Abstract. Generalizing the Ohio completeness property, we introduce the notion of κ-Ohio completeness. Although many results from a previous paper by the authors may easily be adapted for this new property, there are also some interesting differences. We provide several examples to illustrate this. We also have a consistency result; depending on the value of the cardinal κ, the countable union of open and ω_1-Ohio complete subspaces may or may not be ω_1-Ohio complete.

1. Introduction.

All spaces under consideration are Tychonoff. For all undefined notions we refer to [6]. A topological space X is {Ohio complete} if for every compactification γX of X there is a G_δ-subset S of γX such that $X \subseteq S$ and for every $y \in S \setminus X$, there is a G_δ-subset of γX which contains y and misses X. Ohio completeness was introduced by Arhangel’ski in [1] where it turned out to be a useful concept for the study of properties of remainders in compactifications.

Let κ be an infinite cardinal number. It is quite natural to generalize Ohio completeness by saying that a space X is κ-Ohio complete if for every compactification γX of X there is a G_κ-subset S of γX such that $X \subseteq S$ and for every $y \in S \setminus X$, there is a G_κ-subset of γX which contains y and misses X. Here a subspace of a space X is called a G_κ-subset if it is the intersection of at most κ-many open subsets of X.

Observe that any space is κ-Ohio complete, for some large enough κ. Also, if either the Čech-number or the compact covering number of a space does not exceed κ, then this space is κ-Ohio complete.

Ohio complete spaces were studied in [2] and [3]. In this paper we will focus our attention on unions of κ-Ohio complete subspaces. Since all the positive results proved in [3] can be easily generalized for κ-Ohio completeness, our main purpose will be to construct counterexamples for the κ-Ohio complete case. This will be done in the main section. We will construct a non κ-Ohio complete space which is the union of a locally countable family of closed and κ-Ohio complete

2000 Mathematics Subject Classification. Primary 54D35, 54G20; Secondary 54B05, 54B25.

Key Words and Phrases. κ-Ohio complete, sum theorems, compactification.
subspaces. Next we will show that, if κ is a regular cardinal, the union of κ-many open and κ-Ohio complete subspaces need not be a κ-Ohio complete space.

The last section is devoted to positive results about open sums. We shall prove that the union of λ-many open and κ-Ohio complete subspaces is $kcoev(\kappa^+)$-Ohio complete. This result implies several interesting consistency results. In particular, if $\delta = \omega_1$, then the union of countably many open and ω_1-Ohio complete subspaces is again ω_1-Ohio complete. This statement may fail if $\delta > \omega_1$. Here the cardinal δ is the compact covering number of the space ω^ω of irrationals (see [5] for more information).

Throughout the paper we will use the terminology introduced in [3]. Of course the terminology there was only introduced for Ohio completeness, but the κ-Ohio complete generalization is straightforward.

2. Examples.

In [3] it was proved that the union of a locally finite family of closed and Ohio complete subspaces is again Ohio complete and the same holds for κ-Ohio completeness. In contrast, the union of a locally countable family of closed and Ohio complete subspaces need not be Ohio complete by [3, Example 5.3]. The obvious generalization of this example shows that the union of a locally-κ family of closed and Ohio complete subspaces need not be κ-Ohio complete. The following example is much better, since it shows that even a locally countable union of closed and Ohio complete subspaces may fail to be κ-Ohio complete.

Example 2.1. Fix an infinite cardinal number κ and let $\tau = \kappa^+$. The space τ carries the discrete topology. Let $\gamma \tau = \tau \cup \{\infty\}$ be its one-point compactification. Let \mathcal{A} be a family which is maximal with respect the following property:

1. $\mathcal{A} \subseteq [\tau]^\omega$,
2. $\forall A, B \in \mathcal{A} \quad (A \neq B \rightarrow |A \cap B| < \omega)$.

Recall that the well-known space $Y = \psi(\tau, \mathcal{A})$ is defined as follows (see for example [5, p.153]). The underlying set of Y is $\tau \cup \mathcal{A}$, the points of τ are isolated and a basic neighborhood of $A \in \mathcal{A}$ has the form $\{A\} \cup (A \setminus F)$, where F is finite. It is clear from the definition that Y is covered by countable open sets.

We claim that the subspace \mathcal{A} is not a G_κ-subset of Y. To prove this it suffices to show that every closed subset of Y which misses \mathcal{A} is finite. If this were not the case, then we could find a countably infinite closed subset C of Y which misses \mathcal{A}. Since the family \mathcal{A} was chosen maximal, there must exist some $A \in \mathcal{A}$ such that $A \cap C$ is countably infinite. But then, every neighborhood of A intersects C, a contradiction.
We let $Z = Y \times \gamma \tau$ and X be the subspace of Z given by:

$$X = (Y \times \tau) \cup (\mathcal{A} \times \{\infty\}).$$

We use [3, Lemma 5.1] (the proof can be easily adapted for κ-Ohio completeness) to show that X is not κ-Ohio complete. Since \mathcal{A} is not a G_κ-subset of Y, the space X is not a G_κ-subset of Z. To conclude that X is not κ-Ohio complete, observe that $Z \setminus X$ contains no non-empty G_κ-subset of Z.

It remains to verify that X is the union of a locally countable family of closed and Ohio complete subspaces of X. Let π be the projection of X onto the first coordinate. We let the closed cover \mathcal{C} of X be given by:

$$\mathcal{C} = \{\pi^{-1}(y) : y \in Y\}.$$

Note that the fibers of π are homeomorphic to either $\gamma \tau$ or τ, which are both Ohio complete since they are locally compact. Furthermore, since Y is locally countable in itself and π is continuous, it follows that \mathcal{C} is locally countable in X.

We now turn towards open sum theorems. In [3, Example 5.7] it was shown that the countable union of open and Ohio complete subspaces need not be Ohio complete. We can then ask whether the union of κ-many open and κ-Ohio complete subspaces is κ-Ohio complete. From the next theorem it will follow that, at least for κ regular, this is not the case. Moreover it will follow that, under the assumption $\kappa < \omega$, the countable union of open and Ohio complete subspaces need not even be κ-Ohio complete. In the final section of this paper we will show that on the other hand the countable union of open and Ohio complete subspaces is always ω-Ohio complete.

Fix an infinite regular cardinal κ and consider the space 2^κ. We call a set a $G_{<\kappa}$-subset if it is a G_λ-subset for some $\lambda < \kappa$. We denote by $(2^\kappa)_{<\kappa}$ its $G_{<\kappa}$-modification. So the topology on $(2^\kappa)_{<\kappa}$ is generated by the collection of all $G_{<\kappa}$-subsets of 2^κ. Now consider the following subset of (2^κ):

$$E_{<\kappa} = \{x \in 2^\kappa : |\{\alpha < \kappa : x_\alpha \neq 0\}| < \kappa\}.$$

Note that this set is dense in the space $(2^\kappa)_{<\kappa}$. Recall that the Baire number of a space with no isolated points, also called the Novák number, is the minimal cardinality of a family of closed nowhere dense subsets whose union is the whole space. In [8, Lemma 1.3(b)] it is proved that the Baire number of the space $(2^\kappa)_{<\kappa}$ is always greater than or equal to κ^+. This result implies the following.
Lemma 2.2. For regular κ, the set $E_{<\kappa}$ is not a G_κ-subset of $(2^\kappa)_{<\kappa}$.

Proof. Note that since κ is regular, the set $E_{<\kappa}$ is equal to the union of sets of the form $2^\alpha \times \{0\}^{\kappa / \alpha}$, for $\alpha < \kappa$. These sets are all closed and nowhere dense in $(2^\kappa)_{<\kappa}$.

So if $E_{<\kappa}$ were a G_κ-subset, then its complement would be the union of κ-many closed sets which are all nowhere dense since $E_{<\kappa}$ is dense in $(2^\kappa)_{<\kappa}$. So by the previous observation, we would have that the Baire number of the space $(2^\kappa)_{<\kappa}$ were less than or equal to κ, contradicting [8, Lemma 1.3(b)].

The example constructed in the following theorem is very similar to [3, Example 5.7], see also [4, Example 2.4].

Theorem 2.3. Let κ and λ be infinite cardinal numbers, with κ regular. There exists a space X with the following properties:

1. If X is λ-Ohio complete, then $E_{<\kappa}$ is a G_λ-set in $(2^\kappa)_{<\kappa}$,
2. X is the union of κ-many open and κ-Ohio complete subspaces.

Proof. We set $E = E_{<\kappa}$. For every $e \in E$, we fix a collection $A(e)$ of one-to-one functions from κ into $D = 2^\kappa \setminus E$, which is maximal with respect to the following conditions:

(i) $\forall f \in A(e) \forall \alpha < \kappa (f(\alpha) \upharpoonright \alpha = e \upharpoonright \alpha)$,
(ii) $\forall f, g \in A(e) (f \neq g \rightarrow |\text{ran}(f) \cap \text{ran}(g)| < \kappa)$.

Fix a discrete space Y of cardinality λ^+ and let $\omega Y = Y \cup \{\infty\}$ be its one-point compactification. For every $\alpha \in \kappa$, with E_α we denote the subspace $2^\alpha \times \{0\}^{\kappa / \alpha}$. Put $A_\alpha = \bigcup_{e \in E_\alpha} A(e)$ and $A = \bigcup_{\alpha \in \kappa} A_\alpha$ and let $Z = A \cup (D \times \omega Y)$. If $f \in A$ and $\alpha < \kappa$, we let

$$U(f, \alpha) = \{f\} \cup \bigcup \{f(\beta) \times \omega Y : \alpha < \beta < \kappa\}.$$

The collection \mathcal{B}, which serves as a base for a topology on Z, is given by

$$\{U(f, \alpha) : f \in A, \alpha < \kappa\} \cup \{R \times U : R \subseteq D, U \text{ is an open subset of } \omega Y\}.$$

We leave it to the reader to verify that topologized in this way, the space Z is Hausdorff and zero-dimensional and hence Tychonoff.

We let X be the subspace of Z given by $A \cup (D \times Y)$. In the following claim we will prove assertion (1). The proof is almost identical to the argument used in [4, Example 2.4].
CLAIM 1. If X is λ-Ohio complete, then E is a G_λ-set in $(2^\kappa)_{<\kappa}$.

PROOF OF CLAIM. Striving for a contradiction, assume that X is λ-Ohio complete but E is not a G_λ-subset of $(2^\kappa)_{<\kappa}$.

Since for every $d \in D$, the subspace $\{d\} \times \omega Y$ of Z is homeomorphic to ωY, the set $Z \setminus X$ contains no non-empty G_λ-subsets of Z. Then, by [3, lemma 5.1] X must be a G_λ-subset of Z. Hence $D = \bigcup_{\alpha < \lambda} G_\alpha$, where each $G_\alpha \times \{\infty\}$ is closed in $A \cup (D \times \{\infty\})$.

By assumption D is not the union of λ-many closed subsets of $(2^\kappa)_{<\kappa}$, so for some $\alpha < \lambda$, $E \cap Cl_{<\kappa}(G_\alpha) \neq \emptyset$ (where the closure is taken in $(2^\kappa)_{<\kappa}$). So we may fix $e \in E$, such that for every $\beta < \kappa$, there is some $g \in G_\alpha$ such that $g \upharpoonright \beta = e \upharpoonright \beta$.

But this means that we may find an injective function $f : \kappa \to G_\alpha$ such that for every $\beta < \kappa$, $f(\beta) \upharpoonright \beta = e \upharpoonright \beta$.

Since the collection $A(e)$ was maximal, it follows that for some $f' \in A(e)$, we have that $|\text{ran}(f) \cap \text{ran}(f')| = \kappa$. But this means that f' is in the closure of the set $G_\alpha \times \{\infty\}$ (closure in $A \cup (D \times \{\infty\})$), which is a contradiction. \square

We will now prove assertion (2), that is that X is the union of κ-many open and κ-Ohio complete subspaces. For each $\alpha < \kappa$, we let $X_\alpha = A_\alpha \cup (D \times Y)$. It is not hard to verify that X_α is an open subspace of X and of course $X = \bigcup\{X_\alpha : \alpha < \kappa\}$. It remains to prove that each X_α is κ-Ohio complete.

CLAIM 2. For each $\alpha < \kappa$, the space X_α is κ-Ohio complete.

PROOF OF CLAIM. Fix $\alpha < \kappa$. Note that both A_α and $D \times Y$ are discrete subspaces of X_α. Since a discrete space is (κ-)Ohio complete, we have that X_α is the union of two (κ-)Ohio complete subspaces. The space $D \times Y$ is clearly an open subspace of X_α, and the set A_α is a G_κ-subset of X_α. Indeed, one verifies easily that $A_\alpha = \bigcap_{\beta \leq \alpha} \bigcup_{f \in A_\alpha} (U(f, \beta) \cap X_\alpha)$.

So it follows that X_α is the union of two G_κ-subsets which are both κ-Ohio complete. By Corollary 4.2 in [3] it follows that X_α is κ-Ohio complete. \square

This completes the proof of the theorem. \square

The previous theorem may be applied to obtain several interesting examples.

EXAMPLE 2.4. Assume $\lambda < \omega$. Then the union of countably many open and Ohio complete subspaces need not be λ-Ohio complete.

PROOF. Consider the space X constructed in the previous theorem with $\kappa = \omega$. If X were λ-Ohio complete, then $E_{<\lambda}$ would be a G_λ-subset of $(2^\kappa)_{<\omega}$.

\kappa-Ohio completeness
However in this case E_{ω} is homeomorphic to the space of rationals in $(2^\omega)_{\omega}$, which is just the Cantor set. Of course, since $\lambda < \omega$, the set of rationals is not a G_λ-subset of 2^ω. \hfill \Box

Example 2.5. Assume κ regular. Then the union of κ-many open and κ-Ohio complete subspaces need not be κ-Ohio complete.

Proof. It suffices to apply Theorem 2.3 with $\lambda = \kappa$, and then use Lemma 2.2. \hfill \Box

3. Positive results.

Having obtained several counterexamples, we now provide some positive results on open sum theorems for κ-Ohio completeness. In particular, the results of this section will allow us to prove that, under the assumption $\emptyset = \omega_1$, the countable open union of ω_1-Ohio complete subspaces is ω_1-Ohio complete.

Recall that the covering number of a space X, denoted by $kcov(X)$, is the minimal cardinality of a collection \mathcal{K} of compact subsets of X which covers X. In the next lemma we will refer to $kcov(\kappa^\beta)$. In this case the space κ always carries the discrete topology. Of course $\kappa \leq kcov(\kappa^\beta) \leq \kappa^\beta$.

Lemma 3.1. Let X be a space. Then the union of λ-many G_{κ^β}-subsets of X is a $G_{kcov(\kappa^\beta)}$-subset of X.

Proof. Let \mathcal{G} be a family of G_{κ^β}-subsets of X, with $|\mathcal{G}| = \lambda$. For every $G \in \mathcal{G}$, we fix a sequence $(G_\alpha)_{\alpha \in \kappa^\beta}$ of open subsets of X such that $G = \bigcap_{\alpha \in \kappa^\beta} G_\alpha$. Since $|\mathcal{G}| = \lambda$, the space κ^β is homeomorphic to κ^λ, and then we may write $\kappa^\beta = \bigcup_{\tau \in kcov(\kappa^\lambda)} K_{\tau}$, where each K_{τ} is a compact subset of κ^β.

For every $\tau \in kcov(\kappa^\lambda)$, let $f_\tau : \mathcal{G} \to [\kappa]^\omega$ be the function defined as $f_\tau(G) = p_G(K_{\tau})$, where p_G denotes the projection of κ^β onto the G-th factor, and we let $\mathcal{F} = \{ f_\tau : \tau \in kcov(\kappa^\lambda) \}$.

For every $f \in \mathcal{F}$, we let $W_f = \bigcup_{G \in \mathcal{G}} \bigcap_{\alpha \in f(G)} G_\alpha$ and $W = \bigcap_{f \in \mathcal{F}} W_f$. It is clear that W_f is an open subset of X containing $\bigcup \mathcal{G}$, and then W is a $G_{kcov(\kappa^\beta)}$-subset of X containing $\bigcup \mathcal{G}$. We shall now prove that actually $W = \bigcup \mathcal{G}$.

To this end, suppose that $x \notin \bigcup \mathcal{G}$. Then, for every $G \in \mathcal{G}$ we may fix an index $\alpha_G \in \kappa$ such that $x \notin G_{\alpha_G}$. Since the point $y = (\alpha_G)_{G \in \mathcal{G}} \in \kappa^\beta$, there exists some $\tau \in kcov(\kappa^\beta)$ such that $y \in K_{\tau}$. By construction, $x \notin W_f$, so that $x \notin W$. \hfill \Box

We say that a subspace X of a space Z is κ-Ohio embedded in Z, if there is a G_{κ}-subset S of Z such that $X \subseteq S$ and for every $y \in S \setminus X$, there is a G_{κ}-subset of Z which contains y and misses X. Such a G_{κ}-subset S will be called a κ-good G_{κ}-subset with respect to X. For more information about κ-Ohio embedded
THEOREM 3.2. Let \(X \) be a space. Suppose that \(\mathcal{U} \) is a cover of \(X \) consisting of \(G_\kappa \)-subsets, with \(|\mathcal{U}| = \lambda \). If \(X \subseteq Z \), and every element of \(\mathcal{U} \) is \(\kappa \)-Ohio embedded in \(Z \), then \(X \) is kcov\((\kappa^\lambda)\)-Ohio embedded in \(Z \).

PROOF. Let \(\mathcal{U} = \{U_\alpha : \alpha \in \lambda\} \). For every \(\alpha \in \lambda \), we may fix a \(G_\kappa \)-subset \(S_\alpha \) of \(Z \) which is \(\kappa \)-good with respect to \(U_\alpha \). Note that since \(U_\alpha \) is a \(G_\kappa \)-subset of \(X \), we may assume without loss of generality that \(S_\alpha \cap X = U_\alpha \). Then, by Lemma 3.1, the set \(S = \bigcup_{\alpha \in \lambda} S_\alpha \) is a \(G_{\text{kcov}(\kappa^\lambda)} \)-subset of \(Z \). We claim that \(S \) is \(\text{kcov}(\kappa^\lambda) \)-good with respect to \(X \). First of all, note that \(X \subseteq S \), since \(U_\alpha \subseteq S_\alpha \), for \(\alpha \in \lambda \). So it remains to show that every point in \(S \setminus X \) can be separated from \(X \) by a \(G_{\text{kcov}(\kappa^\lambda)} \)-subset of \(Z \). Actually we will prove more: such a point can be separated from \(X \) by a \(G_\kappa \)-subset of \(Z \).

So, fix an arbitrary point \(z \in S \setminus X \). Then \(z \in S_\alpha \setminus U_\alpha \) for some \(\alpha \in \lambda \). Then, by construction, there is a \(G_\kappa \)-subset \(T \) of \(Z \) such that \(z \in T \) and \(T \cap U_\alpha = \emptyset \). But then, since \(S_\alpha \cap X = U_\alpha \), the set \(S_\alpha \cap T \) is a \(G_\kappa \)-subset of \(Z \) which contains \(z \) and misses \(X \).

Since \(\mathfrak{d} = \text{kcov}(\omega_1^\omega) \), the following corollary shows that the union of countably many open and \(\kappa \)-Ohio complete subspaces is \(\mathfrak{d} \)-Ohio complete. So Example 2.4 is best possible.

COROLLARY 3.3. Let \(X \) be a space. Let \(\mathcal{U} \) be a cover of \(X \) consisting of \(G_\kappa \)-subsets, with \(|\mathcal{U}| = \lambda \). Suppose that every element of \(\mathcal{U} \) is contained in a \(\kappa \)-Ohio complete subspace of \(X \). Then \(X \) is kcov\((\kappa^\lambda)\)-Ohio complete.

PROOF. Fix an arbitrary compactification \(\gamma X \) of \(X \). Since every element of \(\mathcal{U} \) is contained in a \(\kappa \)-Ohio complete subspace of \(X \), it follows from [3, Proposition 2.1] and [3, Corollary 2.5] that every element of \(\mathcal{U} \) is \(\kappa \)-Ohio embedded in \(\gamma X \). So the previous theorem, \(X \) is kcov\((\kappa^\lambda)\)-Ohio embedded in \(\gamma X \). Since \(\gamma X \) was an arbitrary compactification of \(X \), this shows that \(X \) is kcov\((\kappa^\lambda)\)-Ohio complete.

Our main interest is in open sum theorems. In particular we have the following.

COROLLARY 3.4. Assume \(\mathfrak{d} = \omega_1 \). Let \(\mathcal{U} \) be a countable open cover of \(X \) such that every element of \(\mathcal{U} \) is contained in an \(\omega_1 \)-Ohio complete subspace of \(X \), then \(X \) is \(\omega_1 \)-Ohio complete.

PROOF. It suffices to observe that \(\text{kcov}(\omega_1^\omega) = \mathfrak{d} \) (see for example [9, Proposition 3.6]), and then apply Corollary 3.3.

\(\square \)
Let us denote the least cardinal κ for which the union of λ-many open and κ-Ohio complete subspace fails to be κ-Ohio complete with the symbol $\mathcal{O}(\kappa)$. Then the following theorem holds.

Theorem 3.5. Let κ be an infinite cardinal number.

1. If κ is regular then $\mathcal{O}(\kappa) \leq \kappa$.
2. If λ is a cardinal number such that $\text{kcov}(\kappa^\lambda) = \kappa$, then $\mathcal{O}(\kappa) > \lambda$.
3. Assuming the GCH, then $\mathcal{O}(\kappa) \geq \text{cf}(\kappa)$.
4. Assuming the GCH and κ regular then $\mathcal{O}(\kappa) = \kappa$.
5. If $\kappa < \mathfrak{d}$, then $\mathcal{O}(\kappa) = \omega$.
6. $\mathcal{O}(\omega_1) = \begin{cases} \omega_1, & \text{if } \mathfrak{d} = \omega_1, \\ \omega, & \text{if } \mathfrak{d} > \omega_1. \end{cases}$

Proof. Assertion (1) follows from Example 2.5. Corollary 3.3 implies (2). For assertion (3), observe that GCH implies that, if $\lambda < \text{cf}(\kappa)$, then $\kappa^\lambda = \kappa$ (see [7, Theorem 5.15]) and then $\text{kcov}(\kappa^\lambda) = \kappa$. This implies $\mathcal{O}(\kappa) \geq \text{cf}(\kappa)$. Assertions (1) and (3) imply (4). Assertion (5) follows from Example 2.4. Finally, (6) follows from Corollary 3.4 and Example 2.4 ($\lambda = \omega_1$).

Question 3.6. If κ is a singular cardinal, is it still true that $\mathcal{O}(\kappa) \leq \kappa$?

Finally, we consider locally countable and point-countable open sum theorems. By [3, Corollary 4.5], a point-finite and hence also locally finite union of open and ω_1-Ohio complete subspaces is again ω_1-Ohio complete. However as we have seen, if $\mathfrak{d} > \omega_1$, then even a countable union of open and ω_1-Ohio complete subspaces may fail to be ω_1-Ohio complete.

Now, if $\mathfrak{d} = \omega_1$, then the countable open sum theorem is true for ω_1-Ohio completeness, but we do not know the answer to the following.

Question 3.7. Assume $\mathfrak{d} = \omega_1$. Does the point-countable or locally countable open sum theorem for ω_1-Ohio completeness hold?

Remark 3.8. Let us point out that the notion of Ohio completeness could be generalized in even a more general way. Given infinite cardinal numbers κ and λ, we say that a space X is (κ, λ)-Ohio complete if for every compactification γX of X there is a G_δ-subset S of γX such that $X \subseteq S$ and for every $y \in S \setminus X$, there is a G_δ-subset of γX which contains y and misses X.

So this notion is a further elaboration of the Ohio completeness property. Of course, many of the results in [3] may be rephrased in terms of this notion, with the two (possibly distinct) variables κ and λ. The interested reader may verify that in certain results the first of these two variables plays a more important role.
than the second and in other results it is the other way around. In particular, in
the second example of this paper (Theorem 2.3) we added a one-point compacti-
fication of a space \(Y \) in the second coordinate, where the size of \(Y \) may be
arbitrarily large. So if \(\kappa \) is regular, then for any cardinal \(\lambda \), the union of \(\kappa \)-many
open and \(\kappa \)-Ohio complete spaces may fail to be \((\kappa, \lambda) \)-Ohio complete.

References

Désirée BASILE
Faculty of Sciences
Department of Mathematics
Vrije Universiteit
De Boelelaan 1081A
1081 HV Amsterdam
the Netherlands
E-mail: basile@DMI.Unict. IT

Jan VAN MILL
Faculty of Sciences
Department of Mathematics
Vrije Universiteit
De Boelelaan 1081A
1081 HV Amsterdam
the Netherlands
E-mail: vanmill@few.vu.nl

Guit-Jan RIDDERBOS
Faculty of Electrical Engineering
Mathematics and Computer Science
TU Delft, Postbus 5031
2600 GA Delft
the Netherlands
E-mail: G.F.Ridderbos@tudelft.nl