©2009 The Mathematical Society of Japan J. Math. Soc. Japan Vol. 61, No. 4 (2009) pp. 1293–1301 doi: 10.2969/jmsj/06141293

κ -Ohio completeness

By Désirée BASILE, Jan VAN MILL, and Guit-Jan RIDDERBOS

(Received Oct. 20, 2008)

Abstract. Generalizing the Ohio completeness property, we introduce the notion of κ -Ohio completeness. Although many results from a previous paper by the authors may easily be adapted for this new property, there are also some interesting differences. We provide several examples to illustrate this. We also have a consistency result; depending on the value of the cardinal \mathfrak{d} , the countable union of open and ω_1 -Ohio complete subspaces may or may not be ω_1 -Ohio complete.

1. Introduction.

All spaces under consideration are Tychonoff. For all undefined notions we refer to [6]. A topological space X is Ohio complete if for every compactification γX of X there is a G_{δ} -subset S of γX such that $X \subseteq S$ and for every $y \in S \setminus X$, there is a G_{δ} -subset of γX which contains y and misses X. Ohio completeness was introduced by Arhangel'skiĭ in [1] where it turned out to be a useful concept for the study of properties of remainders in compactifications.

Let κ be an infinite cardinal number. It is quite natural to generalize Ohio completeness by saying that a space X is κ -Ohio complete if for every compactification γX of X there is a G_{κ} -subset S of γX such that $X \subseteq S$ and for every $y \in S \setminus X$, there is a G_{κ} -subset of γX which contains y and misses X. Here a subspace of a space X is called a G_{κ} -subset if it is the intersection of at most κ -many open subsets of X.

Observe that any space is κ -Ohio complete, for some large enough κ . Also, if either the Čech-number or the compact covering number of a space does not exceed κ , then this space is κ -Ohio complete.

Ohio complete spaces were studied in [2] and [3]. In this paper we will focus our attention on unions of κ -Ohio complete subspaces. Since all the positive results proved in [3] can be easily generalized for κ -Ohio completeness, our main purpose will be to construct counterexamples for the κ -Ohio complete case. This will be done in the main section. We will construct a non κ -Ohio complete space which is the union of a locally countable family of closed and κ -Ohio complete

²⁰⁰⁰ Mathematics Subject Classification. Primary 54D35, 54G20; Secondary 54B05, 54B25. Key Words and Phrases. κ-Ohio complete, sum theorems, compactification.

subspaces. Next we will show that, if κ is a regular cardinal, the union of κ -many open and κ -Ohio complete subspaces need not be a κ -Ohio complete space.

The last section is devoted to positive results about open sums. We shall prove that the union of λ -many open and κ -Ohio complete subspaces is $kcov(\kappa^{\lambda})$ -Ohio complete. This result implies several interesting consistency results. In particular, if $\mathfrak{d} = \omega_1$, then the union of countably many open and ω_1 -Ohio complete subspaces is again ω_1 -Ohio complete. This statement may fail if $\mathfrak{d} > \omega_1$. Here the cardinal \mathfrak{d} is the compact covering number of the space ω^{ω} of irrationals (see [5] for more information).

Throughout the paper we will use the terminology introduced in [3]. Of course the terminology there was only introduced for Ohio completeness, but the κ -Ohio complete generalization is straightforward.

2. Examples.

In [3] it was proved that the union of a locally finite family of closed and Ohio complete subspaces is again Ohio complete and the same holds for κ -Ohio completeness. In contrast, the union of a locally countable family of closed and Ohio complete subspaces need not be Ohio complete by [3, Example 5.3]. The obvious generalization of this example shows that the union of a locally- κ family of closed and Ohio complete subspaces need not be κ -Ohio complete. The following example is much better, since it shows that even a locally countable union of closed and Ohio complete subspaces may fail to be κ -Ohio complete.

EXAMPLE 2.1. Fix an infinite cardinal number κ and let $\tau = \kappa^+$. The space τ carries the discrete topology. Let $\gamma \tau = \tau \cup \{\infty\}$ be its one-point compactification. Let \mathscr{A} be a family which is maximal with respect the following property:

- (1) $\mathscr{A} \subseteq [\tau]^{\omega},$
- (2) $\forall A, B \in \mathscr{A} \ (A \neq B \rightarrow |A \cap B| < \omega).$

Recall that the well-known space $Y = \psi(\tau, \mathscr{A})$ is defined as follows (see for example [5, p.153]). The underlying set of Y is $\tau \cup \mathscr{A}$, the points of τ are isolated and a basic neighborhood of $A \in \mathscr{A}$ has the form $\{A\} \cup (A \setminus F)$, where F is finite. It is clear from the definition that Y is covered by countable open sets.

We claim that the subspace \mathscr{A} is not a G_{κ} -subset of Y. To prove this it suffices to show that every closed subset of Y which misses \mathscr{A} is finite. If this were not the case, then we could find a countably infinite closed subset C of Y which misses \mathscr{A} . Since the family \mathscr{A} was chosen maximal, there must exist some $A \in \mathscr{A}$ such that $A \cap C$ is countably infinite. But then, every neighborhood of Aintersects C, a contradiction.

We let $Z = Y \times \gamma \tau$ and X be the subspace of Z given by:

$$X = (Y \times \tau) \cup (\mathscr{A} \times \{\infty\}).$$

We use [3, Lemma 5.1] (the proof can be easily adapted for κ -Ohio completeness) to show that X is not κ -Ohio complete. Since \mathscr{A} is not a G_{κ} -subset of Y, the space X is not a G_{κ} -subset of Z. To conclude that X is not κ -Ohio complete, observe that $Z \setminus X$ contains no non-empty G_{κ} -subset of Z.

It remains to verify that X is the union of a locally countable family of closed and Ohio complete subspaces of X. Let π be the projection of X onto the first coordinate. We let the closed cover \mathscr{C} of X be given by:

$$\mathscr{C} = \{\pi^{-1}(y) : y \in Y\}.$$

Note that the fibers of π are homeomorphic to either $\gamma \tau$ or τ , which are both Ohio complete since they are locally compact. Furthermore, since Y is locally countable in itself and π is continuous, it follows that \mathscr{C} is locally countable in X.

We now turn towards open sum theorems. In [3, Example 5.7] it was shown that the countable union of open and Ohio complete subspaces need not be Ohio complete. We can then ask whether the union of κ -many open and κ -Ohio complete subspaces is κ -Ohio complete. From the next theorem it will follow that, at least for κ regular, this is not the case. Moreover it will follow that, under the assumption $\kappa < \mathfrak{d}$, the countable union of open and Ohio complete subspaces need not even be κ -Ohio complete. In the final section of this paper we will show that on the other hand the countable union of open and Ohio complete subspaces is always \mathfrak{d} -Ohio complete.

Fix an infinite regular cardinal κ and consider the space 2^{κ} . We call a set a $G_{<\kappa}$ -subset if it is a G_{λ} -subset for some $\lambda < \kappa$. We denote by $(2^{\kappa})_{<\kappa}$ its $G_{<\kappa}$ -modification. So the topology on $(2^{\kappa})_{<\kappa}$ is generated by the collection of all $G_{<\kappa}$ -subsets of 2^{κ} . Now consider the following subset of (2^{κ}) :

$$E_{<\kappa} = \{ x \in 2^{\kappa} : |\{ \alpha < \kappa : x_{\alpha} \neq 0 \}| < \kappa \}.$$

Note that this set is dense in the space $(2^{\kappa})_{<\kappa}$. Recall that the Baire number of a space with no isolated points, also called the Novák number, is the minimal cardinality of a family of closed nowhere dense subsets whose union is the whole space. In [8, Lemma 1.3(b)] it is proved that the Baire number of the space $(2^{\kappa})_{<\kappa}$ is always greater than or equal to κ^+ . This result implies the following.

LEMMA 2.2. For regular κ , the set $E_{<\kappa}$ is not a G_{κ} -subset of $(2^{\kappa})_{<\kappa}$.

PROOF. Note that since κ is regular, the set $E_{<\kappa}$ is equal to the union of sets of the form $2^{\alpha} \times \{0\}^{\kappa \setminus \alpha}$, for $\alpha < \kappa$. These sets are all closed and nowhere dense in $(2^{\kappa})_{<\kappa}$.

So if $E_{<\kappa}$ were a G_{κ} -subset, then its complement would be the union of κ -many closed sets which are all nowhere dense since $E_{<\kappa}$ is dense in $(2^{\kappa})_{<\kappa}$. So by the previous observation, we would have that the Baire number of the space $(2^{\kappa})_{<\kappa}$ were less than or equal to κ , contradicting [8, Lemma 1.3(b)].

The example constructed in the following theorem is very similar to [3, Example 5.7], see also [4, Example 2.4].

THEOREM 2.3. Let κ and λ be infinite cardinal numbers, with κ regular. There exists a space X with the following properties:

- (1) If X is λ -Ohio complete, then $E_{<\kappa}$ is a G_{λ} -set in $(2^{\kappa})_{<\kappa}$,
- (2) X is the union of κ -many open and κ -Ohio complete subspaces.

PROOF. We set $E = E_{<\kappa}$. For every $e \in E$, we fix a collection A(e) of one-to-one functions from κ into $D = 2^{\kappa} \setminus E$, which is maximal with respect to the following conditions:

- (i) $\forall f \in A(e) \ \forall \alpha < \kappa \ (f(\alpha) \upharpoonright \alpha = e \upharpoonright \alpha),$
- (ii) $\forall f, g \in A(e) \ (f \neq g \rightarrow |\operatorname{ran}(f) \cap \operatorname{ran}(g)| < \kappa).$

Fix a discrete space Y of cardinality λ^+ and let $\omega Y = Y \cup \{\infty\}$ be its onepoint compactification. For every $\alpha \in \kappa$, with E_{α} we denote the subspace $2^{\alpha} \times \{0\}^{\kappa \setminus \alpha}$. Put $A_{\alpha} = \bigcup_{e \in E_{\alpha}} A(e)$ and $A = \bigcup_{\alpha \in \kappa} A_{\alpha}$ and let $Z = A \cup (D \times \omega Y)$. If $f \in A$ and $\alpha < \kappa$, we let

$$U(f,\alpha) = \{f\} \cup \bigcup \{f(\beta) \times \omega Y : \alpha < \beta < \kappa\}.$$

The collection \mathscr{B} , which serves as a base for a topology on Z, is given by

 $\{U(f,\alpha): f \in A, \ \alpha < \kappa\} \cup \{R \times U: R \subseteq D, \ U \text{ is an open subset of } \omega Y\}.$

We leave it to the reader to verify that topologized in this way, the space Z is Hausdorff and zero-dimensional and hence Tychonoff.

We let X be the subspace of Z given by $A \cup (D \times Y)$. In the following claim we will prove assertion (1). The proof is almost identical to the argument used in [4, Example 2.4].

CLAIM 1. If X is λ -Ohio complete, then E is a G_{λ} -set in $(2^{\kappa})_{<\kappa}$.

PROOF OF CLAIM. Striving for a contradiction, assume that X is λ -Ohio complete but E is not a G_{λ} -subset of $(2^{\kappa})_{<\kappa}$.

Since for every $d \in D$, the subspace $\{d\} \times \omega Y$ of Z is homeomorphic to ωY , the set $Z \setminus X$ contains no non-empty G_{λ} -subsets of Z. Then, by [3, lemma 5.1] X must be a G_{λ} -subset of Z. This implies that A is a G_{λ} -subset of the subspace $A \cup (D \times \{\infty\})$ of Z. Hence $D = \bigcup_{\alpha < \lambda} G_{\alpha}$, where each $G_{\alpha} \times \{\infty\}$ is closed in $A \cup (D \times \{\infty\})$.

By assumption D is not the union of λ -many closed subsets of $(2^{\kappa})_{<\kappa}$, so for some $\alpha < \lambda$, $E \cap Cl_{<\kappa}(G_{\alpha}) \neq \emptyset$ (where the closure is taken in $(2^{\kappa})_{<\kappa}$). So we may fix $e \in E$, such that for every $\beta < \kappa$, there is some $g \in G_{\alpha}$ such that $g \upharpoonright \beta = e \upharpoonright \beta$. But this means that we may find an injective function $f \colon \kappa \to G_{\alpha}$ such that for every $\beta \in \kappa$, $f(\beta) \upharpoonright \beta = e \upharpoonright \beta$.

Since the collection A(e) was maximal, it follows that for some $f' \in A(e)$, we have that $|\operatorname{ran}(f) \cap \operatorname{ran}(f')| = \kappa$. But this means that f' is in the closure of the set $G_{\alpha} \times \{\infty\}$ (closure in $A \cup (D \times \{\infty\})$), which is a contradiction.

We will now prove assertion (2), that is that X is the union of κ -many open and κ -Ohio complete subspaces. For each $\alpha < \kappa$, we let $X_{\alpha} = A_{\alpha} \cup (D \times Y)$. It is not hard to verify that X_{α} is an open subspace of X and of course $X = \bigcup \{X_{\alpha} : \alpha < \kappa\}$. It remains to prove that each X_{α} is κ -Ohio complete.

CLAIM 2. For each $\alpha < \kappa$, the space X_{α} is κ -Ohio complete.

PROOF OF CLAIM. Fix $\alpha < \kappa$. Note that both A_{α} and $D \times Y$ are discrete subspaces of X_{α} . Since a discrete space is $(\kappa$ -)Ohio complete, we have that X_{α} is the union of two $(\kappa$ -)Ohio complete subspaces. The space $D \times Y$ is clearly an open subspace of X_{α} , and the set A_{α} is a G_{κ} -subset of X_{α} . Indeed, one verifies easily that $A_{\alpha} = \bigcap_{\alpha \leq \beta < \kappa} \bigcup_{f \in A_{\alpha}} (U(f, \beta) \cap X_{\alpha}).$

So it follows that X_{α} is the union of two G_{κ} -subsets which are both κ -Ohio complete. By Corollary 4.2 in [3] it follows that X_{α} is κ -Ohio complete.

This completes the proof of the theorem.

The previous theorem may be applied to obtain several interesting examples.

EXAMPLE 2.4. Assume $\lambda < \mathfrak{d}$. Then the union of countably many open and Ohio complete subspaces need not be λ -Ohio complete.

PROOF. Consider the space X constructed in the previous theorem with $\kappa = \omega$. If X were λ -Ohio complete, then $E_{<\omega}$ would be a G_{λ} -subset of $(2^{\omega})_{<\omega}$.

However in this case $E_{<\omega}$ is homeomorphic to the space of rationals in $(2^{\omega})_{<\omega}$, which is just the Cantor set. Of course, since $\lambda < \mathfrak{d}$, the set of rationals is not a G_{λ} -subset of 2^{ω} . \square

EXAMPLE 2.5. Assume κ regular. Then the union of κ -many open and κ -Ohio complete subspaces need not be κ -Ohio complete.

It suffices to apply Theorem 2.3 with $\lambda = \kappa$, and then use PROOF. Lemma 2.2.

3. Positive results.

Having obtained several counterexamples, we now provide some positive results on open sum theorems for κ -Ohio completeness. In particular, the results of this section will allow us to prove that, under the assumption $\mathfrak{d} = \omega_1$, the countable open union of ω_1 -Ohio complete subspaces is ω_1 -Ohio complete.

Recall that the covering number of a space X, denoted by kcov(X), is the minimal cardinality of a collection \mathcal{K} of compact subsets of X which covers X. In the next lemma we will refer to $kcov(\kappa^{\lambda})$. In this case the space κ always carries the discrete topology. Of course $\kappa \leq kcov(\kappa^{\lambda}) \leq \kappa^{\lambda}$.

Let X be a space. Then the union of λ -many G_{κ} -subsets of X is Lemma 3.1. a $G_{kcov(\kappa^{\lambda})}$ -subset of X.

PROOF. Let \mathscr{G} be a family of G_{κ} -subsets of X, with $|\mathscr{G}| = \lambda$. For every $G \in \mathscr{G}$, we fix a sequence $(G_{\alpha})_{\alpha \in \kappa}$ of open subsets of X such that $G = \bigcap_{\alpha \in \kappa} G_{\alpha}$. Since $|\mathscr{G}| = \lambda$, the space $\kappa^{\mathscr{G}}$ is homeomorphic to κ^{λ} , and then we may write $\kappa^{\mathscr{G}} = \bigcup_{\tau \in kcov(\kappa^{\lambda})} K_{\tau}$, where each K_{τ} is a compact subset of $\kappa^{\mathscr{G}}$.

For every $\tau \in kcov(\kappa^{\lambda})$, we let $f_{\tau}: \mathscr{G} \to [\kappa]^{<\omega}$ be the function defined as $f_{\tau}(G) = p_G(K_{\tau})$, where p_G denotes the projection of $\kappa^{\mathscr{G}}$ onto the G-th factor, and we let $\mathscr{F} = \{f_{\tau} : \tau \in kcov(\kappa^{\lambda})\}.$

For every $f \in \mathscr{F}$, we let $W_f = \bigcup_{G \in \mathscr{G}} \bigcap_{\alpha \in f(G)} G_\alpha$ and $W = \bigcap_{f \in \mathscr{F}} W_f$. It is clear that W_f is an open subset of X containing $\bigcup \mathscr{G}$, and then W is a $G_{kcov(\kappa^{\lambda})}$ -subset of X containing $\bigcup \mathscr{G}$. We shall now prove that actually $W = \bigcup \mathscr{G}$.

To this end, suppose that $x \notin \bigcup \mathscr{G}$. Then, for every $G \in \mathscr{G}$ we may fix an index $\alpha_G \in \kappa$ such that $x \notin G_{\alpha_G}$. Since the point $y = (\alpha_G)_{G \in \mathscr{G}} \in \kappa^{\mathscr{G}}$, there exists some $\tau \in kcov(\kappa^{\lambda})$ such that $y \in K_{\tau}$. By construction, $x \notin W_{f_{\tau}}$ so that $x \notin W$.

We say that a subspace X of a space Z is κ -Ohio embedded in Z, if there is a G_{κ} -subset S of Z such that $X \subseteq S$ and for every $y \in S \setminus X$, there is a G_{κ} -subset of Z which contains y and misses X. Such a G_{κ} -subset S will be called a κ -good G_{κ} -subset with respect to X. For more information about κ -Ohio embedded

spaces and κ -good G_{κ} -subsets see [3].

THEOREM 3.2. Let X be a space. Suppose that \mathscr{U} is a cover of X consisting of G_{κ} -subsets, with $|\mathscr{U}| = \lambda$. If $X \subseteq Z$, and every element of \mathscr{U} is κ -Ohio embedded in Z, then X is $kcov(\kappa^{\lambda})$ -Ohio embedded in Z.

PROOF. Let $\mathscr{U} = \{U_{\alpha} : \alpha \in \lambda\}$. For every $\alpha \in \lambda$, we may fix a G_{κ} -subset S_{α} of Z which is κ -good with respect to U_{α} . Note that since U_{α} is a G_{κ} -subset of X, we may assume without loss of generality that $S_{\alpha} \cap X = U_{\alpha}$. Then, by Lemma 3.1, the set $S = \bigcup_{\alpha \in \lambda} S_{\alpha}$ is a $G_{kcov(\kappa^{\lambda})}$ -subset of Z. We claim that S is $kcov(\kappa^{\lambda})$ -good with respect to X. First of all, note that $X \subseteq S$, since $U_{\alpha} \subseteq S_{\alpha}$, for $\alpha \in \lambda$. So it remains to show that every point in $S \setminus X$ can be separated from X by a $G_{kcov(\kappa^{\lambda})}$ -subset of Z.

So, fix an arbitrary point $z \in S \setminus X$. Then $z \in S_{\alpha} \setminus U_{\alpha}$, for some $\alpha \in \lambda$. Then, by construction, there is a G_{κ} -subset T of Z such that $z \in T$ and $T \cap U_{\alpha} = \emptyset$. But then, since $S_{\alpha} \cap X = U_{\alpha}$, the set $S_{\alpha} \cap T$ is a G_{κ} -subset of Z which contains z and misses X.

Since $\mathfrak{d} = kcov(\omega^{\omega})$, the following corollary shows that the union of countably many open and Ohio complete subspaces is \mathfrak{d} -Ohio complete. So Example 2.4 is best possible.

COROLLARY 3.3. Let X be a space. Let \mathscr{U} be a cover of X consisting of G_{κ} -subsets, with $|\mathscr{U}| = \lambda$. Suppose that every element of \mathscr{U} is contained in a κ -Ohio complete subspace of X. Then X is $kcov(\kappa^{\lambda})$ -Ohio complete.

PROOF. Fix an arbitrary compactification γX of X. Since every element of \mathscr{U} is contained in a κ -Ohio complete subspace of X, it follows from [**3**, Proposition 2.1] and [**3**, Corollary 2.5] that every element of \mathscr{U} is κ -Ohio embedded in γX . So by the previous theorem, X is $kcov(\kappa^{\lambda})$ -Ohio embedded in γX . Since γX was an arbitrary compactification of X, this shows that X is $kcov(\kappa^{\lambda})$ -Ohio complete. \Box

Our main interest is in open sum theorems. In particular we have the following.

COROLLARY 3.4. Assume $\mathfrak{d} = \omega_1$. Let \mathscr{U} be a countable open cover of X such that every element of \mathscr{U} is contained in an ω_1 -Ohio complete subspace of X, then X is ω_1 -Ohio complete.

PROOF. It suffices to observe that $kcov(\omega_1^{\omega}) = \mathfrak{d}$ (see for example [9, Proposition 3.6]), and then apply Corollary 3.3.

Let us denote the least cardinal λ for which the union of λ -many open and κ -Ohio complete subspace fails to be κ -Ohio complete with the symbol $\mathscr{O}(\kappa)$. Then the following theorem holds.

THEOREM 3.5. Let κ be an infinite cardinal number.

- (1) If κ is regular then $\mathscr{O}(\kappa) \leq \kappa$.
- (2) If λ is a cardinal number such that $kcov(\kappa^{\lambda}) = \kappa$, then $\mathcal{O}(\kappa) > \lambda$.
- (3) Assuming the **GCH**, then $\mathscr{O}(\kappa) \ge cf(\kappa)$.
- (4) Assuming the **GCH** and κ regular then $\mathscr{O}(\kappa) = \kappa$.
- (5) If $\kappa < \mathfrak{d}$, then $\mathscr{O}(\kappa) = \omega$.
- (6) $\mathscr{O}(\omega_1) = \begin{cases} \omega_1, & \text{if } \mathfrak{d} = \omega_1, \\ \omega, & \text{if } \mathfrak{d} > \omega_1. \end{cases}$

PROOF. Assertion (1) follows from Example 2.5. Corollary 3.3 implies (2). For assertion (3), observe that **GCH** implies that, if $\lambda < cf(\kappa)$, then $\kappa^{\lambda} = \kappa$ (see [7, Theorem 5.15]) and then $kcov(\kappa^{\lambda}) = \kappa$. This implies $\mathcal{O}(\kappa) \ge cf(\kappa)$. Assertions (1) and (3) imply (4). Assertion (5) follows from Example 2.4. Finally, (6) follows from Corollary 3.4 and Example 2.4 ($\lambda = \omega_1$).

QUESTION 3.6. If κ is a singular cardinal, is it still true that $\mathscr{O}(\kappa) \leq \kappa$?

Finally, we consider locally countable and point-countable open sum theorems. By [3, Corollary 4.5], a point-finite and hence also locally finite union of open and ω_1 -Ohio complete subspaces is again ω_1 -Ohio complete. However as we have seen, if $\mathfrak{d} > \omega_1$, then even a countable union of open and ω_1 -Ohio complete subspaces may fail to be ω_1 -Ohio complete.

Now, if $\mathfrak{d} = \omega_1$, then the countable open sum theorem is true for ω_1 -Ohio completeness, but we do not know the answer to the following.

QUESTION 3.7. Assume $\vartheta = \omega_1$. Does the point-countable or locally countable open sum theorem for ω_1 -Ohio completeness hold?

REMARK 3.8. Let us point out that the notion of Ohio completeness could be generalized in even a more general way. Given infinite cardinal numbers κ and λ , we say that a space X is (κ, λ) -Ohio complete if for every compactification γX of X there is a G_{κ} -subset S of γX such that $X \subseteq S$ and for every $y \in S \setminus X$, there is a G_{λ} -subset of γX which contains y and misses X.

So this notion is a further elaboration of the Ohio completeness property. Of course, many of the results in [3] may be rephrased in terms of this notion, with the two (possibly distinct) variables κ and λ . The interested reader may verify that in certain results the first of these two variables plays a more important role

than the second and in other results it is the other way around. In particular, in the second example of this paper (Theorem 2.3) we added a one-point compactification of a space Y in the second coordinate, where the size of Y may be arbitrarily large. So if κ is regular, then for any cardinal λ , the union of κ -many open and κ -Ohio complete spaces may fail to be (κ, λ) -Ohio complete.

References

- A. V. Arhangel'skiĭ, Remainders in compactifications and generalized metrizability properties, Topology Appl., 150 (2005), 79–90.
- [2] D. Basile and J. van Mill, Ohio completeness and products, Topology Appl., 155 (2008), 180– 189.
- [3] D. Basile and J. van Mill, and G. J. Riddderbos, Sum theorems for Ohio completeness, Colloq. Math., 113 (2008), 91–104.
- [4] J. Chaber, Metacompactness and the class MOBI, Fund. Math., 91 (1976), 211-217.
- [5] E. K. van Douwen, The integers and topology, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 111–167.
- [6] R. Engelking, General topology, second ed., Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989, Translated from the Polish by the author.
- [7] T. Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, The third millennium edition, revised and expanded.
- [8] A. Landver, Baire numbers, uncountable Cohen sets and perfect-set forcing, J. Symbolic Logic, 57 (1992), no. 3, 1086–1107.
- [9] O. Okunev and A. Tamariz-Mascarúa, On the Čech number of $C_p(X)$, Topology Appl., 137 (2004), 237–249, IV Iberoamerican Conference on Topology and its Applications.

Désirée BASILE

Faculty of Sciences Department of Mathematics Vrije Universiteit De Boelelaan 1081^A 1081 HV Amsterdam the Netherlands E-mail: basile@dmi.unict.it

Jan van Mill

Faculty of Sciences Department of Mathematics Vrije Universiteit De Boelelaan 1081^A 1081 HV Amsterdam the Netherlands E-mail: vanmill@few.vu.nl

Guit-Jan RIDDERBOS

Faculty of Electrical Engineering Mathematics and Computer Science TU Delft, Postbus 5031 2600 GA Delft the Netherlands E-mail: G.F.Ridderbos@tudelft.nl