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Abstract We show that for any sufficiently homogeneous metrizable compactum X
there is a Polish group G acting continuously on the space of rational numbers Q such
that X is its unique G-compactification. This allows us to answer Problem 995 in the
‘Open Problems in Topology II’ book in the negative: there is a one-dimensional Polish
group G acting transitively on Q for which the Hilbert cube is its unique G-completion.

Keywords G-compactification · Rational numbers · Countable dense homogeneous

Mathematics Subject Classification (2000) 54H15

1 Introduction

All spaces under discussion are Tychonoff.
By an action of a topological group on a space we will always mean a continuous

action. Let G be a topological group acting on a space X . As usual, we call X a
G-space. A compactification γ X of X is a G-compactification if the action of G
extends to γ X . If G is locally compact, then X has a G-compactification [23]. Similarly
if G is ℵ0-bounded and acts transitively on the Baire space X [22]. For more results see
Megrelishvili and Scarr [15]. Even if both G and X are Polish, then X need not have
a G-compactification [12]. But if X has a G-compactification, then it has a largest
G-compactification (in the usual order of compactifications), denoted by βG X . Not
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258 J. van Mill

much is known about these G-spaces. If X is the space of rational numbers Q, or
the space of irrational numbers P, and G is the full autohomeomorphism group of
X endowed with the discrete topology, then β X is its unique G-compactification, as
was shown by van Douwen [5]. Here β X is the Čech-Stone compactification of X .
Other concrete examples can be found for example in Smirnov and Stojanov [19],
Stojanov [21] and Smirnov [18]. The aim of this note is among other things to provide
many other concrete examples.

Recall that a space X is countable dense homogeneous (abbreviated: CDH) if for
all countable dense subsets D, E ⊆ X there is a homeomorphism f : X → X with
f (D) = E .

Let X be a subspace of the space Y . If the topological group G acts on Y and X is
invariant under the action of G, then Y is called a G-extension of X .

Theorem 1.1 Let X be a metrizable compactum with the following properties:

(1) X is homogeneous,
(2) X\{x} is CDH for every x ∈ X.

Then there is a Polish group G such that if D is any countable dense subset of X, then
G admits a transitive action on D and X is the unique Čech-complete G-extension of
D in which D is dense (hence X is the unique G-compactification of D).

The reason that we are not only interested in G-compactifications but also in Čech-
complete G-extensions will be explained later.

Observe that Theorem 1.1 is clearly true if X is finite. So from now on we will
implicitly assume that X is infinite. Observe that by homogeneity this implies that X
is dense in itself. Hence D is a countable, dense in itself metrizable space and so by
Sierpiński [17], D and Q are homeomorphic and so every ‘sufficiently homogeneous’
metrizable compactum X is the unique G-compactification of Q for some Polish
group G.

A space X is strongly locally homogeneous (abbreviated: SLH) if it has an open base
B such that for all B ∈ B and x, y ∈ B there is a homeomorphism f : X → X which is
supported on B (that is, f is the identity outside B) and moves x to y. Most of the famil-
iar homogeneous spaces are SLH: the Hilbert cube, homogeneous zero-dimensional
spaces (such as the Cantor set), manifolds without boundaries, universal Menger con-
tinua, etc. The pseudoarc and the solenoids are examples of homogeneous continua
that are not SLH. Not every SLH-space is homogeneous, as the topological sum of
the one-sphere and the two-sphere demonstrates. Observe that every open subspace
of an SLH-space is again SLH.

It was shown by Bennett [2] that every locally compact separable metrizable
SLH-space is CDH. This was generalized by de Groot to Polish spaces in [9]. Hence
by Theorem 1.1 we get:

Corollary 1.2 For every homogeneous metrizable SLH-compactum X there exist a
Polish group G and a transitive action of G on X such that X is (homeomorphic to)

the unique G-compactification of Q.

We will also comment that Megrelishvili’s Example quoted above provides an
example of a Polish group H acting on Q for which there is no H -compactification.
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On the G-compactifications of the rational numbers 259

It is well-known that every metrizable space X has a metrizable completion that
preserves both the dimension and the weight of X , [7, 4.1.20]. It is natural to ask
whether a similar result can be proved for G-spaces. The answer is ‘yes’ for actions
of locally compact and σ -compact groups G on metrizable spaces, as was shown by
Megrelishvili [13]. We will show in contrast that for X the Hilbert cube, the group
G in Theorem 1.1 is at most one-dimensional. From this we conclude that there is a
one-dimensional Polish group G acting transitively on Q for which the Hilbert cube
is its unique G-completion. This answers Problem 995 in Megrelishvili [14] in the
negative which asks for the existence of dimension preserving G-completions.

I am indebted to Michael Megrelishvili and Guit-Jan Ridderbos for helpful com-
ments.

2 Preliminaries

If X is a space, then H(X) denotes its group of homeomorphisms. Moreover, if D ⊆ X ,
then H(X |D) denotes the subgroup

{ f ∈ H(X) : f (D) = D}.

of H(X).
If X is compact, then the so-called compact-open topology on H(X) makes it a

topological group. A subbasis for the compact-open topology on H(X) consists of all
sets of the form

[K , U ] = { f ∈ H(X) : f (K ) ⊆ U },

where K and U are arbitrary subsets of X with K compact and U open. It is not
difficult to prove that the function (g, x) �→ g(x) is a continuous action of H(X) on
X . It is well-known, and easy to prove that if X is compact and metrizable, then H(X)

is Polish. Here Polish means a separable and completely metrizable space.
A topological group G is said to be Polishable, if it admits a finer Polish group

topology. An obvious necessary condition for the Polishability of G is that G is a
Borel group (that is a topological group which is homeomorphic to a Borel subspace
of the Hilbert cube), see [10, 15.2]. But this condition is not sufficient, see Becker and
Kechris [1, p. 12]. If a group is Polishable, then its Polish group topology is unique.
Hence Polishability is an ‘intrinsic’ property. For more information on Polishable
groups, see e.g., Solecki [20].

In [16], the following simple criterion was formulated that guarantees the Polisha-
bility of certain subgroups of Polish groups.

Theorem 2.1 ([16, Sect. 6(A)]) Let G be a Polish group. In addition, let H be a
subgroup of G containing a countable collection B of subgroups such that

(A) every B ∈ B is closed in H,

123



260 J. van Mill

(B) for every B ∈ B there are countable subsets AB, A′
B ⊆ H such that

H =
⋂

B∈B
AB B ∩

⋂

B∈B
B A′

B

(here closure means closure in G).

Then H is Polishable.

Corollary 2.2 Let G be a Polish group acting on a space X. Let D be a countable
subset of X on which the subgroup

H = {g ∈ G : gD = D}

of G acts transitively. Then H is Polishable.

Proof Enumerate D faithfully as {dn : n < ω}, and for every n put

Bn = {h ∈ G : hdn = dn}.

It is clear that Bn is a closed subgroup of G. Since H acts transitively on D, we
may fix for all n, m < ω an element fn,m ∈ H such that fn,mdn = dm . Let F be
the subgroup of H generated by { fn,m : n, m < ω}. Observe that for every n we
have F(Bn ∩ H) = H = (Bn ∩ H)F . Indeed, pick arbitrary g ∈ H and n < ω.
Let dm = gdn and dk = g−1dn . Then f −1

n,m g ∈ Bn and g f −1
k,n ∈ Bn , proving that

g ∈ F(Bn ∩ H) ∩ (Bn ∩ H)F .
We will prove that H = ⋂

n<ω F Bn ∩ ⋂
n<ω Bn F . An application of Theorem 2.1

then finishes the proof.
By the above it suffices to prove that

⋂
n<ω F Bn ∩ ⋂

n<ω Bn F ⊆ H . Indeed, pick
an arbitrary g ∈ ⋂

n<ω F Bn ∩ ⋂
n<ω Bn F , and fix n < ω. There are f, f ′ ∈ F

and ξ, η ∈ Bn such that g = f ξ = η f ′. Clearly, ξdn = η−1dn = dn . Hence
gdn = ( f ξ)dn = f dn ∈ D, and, similarly, g−1dn = ( f ′−1η−1)dn = f ′−1dn ∈ D.
Hence g ∈ H , and so we are done. �	
Remark 2.3 Let G be a Polishable group acting on a space X . Let Ĝ denote G with its
finer Polish group topology. Observe that since the action G × X → X is continuous,
so is the action Ĝ × X → X .

For a space X we let β X denote its Čech-Stone compactification. We will use
the well-known fact that every homeomorphism f : X → X can be extended to a
homeomorphism β f : β X → β X . For details, see [6, Sect. 3.6]. A space X is Čech-
complete if it is a Gδ-set in any compactification of X .

3 Proof of Theorem 1.1

Throughout this section, let X be an infinite metrizable compactum with the following
properties:
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On the G-compactifications of the rational numbers 261

(†) X is homogeneous,
(‡) X\{x} is CDH for every x ∈ X .

Observe that by (†), X is uncountable and has no isolated points, which implies by (‡)

that X is CDH. Simply observe that since X is compact, X is the Alexandrov one-point
compactification of X\{pt}. Hence every ξ ∈ H(X\{pt}) extends to a homeomorphism
ξ̄ ∈ H(X) such that ξ̄ (pt) = pt.

Let D be an arbitrary countable dense subset of X .
For a countable dense subset E of X we let G E denote the group H(X |E). Since

X is CDH, for all countable dense subsets E and F of X we have that G E and
G F are topologically isomorphic (being conjugate). So the topological group G E is
‘independent of the choice of E’. It will be convenient to denote G D by G.

For X = S2, G is homeomorphic to the first category ‘rational Hilbert space’, as
was shown by Dijkstra and van Mill [3]. Hence G need not be Polish. We will first
show that it is Polishable.

Lemma 3.1 If E is a countable dense subset of X, and either x, y ∈ E or x, y ∈ X\E,
then there exists f ∈ H(X |E) such that f (x) = y.

Proof Assume first that x, y ∈ E . By (†) we may pick h ∈ H(X) such that h(x) = y.
Hence by (‡) there exists ξ ∈ H(X) such that

(1) ξ(y) = y,
(2) ξ (h(E\{x})) = E\{y}.
Then for f = ξ ◦ h we clearly have f (x) = y and

f (E) = ξ(h(E\{x}) ∪ {h(x)}) = (E\{y}) ∪ {y} = E,

as required.
Next assume that x, y ∈ X\E . Pick by (†) an element h ∈ H(X) such that h(x) =

y. Then both E and h(E) are countable dense subsets of X\{y}. Hence by (‡) we may
pick ξ ∈ H(X) such that ξ(y) = y and ξ (h(E)) = E . It is easy to see that f = ξ ◦ h
is as required. �	

We conclude that G = H(X |D) acts transitively on D, and so G is Polishable by
Corollary 2.2. We claim that Ĝ is the desired group. By Remark 2.3, Ĝ acts transitively
on D and X is a Ĝ-compactification of D.

(A) Čech-complete Ĝ-extensions. Let Y be a Čech-complete G-extension of D in
which D is dense. We will first show that Y is compact. We will then proceed to show
that Y is homeomorphic to X by a homeomorphism that restricts to the identity on D.
Hence Y and X are equivalent G-extensions of D.

Observe that βD, βY and X are compactifications of D. There consequently exist
continuous functions π1 : βD → βY and π2 : βD → X that both restrict to the
identity on D.

It will be convenient to fix some notation. Fix g ∈ G. The homeomorphism d �→
gd of D will be denoted by gD . It extends to the homeomorphism x �→ gx of X ;
this homeomorphism will be denoted by gX . It also extends to the homeomorphism
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262 J. van Mill

y �→ gy of Y ; this homeomorphism will be denoted by gY . It also extends to the
homeomorphism βgD of βD. Finally, gY extends to the homeomorphism βgY of
βY . Observe that the homeomorphism βgY , βgD and gX all restrict to gD on D. It
consequently follows that the diagrams

βD
βgD−−−−→ βD

π1

⏐⏐�
⏐⏐�π1

βY −−−−→
βgY

βY

βD
βgD−−−−→ βD

π2

⏐⏐�
⏐⏐�π2

X −−−−→
gX

X

(∗)

commute.

Proposition 3.2 Y is compact.

Proof Put S = βD\π−1
1 (Y ). Then S is a σ -compact subset of βD which misses D.

As a consequence, π2(S) is a σ -compact subset of X which misses D. Since D is
not Čech-complete, being homeomorphic to Q, there consequently exists an element
a ∈ X\ (D ∪ π2(S)). So we conclude that π−1

2 (a) ⊆ π−1
1 (Y ). Take an arbitrary

b ∈ X\D. By Lemma 3.1 there exists g ∈ G such that gX (a) = b. Observe that by
the second commutative diagram in (∗) we get

βgD

(
π−1

2 (a)
)

= π−1
2 (b). (1)

Since gY (Y ) = Y it follows that βgY (Y ) = Y and hence by the first commutative
diagram in (∗),

βgD

(
π−1

1 (Y )
)

= π−1
1 (Y ). (2)

Since π−1
2 (a) ⊆ π−1

1 (Y ), by (1) and (2) we conclude that π−1
2 (b) ⊆ π−1

1 (Y ). Since
b ∈ X\D was arbitrarily chosen, this gives us that π−1

2 (X\D) ⊆ π−1
1 (Y ). But

π−1
1 (D) = D = π−1

2 (D), hence π−1
2 (D) ⊆ π−1

1 (Y ). So we conclude that βD ⊆
π−1

1 (Y ), i.e., Y is compact. �	
So we conclude that Y is a Ĝ-compactification of D. We will proceed to show X

is the unique Ĝ-compactification of D which finishes the proof.
(B) Ĝ-compactifications of D. Let γ D be a Ĝ-compactification of D such that

γ D ≥ X . (It is not assumed that γ D is metrizable.) Let π : γ D → X be the unique
continuous surjection that restricts to the identity on D. Our aim is to show that π is
one-to-one, i.e., γ D and X are equivalent compactifications of D.

Striving for a contradiction, assume that there exists b ∈ X such that π−1(b)

contains at least two points, say p and q. Observe that b ∈ X\D. Let ξ : γ D → I be
a Urysohn function such that ξ(p) = 0 and ξ(q) = 1. Let H be a countable dense
subset of Ĝ. We list H as {αn : n < ω} such that every h ∈ H is listed infinitely often.
For every g ∈ G denote the homeomorphism z �→ gz of γ D by ĝ. For all n ≥ 1, put
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On the G-compactifications of the rational numbers 263

Un = {x ∈ X : diam
(
ξ ◦ α̂n

) (
π−1(x)

)
< 1/n}.

It is clear that Un is open and contains D since for every d ∈ D we have that π−1(d) =
{d} (use that π is closed). Put

S =
⋂

n≥1

Un .

Then S is a Gδ-subset of X containing D. Since D is not complete, being homeomor-
phic to Q, we may pick an element a ∈ S\D. Since every h ∈ H is listed infinitely
often, it follows that for every h ∈ H we have that ξ ◦ ĥ is constant on π−1(a). By
Lemma 3.1, we may pick g ∈ G such that ga = b. Observe that the diagram

γ D
π−−−−→ X

z �→gz
⏐⏐�

⏐⏐�x �→g(x)

γ D −−−−→
π

X

commutes since π restricts to the identity on D. Hence ĝ
(
π−1(a)

) = π−1(b). Pick
p′, q ′ ∈ π−1(a) such that gp′ = p and gq ′ = q.

Let (hi )i be a sequence of elements of H converging to g. Observe that hi p′ →
gp′ = p and hi q ′ → gq ′ = q. Since ξ(p) = 0 and ξ(q) = 1, we may consequently
pick an index i(0) so large that

ξ(hi(0) p′) < 1/4, ξ(hi(0)q
′) > 3/4.

But this contradicts the fact that the function ξ ◦ ĥi(0) is constant on π−1(a). This
proves that X is the maximal Ĝ-compactification of D.

We will now prove that X is a minimal Ĝ-compactification of D. This implies that
up to equivalence, X is the unique Ĝ-compactification of D since we already know
that βĜ D = X .

To this end, let νD be a (necessarily metrizable) Ĝ-compactification of D such that
νD ≤ X . Let φ : X → νD be the unique continuous surjection which restricts to the
identity on D. Our aim is to show that φ is one-to-one, i.e., νD and X are identical
compactifications of D.

Lemma 3.3 There is an element p ∈ νD\D such that φ−1(p) is a single point.

Proof For all n ≥ 1, put

Un = {x ∈ νD : diam φ−1(x) < 1/n}.
It is clear that Un is open and contains D since for every d ∈ D we have that φ−1(d) =
{d}. Put S = ⋂

n≥1 Un . Then S is a Gδ-subset of νD containing D. Since D is not
complete, being homeomorphic to Q, we may pick an element p ∈ S\D. Then p is
clearly as required. �	
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264 J. van Mill

Striving for a contradiction, assume that there is a point q ∈ νD\D such that φ−1(q)

contains two distinct points, say r and s. By Lemma 3.1 we may pick h ∈ G = H(X |D)

such that h(r) is the unique point t inφ−1(p), where p is such as in Lemma 3.3. Observe
that the diagram

X
φ−−−−→ νD

x �→h(x)

⏐⏐�
⏐⏐�z �→hz

X −−−−→
φ

νD

commutes since φ restricts to the identity on D. As a consequence, hq = p. Let (dn)n

be a sequence in D such that dn → s (in X ). Clearly, dn → q (in νD), hence hdn → p
(in νD) and so h(dn) → t (in X ). But this is a contradiction since h(s) �= h(r) = t .

Remark 3.4 In the light of Theorem 1.1, it is natural to ask whether for every Polish
group G acting on Q there is a G-compactificationγ Q of Q. The answer to this question
is in the negative. The counterexample of Megrelishvili [12] mentioned in Sect. 1 is
a Polish group G acting on the so-called hedgehog J (ℵ0) of spininess ℵ0. Consider
its subspace Q(ℵ0) consisting of all ‘rational’ points. By using the same method as in
Megrelishvili [12] it can be shown that the group H = {g ∈ G : gQ(ℵ0) = Q(ℵ0)}
acts on Q(ℵ0) and Q(ℵ0) has no H -compactification. The group H can be shown to
be Polishable by the same technique as was used in the proof of Corollary 2.2. The
details of checking this are left to the reader.

The groups in Theorem 1.1 act transitively, while the group H in Remark 3.4 does
not. This suggests the following question.

Question 3.5 Let G be a Polish group G acting transitively on Q. Does Q admit a
G-compactification?

This is a special case of the following question due to Furstenberg and Scarr: if
G acts transitively on X , does X admit a G-compactification? See Question 2.6 in
Megrelishvili [14].

Remark 3.6 Our results show that for many G-spaces X , the compactification βG X
is metrizable. A similar result is due to Stojanov [21]. He proved that for X the unit
sphere in Hilbert space �2 and G = U (�2) the unitary group endowed with the strong
operator topology, βG X is equivalent to the natural inclusion of X into the weakly
compact unit ball of �2. See also [4, Sect. 7.6]. For more metrizable βG X see Smirnov
and Stojanov [19] and Kozlov and Chatyrko [11].

4 Dimension

Let X be the Hilbert cube Q with countable dense subset D. As in Sect. 3, let
G = H(Q|D). Then G is homeomorphic to the first category ‘rational Hilbert space’,
as was shown by Dijkstra and van Mill [3], which is one-dimensional by Erdős [8]. We
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On the G-compactifications of the rational numbers 265

showed that G is Polishable by using the simple criterion in Theorem 2.1. Let Ĝ be G
with its Polish group topology. An inspection of the proof in van Mill [16, Sect. 6(A)]
shows that Ĝ is a subspace of G × Nω. Since dim G = 1 and dim Nω = 0, it follows
that dim Ĝ ≤ 1. Hence by Theorem 1.1, Ĝ is an at most one-dimensional Polish group
acting transitively on Q such that the strongly infinite-dimensional Hilbert cube is its
unique Ĝ-completion. This answers Problem 995 in Megrelishvili [14] in the negative
which asks for dimension preserving G-completions. It may not be so easy to deter-
mine the dimension of Ĝ. It is very probable equal to 1. Verifying this is interesting
in its own right but irrelevant for our discussion here because if dim Ĝ = 0 then we
can replace Ĝ if we aim for a one-dimensional group by R × Ĝ. These observations
suggest the following:

Question 4.1 Is there is zero-dimensional Polish group G acting transitively on Q

such that the Hilbert cube is its unique G-completion?

If every Polish group is a continuous homomorphic image of a zero-dimensional
Polish group, then we are done of course by what we obtained above. But this is not
known as far as I know.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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