
ontains nonon-empty Gδ-subset of Z, so it follows from Lemma 5.1 that X is not Ohio
omplete.A family A of subsets of a spa
e X is 
alled lo
ally 
ountable providedthat for every x ∈ X, there is a neighbourhood U of x su
h that the set
{A ∈ A : A ∩ U 6= ∅} is 
ountable. Note that every σ-lo
ally �nite family islo
ally 
ountable. In view of Corollary 3.3 it is natural to ask whether Ohio
ompleteness is preserved by taking lo
ally 
ountable 
losed sums. We nowprovide an example to show that this is not the 
ase.The spa
es ω1 and ω1+1 
arry the usual order topology. Whenever α <
β ≤ ω1, then (α, β), [α, β] and (α, β] denote the usual intervals in ω1+1.Example 5.3. Let L be the set of all limit ordinals in ω1. We let Z =
ω1 × (ω1 + 1) and X be the subspa
e of Z given by

X = (ω1 × ω1) ∪ (L × {ω1}).To avoid 
onfusion with intervals, we denote elements of Z by 〈α, β〉. We useLemma 5.1 to show that X is not Ohio 
omplete. Sin
e every 
losed subsetof ω1 that misses L is �nite, it follows that L is not a Gδ-subset of ω1. Butthen X is not a Gδ-subset of Z. To 
on
lude that X is not Ohio 
omplete,observe that Z \ X 
ontains no non-empty Gδ-subset of Z.It remains to verify that X is the union of a lo
ally 
ountable family of
losed and Ohio 
omplete subspa
es of X. Let π be the proje
tion of X ontothe �rst 
oordinate. That is, π : X → ω1 is given by π(〈α, β〉) = α. We letthe 
losed 
over A of X be given by
A = {π−1(α) : α ∈ ω1}.Note that the �bers of π are homeomorphi
 to ω1+1 or to ω1, whi
h areboth Ohio 
omplete spa
es sin
e they are (lo
ally) 
ompa
t. Furthermore,sin
e ω1 is lo
ally 
ountable in itself and π is 
ontinuous, it follows that Ais lo
ally 
ountable in X.It follows from Corollary 3.3 that if the family {{x} : x ∈ X} is σ-lo
ally�nite in X, then X × Y is Ohio 
omplete whenever Y is Ohio 
omplete. Inparti
ular, if X is either 
ountable or dis
rete and Y is Ohio 
omplete, then
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X ×Y is Ohio 
omplete. In the previous example we have made good use ofthe fa
t that the family {{α} : α ∈ ω1} is lo
ally 
ountable but not σ-lo
ally�nite in ω1. This raises the following question:Question 5.4. Suppose that X is Ohio 
omplete. Is ω1 × X also Ohio
omplete?We shall now provide several examples of �rst 
ountable spa
es that arenot Ohio 
omplete. In the following theorem we use a modi�
ation of the wellknown Aleksandrov dupli
ate to obtain examples of �rst 
ountable non-Ohio
omplete spa
es.Theorem 5.5. Suppose X is a dense Lindelöf subspa
e of Z su
h thatevery Gδ-subset of Z 
ontaining X is un
ountable. Then there is a non-Ohio
omplete spa
e Y whi
h satis�es the following 
onditions:
(1) If X is �rst 
ountable, then so is Y .
(2) If X is zero-dimensional , then so is Y .Proof. The spa
e ω1+2 
arries the usual order topology, it is the disjointsum of the spa
e ω1+1 and the point ω1+1. The set W is given by Z×(ω1+2)and Y is given as the following subset of W :

Y = (Z × ω1) ∪ (X × {ω1+1}).We de�ne a topology on W as follows: basi
 open neighbourhoods of pointsof the form 〈z, α〉, where z ∈ Z and α ∈ ω1+1, are of the form {z} × Uwhere U is an open subset of ω1+1. Basi
 open neighbourhoods of points ofthe form 〈z, ω1+1〉 are given by
U(z) = (U × (ω1+2)) \ ({z} × (ω1+1)),where U is an open neighbourhood of z in Z. We leave it to the reader toverify that these sets may serve as a basis for a Tikhonov topology on W . Wepoint out that the topology on W may be viewed as a resolution topology(see [6℄ and [11℄ for details on resolutions). The subset Y is given the subspa
etopology inherited from W and it is not hard to verify that (2) holds. For (1),assume that X is �rst 
ountable. Sin
e X is dense in Z, it follows that Z is�rst 
ountable at every point of X (see for example [9, 2.7℄). Now it followseasily that Y is also �rst 
ountable.We shall now show that Y is not Ohio 
omplete. Sin
e {z} × (ω1+1)is homeomorphi
 to ω1+1, no point of the set Z × {ω1} 
an be separatedfrom Y by a Gδ-subset of W . Using the te
hniques of Lemma 5.1, non-Ohio
ompleteness of Y follows from the following observation:Claim 1. Whenever G is a non-empty Gδ-subset of W 
ontaining Ythen G ∩ (Z × {ω1}) 6= ∅.
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⋂

n∈ω Gn be a Gδ-subset 
ontaining Y , where ea
h Gnis an open subset of W . Note that the 
losed subspa
e X × {ω1+1} of Wis homeomorphi
 to X. Sin
e X is Lindelöf, for every n ∈ ω we may �nd a
ountable subset Fn of X and for ea
h x ∈ Fn an open neighbourhood Ux,nof x in Z su
h that
X × {ω1+1} ⊆

⋃
{Ux,n(x) : x ∈ Fn} ⊆ Gn.For n ∈ ω, we let Un =

⋃
{Ux,n : x ∈ Fn} and U =

⋂
n∈ω Un. We alsolet F =

⋃
n∈ω Fn. Note that sin
e ea
h Fn is 
ountable, the set F is also
ountable. Sin
e U is a Gδ-subset of Z whi
h 
ontains X, we see that U \ Fis un
ountable, so in parti
ular it is non-empty. Now let z ∈ U \ F . It is nothard to realize that in this 
ase we have

{z} × (ω1+2) ⊆ G,so that 〈z, ω1〉 ∈ G ∩ (Z × {ω1}), and this proves the 
laim. ◭As indi
ated before, this proves the theorem.From this theorem follow many examples of �rst 
ountable non-Ohio
omplete spa
es. For instan
e, the set of rationals Q is a Lindelöf subspa
eof the reals. Sin
e Q is not a Gδ-subset of the reals, it follows that every
Gδ-set 
ontaining Q is un
ountable. Se
ondly, in the previous theorem wemay also take X = Z = C, where C is the usual Cantor set. Sin
e C is
ompa
t and un
ountable, the previous theorem yields a �rst 
ountable zero-dimensional non-Ohio 
omplete spa
e Y . It was proved by Dow and Pearl[4℄ that in this 
ase Y ω is homogeneous. One veri�es easily that sin
e Y isnot Ohio 
omplete, neither is Y ω. So Y ω is an example of a homogeneous�rst 
ountable spa
e whi
h is not Ohio 
omplete.It is well known that every �rst 
ountable topologi
al group is metriz-able (see for example [8, Theorem 8.3℄). Sin
e every metrizable spa
e is Ohio
omplete, it follows that �rst 
ountable topologi
al groups are Ohio 
om-plete. The last example demonstrates that this is not true in general for �rst
ountable homogeneous spa
es.The fa
t that non-Ohio 
omplete �rst 
ountable spa
es exist yields thefollowing:Corollary 5.6. Ohio 
ompleteness is not preserved by open mappings.Proof. Every �rst 
ountable spa
e is the image of a metrizable spa
eunder an open mapping. This was proved by Ponomarev (see for example[5, Problem 4.2.D℄). We have just provided an example of a �rst 
ountablespa
e whi
h is not Ohio 
omplete. Sin
e every metrizable spa
e is Ohio
omplete, the statement follows.Our �nal example shows that there is no 
ountable open sum theoremfor Ohio 
ompleteness. We present an example of a non-Ohio 
omplete, zero-



SUM THEOREMS FOR OHIO COMPLETENESS 13dimensional and �rst 
ountable spa
e whi
h is 
overed by 
ountably manyopen and Ohio 
omplete subspa
es.Example 5.7. The example is a slight modi�
ation of [3, Example 2.4℄.For ea
h q ∈ Q, let A(q) be a maximal family of one-to-one fun
tions fromthe set N of natural numbers into the set P of irrationals, su
h that
(1) If a ∈ A(q), then |a(n) − q| < 1/n for all n ∈ N.
(2) If a, b ∈ A(q) are di�erent, then a(N) ∩ b(N) is �nite.We �x an un
ountable dis
rete spa
e Y and let αY = Y ∪{∞} be its one-point 
ompa
ti�
ation. Put A =

⋃
{A(q) : q ∈ Q} and let Z = A∪ (P×αY ).For a ∈ A and k ∈ N, we let

U(a, k) = {a} ∪
⋃

{a(n) × αY : n ≥ k}.The 
olle
tion B, whi
h serves as a base for a topology on Z, is given by
B = {U(a, k) : a ∈ A, k ∈ N}∪{R×U : R ⊆ P, U is an open subset of αY }.From now on we 
onsider Z with the topology generated by B. It is easilyveri�ed that Z is Hausdor� and lo
ally 
ompa
t and hen
e Tikhonov. We let
X be the subspa
e of Z wi
h is given by A∪ (P× Y ). We shall show that Xis the union of 
ountably many open and Ohio 
omplete subspa
es but that
X itself is not Ohio 
omplete. Note that for p ∈ P, the subspa
e {p} × αYof Z is homeomorphi
 to αY and therefore Z \ X 
ontains no non-empty
Gδ-subset of Z. So by Lemma 5.1, to show that X is not Ohio 
omplete itsu�
es to show that X is not a Gδ-subset of Z:Claim 1. X is not a Gδ-subset of Z.Proof. If X is a Gδ-subset of Z, then A is a Gδ-subset of the subspa
e
A ∪ (P × {∞}) of Z. This subspa
e is just the spa
e Z4 in [3, Example 2.4℄and it is proved there that A is not a Gδ-subset of Z4. It follows that X isnot a Gδ-subset of Z. ◭We now show that X is the union of 
ountably many open and Ohio
omplete subspa
es. For ea
h q ∈ Q, we let Xq = A(q)∪(P×Y ). It is not hardto verify that Xq is an open subspa
e of X and of 
ourse X =

⋃
{Xq : q ∈ Q}.It remains to verify that ea
h Xq is Ohio 
omplete.Claim 2. For ea
h q ∈ Q, the spa
e Xq is Ohio 
omplete.Proof. Fix q ∈ Q. Note that both A(q) and P×Y are dis
rete subspa
esof Xq. Sin
e a dis
rete spa
e is Ohio 
omplete, we see that Xq is the union oftwo Ohio 
omplete subspa
es. The spa
e P × Y is 
learly an open subspa
eof Xq, and as in [3, Example 2.4℄, the set A(q) is a Gδ-subset of Xq. It followsfrom Corollary 4.2 that Xq is Ohio 
omplete. ◭
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