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HOMOGENEOUS SPACES AND TRANSITIVE
ACTIONS BY ℵ0-BOUNDED GROUPS

JAN VAN MILL

Abstract. We construct a homogeneous connected Polish
space X on which no ℵ0-bounded topological group acts tran-
sitively. In fact, X is homeomorphic to a convex subset of
Hilbert space `2.

1. Introduction

Unless otherwise stated, all spaces under discussion are separable
and metrizable.

In [4], an example of a homogeneous Polish space was constructed
on which no ℵ0-bounded topological group acts transitively. That
space is not connected and this fact was used essentially in the ver-
ification of its properties. In this note we will construct a similar
example that is connected. It has very strong connectivity proper-
ties since it is homeomorphic to a convex subset of Hilbert space `2.
It is basically the same example as the one in [4] with the Cantor set
replaced by the Hilbert cube. But the connectivity properties of the
example make the verification of its properties more complicated.

2. Preliminaries

We assume the reader is familiar with both the basic results in
infinite-dimensional topology [3] and the construction in [4].
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Let I = [0, 1], and Q =
∏∞

n=1[−1, 1]n, with admissible metric
%(x, y) =

∑∞
n=1 2−n|xn − yn|.

If f : X → Y is a function, then

Γ(f) = {
(
x, f(x)

)
: x ∈ X} ⊆ X × Y

denotes its graph. The identity function on a set X will be denoted
by 1X .

The following result which is implicit in [1, Lemma 3.6] will be
important in our construction.

Lemma 2.1. Let A1 and A2 be subsets of a compact space X for
which there exists a homeomorphism h : X \A1 → X \A2. Assume
that X has an open base U such that for every nonempty U ∈ U

we have that U \A1 and U \A2 are both nonempty and connected.
Moreover, let pi : Γ(h) → X be the projection maps, i = 1, 2. Then
p1 and p2 are monotone surjections such that p−1

1 (A1) = p−1
2 (A2).

Proof. First observe that X \A1 and X \A2 are both dense in X .
Moreover, p1�Γ(h) : Γ(h) → X \ A1 is a homeomorphism. Hence
by [2, 3.5.6], p1

(
Γ(h) \ Γ(h)

)
⊆ A1. As a consequence, p−1

1 (q) =
{
(
q, h(q)

)
} for every q ∈ X \A1. Similarly, p−1

2 (q) = {(h−1(q), q)}
for every q ∈ X \A2 and hence p−1

1 (A1) = p−1
2 (A2). Since X \ Ai

is dense in X , each pi is onto. By symmetry, it suffices to prove
that p1 is monotone. Assume that for some point x ∈ A1, p−1

1 (x) is
not connected. Write p−1

1 (x) as F ∪G, where F and G are disjoint
nonempty closed sets. Choose disjoint open sets F ′ and G′ in Γ(h)
containing F and G, respectively. Since p1 is a closed map, there is
an element U ∈ U such that x ∈ U and p−1

1 (U) ⊆ F ′ ∪G′. Observe
that

U \A1 =
(
U ∩ p1(F ′ ∩ Γ(h)

)
∪

(
U ∩ p1(G′ ∩ Γ(h)

)
.

This clearly contradicts the connectivity of U \A1. �

Remark 2.2. It is clear that Lemma 2.1 can be generalized. We
leave this to the reader.

Our example will be the complement of a σZ-set W in Y = Q×I.
It is not difficult to prove that for every nonempty connected open
subset U of Y the set U \W is connected (in fact, path-connected;
any path in U between points in U \W may be deformed to a path
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in U \W via a deformation α : Y × I → Y such that α(Y × (0, 1]) ⊆
Y \W ). Hence we are in a position to apply Lemma 2.1.

A (not necessarily metrizable) topological group G is called ℵ0-
bounded provided that for every neighborhood U of the identity
e there is a countable subset F of G such that G = FU . It was
proved by Guran that a topological group G is ℵ0-bounded if and
only if it is topologically isomorphic to a subgroup of a product of
separable metrizable groups. For a proof, see Uspenskĭı [6].

A topologically complete (separable metrizable) spaceX is some-
times called Polish.

For a space X we let H(X) denote the homeomorphism group
of X . A topology on H(X) is called admissible if it makes H(X)
a topological group and makes the natural action of H(X) on X
continuous. If X is compact, then the compact-open topology on
H(X) is admissible and Polish.

3. The example

In this section we present the construction of our main example.
The example is basically the same as the one in [4] with the

Cantor set replaced by the Hilbert cube. Its connectivity makes
the verification of its properties more complicated. We ignore state-
ments and proofs that can be copied almost verbatim from similar
results in [4].

Consider the product Y = Q× I. Let π1 : Y → Q and π2 : Y → I
be the projection maps. If x ∈ Y , then x1 abbreviates π1(x).
Similarly for the second coordinate. On Y we use the admissible
metric

d(x, y) = max{%(x1, y1), |x2 − y2|}.
Let H be the closed subgroup of H(Y ) consisting of all those

elements f with the following property: for all q ∈ Q and s, t ∈
I such that s < t we have that π1

(
f(q, s)

)
= π1

(
f(q, t)

)
and

π2

(
f(q, s)

)
< π2

(
f(q, t)

)
. This means that f permutes the col-

lection
{
{q} × I : q ∈ Q

}
and is ‘order preserving’ on each interval

of the form {q} × I for q ∈ Q.
Let Φ denote the collection of all pairs of functions 〈φ, φ′〉 having

the following properties:
(1) dom(φ) = dom(φ′) is a countable dense subset of Q,
(2) range(φ) ∪ range(φ′) ⊆ (0, 1),
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(3) φ� φ′, i.e., φ(d) < φ′(d) for every d ∈ dom(φ) = dom(φ′),
(4) if x, y ∈ Y , x1 = y1 and x2 < y2, then for every ε > 0 there

exists d ∈ dom(φ) = dom(φ′) such that

%(x1, d) = %(y1, d) < ε, |x2 − φ(d)| < ε, |y2 − φ′(d)| < ε.

(Equivalently, d
(
x, (d, φ(d)

)
< ε and d

(
y, (d, φ′(d)

)
< ε.)

Observe that range(φ) and range(φ′) are countable dense subsets
of (0, 1).

For 〈φ, φ′〉 ∈ Φ such that D = dom(φ) = dom(φ′), put

U〈φ, φ′〉 =
⋃

x∈Q\D

{x} × (0, 1)∪
⋃

d∈D

{d} ×
(
φ(d), φ′(d)

)
.

There is an element 〈φ, φ′〉 ∈ Φ, and for that element we put
Z = U〈φ, φ′〉. Observe that W = Y \ Z is a σZ-set in Y . This
implies by [1, Theorem 3.1] that Z is homeomorphic to a convex
subset of `2.

Theorem 3.1. Z is a homogenous, Polish space.

An inspection of the proofs in [4, §3] shows that for this all we
need to check is that Lemma 3.2 below holds. Indeed, the clopen set
C in the Cantor set 4 in Lemma 3.1 in [4] corresponds in our setting
to a connected open set C in Q. Standard homogeneity properties
of Q (see [3]) yield that the proof of Lemma 3.1 in [4] can easily
be adapted to get what we want. In the proof of Lemma 3.2 in [4],
no specifics from 4 were used. A similar statement holds for an
arbitrary space X , hence also for Q. The proofs of Proposition 3.3
and Lemma 3.4 in [4] can be copied almost verbatim with trivial
changes only. There remains Lemma 3.5 in [4] of which we present
the complete proof in the new setting in our next result.

Lemma 3.2. If x ∈ D and y ∈ Q \ D, then there is an element
h ∈ H(Z) such that h({x} ×

(
φ(x), φ′(x))

)
= {y} × (0, 1).

Proof. Let t = φ(x) and t′ = φ′(x). Observe that 0 < t < t′ < 1.
We let f : I → I be the continuous surjection that maps [0, t] onto
0, [t′, 1] onto 1, and [t, t′] linearly onto [0, 1], i.e.,

f(s) =





0 (0 ≤ s ≤ t),
s

t′−t −
t

t′−t (t ≤ s ≤ t′),
1 (t′ ≤ s ≤ 1).
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Then f is approximable by homeomorphisms of I. Indeed, let (tn)n

be a sequence in (0, t) such that tn ↗ t, and (t′n)n a sequence in
(t′, 1) such that t′n ↘ t′. For every n, let fn be the unique homeo-
morphism of I mapping [0, tn] linearly onto [0, 1/n], [tn, t′n] linearly
onto [1/n, 1 − 1/n], and [t′n, 1] linearly onto [1 − 1/n, 1]. Moreover,
for every n, let H(n) be the standard isotopy of I connecting fn

and fn+1. That is, H(n)s maps [0, (1−s)tn + stn+1] linearly onto
[0, (1−s)1/n + s1/n+1] for every s ∈ I, etc. Hence H(n)0 = fn and
H(n)1 = fn+1. Observe that fn → f .

Let α : Q → I be a Urysohn function such that α−1(0) = {x}
and α(Q) = I. Recall that Y = Q× I. Define ξ : Y → Y as follows:

ξ(q, t) =

{(
q,H(n)−2nα(q)+2(t)

)
(2−n ≤ α(q) ≤ 2−n+1),(

q, f(t)
)

(α(q) = 0 ⇔ q = x).

Then ξ is a continuous surjection, and maps the complement of
{x} × ([0, t] ∪ [t′, 1]) homeomorphically onto the complement of
{(x, 0), (x, 1)}. Define ψ, ψ′ : D \ {x} → (0, 1) so that for every
z ∈ D \ {x} we have that ξ

(
z, φ(z)

)
=

(
z, ψ(z)

)
and ξ

(
z, φ′(z)

)
=(

z, ψ′(z)
)
. Observe that 〈ψ, ψ′〉 ∈ Φ and ξ(Z) = U〈ψ, ψ′〉. By [4,

Proposition 3.3] there is an element h ∈ H such that h(U〈ψ, ψ′〉) =
U〈φ, φ′〉 = Z. Then q = h◦ξ maps the complement of {x}×([0, t]∪
[t′, 1]) homeomorphically onto the complement of {h(x, 0), h(x, 1)},
hence {x} × (t, t′) homeomorphically onto

{
π1

(
h(x, 0)

)}
× (0, 1),

and
q(Z) = h

(
ξ(Z)

)
= h(U〈ψ, ψ′〉) = U〈φ, φ′〉 = Z,

as required. �

We will now analyze all the homeomorphisms of Z. For that it
will be convenient to introduce some notation. Define ϕ, ϕ′ : Q→ I
as follows:

ϕ(q) =

{
0 (q ∈ Q \D),
φ(q) (q ∈ D),

ϕ′(q) =

{
1 (q ∈ Q \D),
φ′(q) (q ∈ D).

Elements of the collection

T =
{
{q} ×

(
ϕ(q), ϕ′(q)

)
: q ∈ Q

}

are thought of as ‘vertical sections’ of Z. Clearly, Z =
⋃

T.

Theorem 3.3. Each homeomorphism of Z permutes the collec-
tion T.
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Proof. Let h ∈ H(Z), and let Γ(h) denote the graph of h in Y ×Y .
We adopt the notation in Lemma 2.1 with A1 = A2 =

⋃
d∈D{d} ×

([0, φ(d)]∪ [φ′(d), 1])∪ (Q× {0, 1}).
Put K = Q× {0, 1}. Then L = p1

(
p−1
2 (K)

)
is a compact subset

of Y \ Z.
Take an arbitrary q ∈ Q, and consider the vertical section

S = {q} ×
(
ϕ(q), ϕ′(q)

)
.

Claim 1. π1

(
h(S)

)
is a single point.

Proof. Assume that π1

(
h(S)

)
contains the points u and v. Pick

u′, v′ ∈
(
ϕ(q), ϕ′(q)

)
such that

(π1 ◦ h)(q, u′) = h(q, u′)1 = u, (π1 ◦ h)(q, v′) = h(q, v′)1 = v.

We may assume without loss of generality that u′ ≤ v′. Pick α, β ∈(
ϕ(q), ϕ′(q)

)
such that α < u′ ≤ v′ < β. Let (dn)n be a sequence

in D such that
(1) limn→∞ dn = q,
(2) for every n, β < φ(dn) < φ′(dn).

For every n, consider the segment

Sn = {dn} × [α, β].

Observe that by (2), Sn ⊆ Y \ Z. We claim that there exists N
such that Sn ∩L = ∅ for every n ≥ N . If not, then we may assume
without loss of generality that every Sn and L intersect, say in
the point xn. Since L is compact, we may assume without loss of
generality that xn → x, where x ∈ L. Observe that L ⊆ Y \ Z
and hence that x 6∈ Z. But, clearly, x ∈ {q} × [α, β] ⊆ Z, which
gives us the desired contradiction. So we may assume without loss
of generality that

(3) Sn ∩ L = ∅ (∀n ∈ N).

Now fix n for a moment. Then by (3), p−1
1 (Sn)∩p−1

2 (Q×{0, 1}) = ∅.
This implies by Lemma 2.1 that S ′

n = p2

(
p−1
1 (Sn)

)
is a continuum

that is contained in
⋃

d∈D{d}× [0, φ(d)]∪
⋃

d∈D{d}× [φ′(d), 1]. By
the Sierpiński Theorem from [5] (see also [2, 6.1.27]), there is a
unique d ∈ D such that either S ′

n ⊆ {d} × [0, φ(d)] or S ′
n ⊆ {d} ×

[φ′(d), 1]. From this we conclude that for all n,

(4) π1

(
p2

(
p−1
1 (Sn)

))
is a single point.
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Observe that (dn, u
′) → (q, u′) and that p−1

1 (q, u′) is a single point
while every p−1

1 (dn, u
′) may very well be nontrivial. Since p1 is a

closed map, it easily follows that p−1
1 (dn, u

′) → p−1
1 (q, u′). (Simply

use that p1 is a closed map and p−1
1 (q, u′) is a singleton.) Hence

p2

(
p−1
1 (dn, u

′)
)
→ p2

(
p−1
1 (q, u′)

)
= h(q, u′).

It follows similarly that

p2

(
p−1
1 (dn, v

′)
)
→ p2

(
p−1
1 (q, v′)

)
= h(q, v′).

Hence by (4) we get u = v, as required. ♦

So we conclude that there is an element q′ ∈ Q such that

h(S) = {q′} × π2

(
h(S)

)
= {q′} × (a, b) ⊆ Z.

Observe that both S and h(S) are closed subsets of Z. Hence
h(S) = {q′} ×

(
ϕ(q′), ϕ′(q′)

)
, i.e., h(S) ∈ T. Since h is a bijection,

this consequently implies that h permutes T. �

4. Actions on Z

Since Z is a homogeneous topological space by Theorem 3.1, it
is natural to ask whether there are actions of topological groups on
Z that are more interesting than the natural action of the discrete
group H(Z) on Z. In the following result we formulate a criterion
that tells us that interesting actions on certain spaces do not exist.
This criterion was extracted from [4, Theorem 4.2]. A collection
T of subsets of a space X is called invariant provided that for all
f ∈ H(X) and all T ∈ T we have that f(T ) ∈ T. Observe that
this implies that for all f ∈ H(X) and all T ∈ T we also have
that f−1(T ) ∈ T. Hence every homeomorphism of X permutes the
elements of T. Examples are the collection of all components of X ,
or the collection of all subsets of X of a given dimension.

Theorem 4.1. Let X be a topological space admitting a pairwise
disjoint invariant collection T such that every nonempty open subset
of X contains a nonempty member from T. Assume that there exists
ε > 0 such that

⋃
{T ∈ T : diamT < ε} is meager in X. Then if G

is an ℵ0-bounded topological group that acts on X by a separately
continuous action, there is an element x ∈ X such that its orbit Gx
is meager in X.
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Proof. It will be convenient to let Ue denote the collection of all
open neighborhoods of the neutral element e in G. Striving for
a contradiction, assume that for every x ∈ X its orbit Gx is not
meager in X .

Claim 1. Let p ∈ X and U ∈ Ue. Then Up is not meager in X . If
moreover Gp∩ T 6= ∅ for some T ∈ T, then

⋃
{T ∈ T : Up∩ T 6= ∅}

is not meager in X as well.

Proof. Since G is ℵ0-bounded, there is a countable set H in G such
that HU = G. This means that Gp = HUp =

⋃
h∈H hUp. Observe

that for every h ∈ H the function x 7→ hx is a homeomorphism of
X . Hence if Up is meager then so is hUp for every h ∈ H , and
hence so is Gp since H is countable. This proves that Up is not
meager.

Now assume that
⋃
{T ∈ T : Up ∩ T 6= ∅} is meager in X .

Then since T is invariant, by the same argumentation as the one
above, for every h ∈ H we have that

⋃
{T ∈ T : hUp ∩ T 6= ∅} is

meager. Since H is countable,
⋃
{T ∈ T : Gp ∩ T 6= ∅} is meager

as well. There exists by assumption an element T ∈ T such that
T ∩ Gp 6= ∅, say q ∈ T ∩ Gp. Since T is invariant, this means that
Gq is contained in the meager set

⋃
{T ∈ T : Gp∩T 6= ∅}, and this

is a contradiction. ♦
Take an arbitrary p ∈ X , and let V be a closed neighborhood of

p in X of diameter less than ε. Let γp : G → X denotes the (con-
tinuous) function g 7→ gp. Then W = γ−1

p (V ) is a neighborhood
of the neutral element of G. Choose an open neighborhood U of e
such that U2 ⊆ W .

We claim that if q ∈ Up then Uq ⊆ V . This is easy. Indeed, if
h ∈ U then

hq ∈ h
(
Up

)
= hUp ⊆ U2p ⊆ Wp ⊆ V = V,

as required.
Observe that Up is not nowhere dense by Claim 1, i.e., its interior

E is nonempty. Pick T ∈ T such that ∅ 6= T ⊆ E, and let q0 ∈ T .
Then by Claim 1,

⋃
{T ∈ T : Uq0 ∩ T 6= ∅} is not meager in X .

There consequently exists by our assumptions an element T ′ ∈ T

such that diamT ′ ≥ ε and T ′ ∩ Uq0 6= ∅. Let q1 ∈ T ′ ∩ Uq0.
There exists an element g ∈ U such that gq0 = q1. Hence gT ∩
T ′ 6= ∅, so gT = T ′ since T is pairwise disjoint, i.e., diam gT ≥ ε.
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On the other hand, T ⊆ Up, and hence by the above, gT , being a
subset of UT ⊆ V , has diameter less than ε. This is a contradic-
tion. �
Corollary 4.2. No ℵ0-bounded topological group G acts transitively
on Z by a separately continuous action.

Proof. By Theorem 3.3, the collection of all ‘vertical sections’ T

is invariant. Observe that all but countably many elements of T

have diameter 1 and that every element of T is meager in Z. It
consequently follows that T satisfies the conditions in Theorem 4.1
with ε = 1/2. So we are done by the fact that Z is Polish. �
Corollary 4.3. H(Z) does not admit an ℵ0-bounded admissible
topology.

The results in this note suggest the following interesting open
problems.

Question 4.4. Does H(Z) admit an admissible topology which is
not discrete?

Question 4.5. Is there an infinite homogeneous Polish space X hav-
ing the property that the only admissible topology on H(X) is the
discrete topology?
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