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Characterizing Complete Erdős Space

Jan J. Dijkstra and Jan van Mill

Abstract. The space now known as complete Erdős space Ec was introduced by Paul Erdős in 1940 as

the closed subspace of the Hilbert space ℓ2 consisting of all vectors such that every coordinate is in the

convergent sequence {0} ∪ {1/n : n ∈ N}. In a solution to a problem posed by Lex G. Oversteegen

we present simple and useful topological characterizations of Ec. As an application we determine

the class of factors of Ec. In another application we determine precisely which of the spaces that can

be constructed in the Banach spaces ℓp according to the ‘Erdős method’ are homeomorphic to Ec.

A novel application states that if I is a Polishable Fσ-ideal on ω, then I with the Polish topology is

homeomorphic to either Z, the Cantor set 2ω , Z × 2ω , or Ec. This last result answers a question that

was asked by Stevo Todorčević.

1 Introduction

We present a number of topological characterizations of complete Erdős space Ec. As
an application we determine the class of factors of Ec, and we prove that Ec has the

curious property that whenever a product
∏∞

i=0 Xi is homeomorphic to Ec, then at

least one but no more than finitely many of the Xi ’s are homeomorphic to Ec. In an-
other application we determine precisely which of the spaces that can be constructed

in the Banach spaces ℓp according to the ‘Erdős method’ [20] are homeomorphic to

Ec; see Theorem 4.1. A new type of application can be found in §4.4 and states that
if I is a Polishable Fσ-ideal on ω, then I with the Polish topology is homeomorphic

to either Z, the Cantor set 2ω, Z × 2ω, or Ec; see Theorem 4.15. This last result an-
swers a question that was posed to us by S. Todorčević. We also show by example that

Polishable ideals that are not Fσ can be either homeomorphic to Ec or not homeo-

morphic to Ec in the Polish topology, even if that topology is one-dimensional; see
Example 4.20.

Consider the Hilbert space ℓ2 consisting of the square summable sequences x =

(x0, x1, . . . ) of real numbers. Erdős [20] introduced the closed subspace of ℓ2 con-
sisting of all x ∈ ℓ2 such that every coordinate xi is in the convergent sequence

{0} ∪ {1/n : n ∈ N}. This space is now known as complete Erdős space. Kawa-
mura, Oversteegen, and Tymchatyn [22] represented complete Erdős space as {x ∈
ℓ2 : xi ∈ R \Q for all i}. It is known that this space is homeomorphic to Erdős’ orig-

inal model; see Dijkstra [9] and Remark 4.3. It is proved in [22] that complete Erdős
space is homeomorphic to the end-point set of a Lelek fan as constructed in [25].

We find it convenient to use the latter representation for Ec. Since the Lelek fan was

shown to be topologically unique by Charatonik [6] and Bula and Oversteegen [5],
we have that Ec is well defined.
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The paper [22] contains a characterization of Ec. However, this characterization
is quite technical and it is not topological but metric in nature. In [29, Question 7.1]

Oversteegen asks whether there is a simple characterization of complete Erdős space.
We believe that the following result fits the bill.

Theorem 1.1 (Characterization) A nonempty space E is homeomorphic to Ec if and

only if there is a zero-dimensional topology W on E that is coarser than the given topology

on E such that for every x ∈ E and neighbourhood U of x in E there is a neighbourhood

V of x in E with V closed in (E,W), (V,W) topologically complete, and V a nowhere

dense subset of (U ,W).

2 Preliminaries

Unless otherwise stated all topological spaces in this paper are assumed to be separa-

ble metric.

Definition 2.1 A subset A of a space X is called a C-set in X if A can be written as an
intersection of clopen subsets of X. A space is called almost zero-dimensional if every

point of the space has a neighbourhood basis consisting of C-sets of the space. If Z is

a set that contains X, then we say that a (separable metric) topology T on Z witnesses

the almost zero-dimensionality of X if dim(Z,T) ≤ 0, O ∩ X is open in X for each

O ∈ T, and every point of X has a neighbourhood basis in X consisting of sets that
are closed in (Z,T). We will also say that the space (Z,T) is a witness to the almost

zero-dimensionality of X.

Remark 2.2. Observe that every C-set is closed and that the property is preserved
under finite unions and intersections. The concept of an almost zero-dimensional

space is due to Oversteegen and Tymchatyn [30]. The definition given here is easier

to use than the original one in [30] and was shown to be equivalent in Dijkstra, van
Mill, and Steprāns [15]. Note that almost zero-dimensionality is hereditary.

Clearly, a space X is almost zero-dimensional if and only if there is a topology on

X witnessing this fact. Let Z be a witness to the almost zero-dimensionality of some
space X and let O be open in X. Then since X is separable metric, we can write O as a

union of countably many sets that are closed in Z. So every open set of X is Fσ in the
witness topology.

A function ϕ : X → [−∞,∞] is called upper semi-continuous (USC) if {x ∈ X :

ϕ(x) < t} is open in X for every t ∈ R. ϕ is called lower semi-continuous (LSC) if
−ϕ is USC.

Definition 2.3 Let ϕ : X → [0,∞) and define

G
ϕ
0 = {(x, ϕ(x)) : x ∈ X and ϕ(x) > 0}

and

L
ϕ
0 = {(x, t) : x ∈ X and 0 ≤ t ≤ ϕ(x)}

both equipped with the topology inherited from X × R. We say that ϕ is a Lelek

function if X is zero-dimensional, ϕ is USC, and G
ϕ
0 is dense in L

ϕ
0 .
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Remark 2.4. The following facts can be found in Lelek [25]. Lelek functions with
compact domain C exist and C must be homeomorphic to the Cantor set. If ϕ is

a Lelek function with a compactum C as domain and we identify the set C × {0}
with a point in Lϕ0 , then we obtain a Lelek fan. The end-point set of a Lelek fan Gϕ

0 is

one-dimensional and topologically complete. As mentioned in the introduction we

will use G
ϕ
0 as our standard model for Ec. Since the Lelek fan is unique by [6] and

[5], any Lelek function ϕ with compact domain will do.

The following result links witness topologies with USC functions and was taken

from [14, Lemma 4.11]; see also [2, Corollary 5].

Lemma 2.5 Let X be a space and let Z be zero-dimensional space that contains X as a

subset (but not necessarily as a subspace). Then the following statements are equivalent:

(1) Z is a witness to the almost zero-dimensionality of X.

(2) There exists a USC function ϕ : Z → [0,∞) such that the map h : X → G
ϕ
0 defined

by the rule h(x) = (x, ϕ(x)) is a homeomorphism.

Definition 2.6 A space is called nowhere zero-dimensional if no point of the space

has a clopen neighbourhood basis. A space X is called cohesive if every point of the
space has a neighbourhood that does not contain nonempty clopen subsets of X.

Every cohesive space is clearly nowhere zero-dimensional, but the converse is not

true even for homogeneous spaces; see Dijkstra [10]. The following observation is
trivial but useful.

Proposition 2.7 A product
∏∞

i=0 Xi is cohesive if and only if some Xk is cohesive.

Lelek [25] proved that Ec can be turned into a connected space through the ad-

dition of just one point, which means that Ec is cohesive. Also Erdős proved in [20]

that his representations of complete Erdős space are cohesive, cf. Remark 4.3.
The following result from [14, Lemma 5.9] gives the connection between cohesion

and Lelek functions.

Lemma 2.8 Let ϕ be a USC function from a zero-dimensional space X to [0,∞) such

that G
ϕ
0 is cohesive and {x ∈ X : ϕ(x) > 0} is dense in X. Then there exists a Lelek

function χ : X → R+ such that χ ≤ ϕ, the natural bijection h from the graph of ϕ to

the graph of χ is continuous, and the restriction h↾G
ϕ
0 : G

ϕ
0 → G

χ
0 is a homeomorphism.

Definition 2.9 Let ϕ : X → [0,∞] be a function and let X be a subset of a metric

space (Y, d). We define extY ϕ : Y → [0,∞] by

(extY ϕ)(y) = lim
εց0

(sup{ϕ(z) : z ∈ X with d(z, y) < ε}) for y ∈ Y ,

where we use the convention sup ∅ = 0.

Note that the metric on Y is mentioned strictly for the sake of convenience and

that the definition of extY ϕ does not depend on the choice of d. It is easily seen that

extY ϕ is always USC and that it extends ϕ whenever ϕ is USC.
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3 Characterization and Stability

The following result includes Theorem 1.1.

Theorem 3.1 For a nonempty space E, the following statements are equivalent.

(1) E is homeomorphic to Ec.

(2) E is cohesive and there is a zero-dimensional topology W on E such that W is coarser

than the given topology and that has the property that every point in E has a neigh-

bourhood basis consisting of sets that are compact with respect to W.

(3) There is a zero-dimensional topology W on E that is coarser than the given topology

on E such that for every x ∈ E and neighbourhood U of x in E there is a neighbour-

hood V of x in E with V closed in (E,W), (V,W) topologically complete, and V a

nowhere dense subset of (U ,W).

(4) There is a topology W on E such that W witnesses the almost zero-dimensionality

of E, every point in E has a neighbourhood that is topologically complete in (E,W),

and every open subset O of E is first category in (O,W).

(5) E is cohesive, there is a topology W on E such that W witnesses the almost zero-

dimensionality of E, and every point in E has a neighbourhood that is topologically

complete in (E,W).

Proof (1) ⇒ (2). Let Ec = Gϕ
0 for some Lelek function ϕ with compact domain K .

Ec is known to be cohesive. Let π : K × R → K denote the projection. Let Z be

the graph of ϕ with the topology that is lifted from K , that is, π↾Z : Z → K is a
homeomorphism. According to Lemma 2.5 the space Z witnesses the almost zero-

dimensionality of G
ϕ
0 . If W is the topology that G

ϕ
0 inherits from the compact space

Z, then it is clear that W satisfies (2).
(2) ⇒ (3). Assume that E satisfies (2) and let U be a neighbourhood of some

point x in E. Since E is cohesive, we may select an open neighbourhood W of x

in E such that W ⊂ U and W contains no nonempty clopen subsets of E. Select

a neighbourhood V of x in E such that V ⊂ W and (V,W) is compact. Then V is

closed and topologically complete in (E,W). Suppose that V has a nonempty interior
in (U ,W). Since dim(E,W) = 0, we have that V contains a nonempty set C that is

clopen in (U ,W). Then C is closed in (V,W) and hence it is closed in (E,W) and

E. On the other hand, C is open in (W,W) and hence open in W and therefore also
in E. Thus we have that V and W contain a nonempty clopen subset C of E. Since

this contradicts the cohesion assumption, we have shown that V is nowhere dense in
(U ,W).

(3) ⇒ (4). Assume that E satisfies (3) and note that it suffices to prove that every

open subset of E is first category in itself with respect to W. Let O be an arbitrary
open subset of E. Choose for each x ∈ O a neighbourhood Ux of x in O that is

nowhere dense in (O,W). Since E is separable metric, we can find a countable set

A ⊂ O with O =

⋃
{Ux : x ∈ A}. We have that (O,W) is first category in itself.

(4) ⇒ (5). Assume that E satisfies (4) and note that it suffices to prove that E is

cohesive. Let x ∈ E be arbitrary and select a neighbourhood U of x in E such that
(U ,W) is topologically complete. Let C be a clopen subset of E that is contained in

U . By Remark 2.2 we have that E \C is an Fσ-set in (E,W). Thus C is a Gδ-subset of

the complete space (U ,W) and hence (C,W) is topologically complete. On the other
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hand, we have by assumption that (C,W) is first category in itself thus C = ∅ by the
Baire Category Theorem. We have shown that E is cohesive.

(5) ⇒ (1). Assume that E is some space that satisfies condition (5). Let Z denote

E equipped with the witness topology W. Let K be a zero-dimensional compacti-

fication of Z. Let B be a countable collection of closed and topologically complete
subsets of Z such that for each x ∈ E and each neighbourhood U of x in E there is a

B ∈ B that is a neighbourhood of x in E that is contained in U . We define

Y = K \
⋃
{B \ B : B ∈ B},

where B stands for the closure in K . Note that Y is a Gδ-subset of K that contains Z

and that Y is a witness to the almost zero-dimensionality of E. With Lemma 2.5 we

can find a USC function ϕ : Y → [0, 1] such that E is homeomorphic to G
ϕ
0 . Since

E is cohesive, we can find a Lelek function χ : Y → [0, 1] using Lemma 2.8 such

that G
χ
0 is homeomorphic to G

ϕ
0 . Let χ̃ = extK χ and note that G

χ
0 is dense in L

eχ
0

by [14, Lemma 4.8.b] and hence χ̃ is a Lelek function just as χ. Because the domain

of χ̃ is compact we have Ec = Geχ
0 . Note that K \ Y is σ-compact and G

eχ↾K\Y
0 is a

first category set in G
eχ
0 because its complement is G

χ
0 . According to [22, Theorem 6]

we have that G
χ
0 is homeomorphic to G

eχ
0 ; see also [16, Theorem 26]. We now have

Ec = G
eχ
0 ≈ G

χ
0 ≈ G

ϕ
0 ≈ E.

If X is a nonempty space, then Y is called an X-factor if there is a space Z such that
Y × Z is homeomorphic to X.

Theorem 3.2 (Stability) For a nonempty space E the following statements are equiv-

alent:

(1) E × Ec is homeomorphic to Ec.

(2) E is an Ec-factor.

(3) E is homeomorphic to a retract of Ec.

(4) E admits an imbedding as a C-set in Ec.

(5) E admits a closed imbedding into Ec.

(6) E is homeomorphic to G
ϕ
0 where ϕ is some USC function with a complete zero-

dimensional domain.

(7) E is almost zero-dimensional as witnessed by a topology W such that every point of

E has a neighbourhood that is complete in (E,W).

Proof The implications (1) ⇒ (2) ⇒ (3) and (4) ⇒ (5) are trivial, and we have

(3) ⇔ (4) by [14, Theorem 4.18].

(5) ⇒ (6). Assume that E is a closed subset of G
ϕ
0 for some Lelek function ϕ with

compact domain K . Let π : K × R → K denote the projection. Let Y be the graph
of ϕ as a subspace of K × R and let Z be the graph of ϕ with the topology that is

lifted from K , that is, π↾Z : Z → K is a homeomorphism. Applying Lemma 2.5 to

the function 1 + ϕ we find that the space Z witnesses the almost zero-dimensionality
of Y . Since G

ϕ
0 is open in Y , we have that G

ϕ
0 \ E is also open in Y , and hence by

Remark 2.2 this set is an Fσ-set in Z. Thus we have that X = K \π(G
ϕ
0 \E) is a Gδ-set

in K and topologically complete. Note that G
ϕ↾X
0 = E, which proves this case.



Characterizing Complete Erdős Space 129

(6) ⇒ (7) This implication follows by the same argument as in the proof of the
case (1) ⇒ (2) for Theorem 3.1 (just replace “compact” by “complete”).

(7) ⇒ (1) Assume (7) and let Z = (E,W). By Proposition 2.7 we have that
E × Ec is cohesive. Let Z ′

= (Ec,W
′) be a witness to Ec that satisfies property (5)

of Theorem 3.1. Then, trivially, the topology on Z × Z ′ is a witness to the almost

zero-dimensionality of E × Ec that also satisfies that property. Apply Theorem 3.1 to
find E × Ec ≈ Ec.

Remark 3.3. In particular, we have that every nonempty and zero-dimensional com-
plete space is an Ec-factor. This result follows also from [22]. It is also shown in

[22] that every nonempty open subset of Ec is homeomorphic to Ec. Note that this

result also follows immediately from Theorem 1.1. The paper [15] features a non-
homogeneous dense Gδ-subset G of Ec such that G × Ec ≈ G.

The example G was presented in [15] to give a negative answer to the question in

[22] whether every cohesive dense Gδ-subset of Ec is homeomorphic to Ec; see also
[14, Proposition 5.4]. In connection to this question we have the following positive

result.

Proposition 3.4 Let W be a witness topology on Ec such that every point of Ec has a

neighbourhood that is complete in (Ec,W). If X is a dense subset of Ec that is a Gδ-set

in (Ec,W), then X is homeomorphic to Ec.

Proof By the same argument used for the implication (2) ⇒ (3) in the proof of

Theorem 3.1 we have that W satisfies the requirements as formulated in Theorem 1.1.

We show that the restriction of W to X also satisfies Theorem 1.1 whence X ≈ Ec.
Let x ∈ X and let U be an open set in Ec that contains x. Note that X ∩ U is dense

in U and hence dense in (U ,W) because W is weaker. Let V be a neighbourhood
of x in Ec such that V is closed in (Ec,W), (V,W) is complete, and V is a nowhere

dense subset of (U ,W). Then X ∩V is closed in (X,W), and X ∩V is a Gδ-subset of

(V,W) thus complete in the topology W. Since X ∩ U is dense, we have that X ∩ V

is nowhere dense in (X ∩U ,W).

If we combine Theorem 3.2 with Theorem 3.1, we find:

Theorem 3.5 A nonempty space is homeomorphic to Ec if and only if it is cohesive

and it satisfies one of the seven equivalent conditions of Theorem 3.2.

Corollary 3.6 A nonempty space is homeomorphic to Ec if and only if it is homeo-

morphic to G
ϕ
0 where ϕ is some Lelek function with a complete domain.

Proof Let ϕ be a Lelek function with a complete domain. Proposition 4.4 in [14]

shows that G
ϕ
0 is cohesive. Now use Theorem 3.5.

Lemma 3.7 A closed subset of Ec is cohesive if and only if it is nowhere zero-dimen-

sional.

Proof Let E be a nowhere zero-dimensional closed subset of Ec. Let x ∈ E be arbi-

trary. According to Dijkstra, van Mill, and Steprāns [15, Theorem 3.1] there exists

a neighbourhood U of x in Ec such that the empty set is the only closed nowhere
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zero-dimensional subspace of U . Let C be a clopen subset of E such that C ⊂ E ∩U .
Then C is just as E nowhere zero-dimensional and closed in U . Thus C is empty, and

we have shown that E is cohesive.

With Lemma 3.7, we can improve upon Theorem 3.5 as follows.

Theorem 3.8 A nonempty space is homeomorphic to Ec if and only if it is nowhere

zero-dimensional and it satisfies one of the seven equivalent conditions of Theorem 3.2.

Remark 3.9. If X is a nonempty space, then Fact(X) stands for the class of X-factors

and Stab(X) is the subclass of Fact(X) that consists of the spaces Y such that Y ×X ≈
X. If Fact(X) = Stab(X), then clearly X ≈ X × X (and hence X ≈ Xn for n ∈ N). If

X ≈ Xω and Y ∈ Fact(X), then for some Z, Y × X ≈ Y × Xω ≈ Y × Y ω × Zω ≈
Y ω × Zω ≈ X. Thus we have

X ≈ Xω ⇒ Fact(X) = Stab(X) ⇒ X ≈ X2.

Since Dijkstra, van Mill, and Steprāns [15] proved that Ec 6≈ Eω
c , complete Erdős

space is one of the examples that shows that the first implication cannot be reversed.
Unlike simpler examples such as Z, Q , and 2ω × Q , we have that Ec and Eω

c belong

to the same Borel class. Interestingly, Stab(Eω
c ) consists of all nonempty complete

almost zero-dimensional spaces; see Dijkstra [11]. According to Trnková [34] there

is a space T such that T 6≈ T2 yet T ≈ T3. Then T ∈ Fact(T2) \ Stab(T2), so also the

second implication cannot be reversed.

The following results show that the property Fact(Ec) = Stab(Ec) is valid in a
very strong way.

Theorem 3.10 If
∏

i∈ω Xi is homeomorphic to Ec, then {i ∈ ω : Xi ≈ Ec} is finite

and nonempty.

Proof Let
∏

i∈ω Xi ≈ Ec thus every Xi is an Ec-factor. By Proposition 2.7 we have

that some Xk is cohesive. Consequently, Xk ≈ Ec by Theorem 3.5. Now assume
that infinitely many Xi ’s are homeomorphic to Ec. Then by Theorem 3.2 we have

Ec ≈
∏

i∈ω Xi ≈ Eω
c in contradiction to [15, Corollary 3.2].

Corollary 3.11 The product of two spaces is homeomorphic to Ec if and only if one

space is homeomorphic to Ec and the other space is an Ec-factor.

Example 3.12 Let X0 = Ec and let Xi for i ∈ N be the union of Ec with an isolated

point. Then every Xi is an Ec-factor but only X0 is homeomorphic to Ec. If X =∏
i∈ω Xi ≈ Ec, then X contains Eω

c as a closed subspace and hence by Theorem 3.2

we would have that Eω
c ≈ Eω

c ×Ec ≈ Ec in contradiction to [15, Corollary 3.2]. Thus

X is not homeomorphic to Ec making the natural converse of Theorem 3.10 invalid.

4 Representations of Ec

It follows from work of Mayer [26] and Aarts and Oversteegen [1] that Ec is homeo-

morphic to the end-point sets of Julia sets of certain exponential maps. In this section
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we discuss several other types of representations of Ec. We will use our characteri-
zation theorems to improve upon known results concerning representations of Ec as

Erdős type sets in ℓp, end-point sets of R-trees, and line-free groups in Banach spaces.
We also present a novel application concerning Polishable ideals on ω.

4.1 Erdős Type Spaces in ℓp

We now discuss the class of representations of Ec that is responsible for the name
“complete Erdős space”. Let p > 0 and consider the (quasi-)Banach space ℓp.

This space consists of all sequences x = (x0, x1, . . . ) of real numbers such that∑∞
i=0 |xi |

p < ∞. The topology on ℓp is generated by the (quasi-)norm ‖x‖ =

(
∑∞

i=0 |xi |
p)1/p. Now let E0, E1, . . . be a fixed sequence of subsets of R and let

E = {x ∈ ℓp : xn ∈ En for every n ∈ ω}

be a corresponding subspace of some fixed ℓp. If we choose p = 2 and En = Q for
every n, then E is called Erdős space E; see Erdős [20]. We characterized E in [12] and

[14].

The following result generalizes Dijkstra [9, Theorem 3 and Corollary 4].

Theorem 4.1

(a) The space E is an Ec-factor if and only if E 6= ∅ and every En is a zero-dimensional

Gδ-set in R.

(b) The space E is homeomorphic to Ec if and only if dim E > 0 and every En is a

zero-dimensional Gδ-set in R.

Proof According to Dijkstra [9] dim E 6= 0 if and only if E is cohesive, thus it suffices

to prove part (a).

Let E be an Ec-factor and thus E is totally disconnected and complete. Since E 6=
∅, every En is clearly imbeddable as a closed subset of E. Thus, just as Ec, every En

is totally disconnected and hence zero-dimensional as a subset of R. Moreover, En is
topologically complete and thus a Gδ-set in R.

For the ‘if ’ part consider the (weaker) topology W that E inherits from the zero-

dimensional and topologically complete product space
∏∞

n=0 En. Noting that for ev-

ery x ∈ E the closed ball {y ∈ E : ‖y − x‖ ≤ ε} is also a closed subset of
∏∞

n=0 En,
we have that condition (7) of Theorem 3.2 is satisfied.

Dijkstra [9] contains useful criteria for the property dim E > 0 and also the fol-

lowing easily verified sufficient condition. Recall that if A0,A1, . . . is a sequence of

subsets of a space X, then lim supn→∞ An =

⋂∞
n=0

⋃∞
k=n Ak.

Lemma 4.2 If 0 is a cluster point of lim supn→∞ En, then every nonempty clopen

subset of E is unbounded (and hence dim E 6= 0).

Remark 4.3. It is clear from Theorem 4.1 and Lemma 4.2 that

{x ∈ ℓ2 : xi /∈ Q for each i ∈ ω}
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is homeomorphic to Ec, a fact that was first established by Kawamura, Oversteegen,
and Tymchatyn [22]. It is also clear that both

{x ∈ ℓ2 : 1/xi ∈ N for each i ∈ ω}

and its closure in ℓ2 are homeomorphic to Ec. Both spaces were introduced and

shown to be one-dimensional by Erdős in [20].

Remark 4.4. If we put Ei = 2−iZ for i ∈ ω then the corresponding space E is home-

omorphic to Ec for each p > 0. Consider now the Banach space c which consists of
all convergent sequences of real numbers with the supremum norm. We proved in

[13] that the space {x ∈ c : xi ∈ 2−iZ for each i ∈ ω} is one-dimensional but not

homeomorphic to Ec.

4.2 End-Point Sets of R-Trees

In [22] Kawamura, Oversteegen, and Tymchatyn sketch a proof that the end-point

set of the separable universal R-tree as constructed in [27] is homeomorphic to Ec.
We present with Theorem 4.5 a generalization of that result as an application of The-

orem 1.1.

An arc is a space that is homeomorphic to the interval [0, 1], and an open arc is

homeomorphic to (0, 1). An R-tree (T, ρ) is a metric space that is arcwise connected
such that every arc in T is isometric to an interval in R (such a ρ is called a convex

metric). Mayer and Oversteegen [28] proved that, topologically, the R-trees are pre-
cisely the spaces that are uniquely arcwise connected and locally arcwise connected.

Let X be a uniquely arcwise connected space. If x, y ∈ X with x 6= y, then [x, y]

denotes the unique arc in X that has x and y as end-points, and [x, x] denotes the

singleton {x}. We shall also use (x, y) = [x, y] \ {x, y}. We define the set of interior

points of X by iX =

⋃
{(x, y) : x, y ∈ X}. The set of end-points of X is eX = X \ iX.

Theorem 4.5 Let (T, ρ) be a nonempty R-tree and let ε > 0 be such that every open

arc A in T with diam A < ε has a compact closure in T and such that for each x ∈ T

every component C of T \ {x} has the property diam C > ε. If eT is dense in T then eT

is homeomorphic to Ec.

Proof For x ∈ T and δ > 0 let Bδ(x) denote the closed ball {y ∈ T : ρ(x, y) ≤ δ}.
According to [14, Lemmas 3.1 and 3.2] the collection

S = {C : C is a component of T \ {x} for some x ∈ iT}

is a subbasis for a separable metric topology W on T, called the weak topol-

ogy, that is weaker than the ρ-topology such that every Bδ(x) is W-closed and
the restriction of W to eT is zero-dimensional. Observe that if x ∈ eT, y ∈
T \ {x}, and a1, a2, . . . is a sequence in (x, y) that converges to x then {C :
C is the component of x in some T \ {ai}} is a neighbourhood basis for x in (T,W).

Let x ∈ eT and let δ > 0 be such that 2δ < ε. Define V = eT ∩ Bδ(x) and note that

V is W-closed in eT. Let y ∈ V and let C be a basic W-neighbourhood of y in T,
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that is, C is the component of y in T \ {a} for some a ∈ iT. Since diam C > ε > 2δ,
there is a z ∈ C \ Bδ(x). Select a b ∈ [y, z] ⊂ C such that δ < ρ(x, b) < 2δ. Since eT

is dense, we may approximate b by a b ′ ∈ eT ∩C ∩ (B2δ(x) \ Bδ(x)). This proves that
V is nowhere dense in eT ∩ B2δ(x) with respect to the weak topology.

Note that if D is a countable dense subset of iT, then iT =

⋃
a,b∈D[a, b] and hence

iT is σ-compact in both topologies. Let F1, F2, . . . be a sequence of compacta in
(T,W) such that

⋃∞
i=1 Fi = iT. For i ∈ N define Ui = {C ∈ S : C ∩ Fi = ∅}

and note that Ui is an open cover of eT in (T,W). Let d be a metric for the weak

topology on eT such that for each i ∈ N there is a γ > 0 with the property that the
collection of all open γ-balls with respect to d refines Ui . To apply Theorem 1.1 it

now suffices to show that d is complete on V . Let x1, x2, . . . be a d-Cauchy sequence

in V . Let a be a fixed point in iT ∩ Bδ(x) and note that for each i ∈ N,
⋂∞

j=i [a, x j]
has the form [a, ci] for some ci ∈ T. Since ρ is convex, we have that every [a, ci]

is contained in Bδ(x). Let A =

⋃∞
i=1[a, ci] and note that diam A ≤ 2δ < ε. Since

[a, ci] ⊂ [a, ci+1] for each i ∈ N, we have that the closure of A has the form [a, c] for

some c ∈ Bδ(x). Note that limi→∞ ci = c in both topologies. Let i ∈ N and note

that there is an N ∈ N and a C ∈ Ui such that xn ∈ C for each n ≥ N. Then there
is a b ∈ iT such that C is a component of T \ {b} and C = C ∪ {b} ⊂ T \ Fi . Note

that for every n ≥ N, cn ∈ C ∪ {b} thus c ∈ C ∪ {b} ⊂ T \ Fi . We may conclude

that c ∈ Bδ(x) \
⋃∞

i=1 Fi = V . If some ci equals c, then for each k ≥ i, c ∈ [a, xk]
thus c = xk because c ∈ eT. So we may assume that c 6= ci for every i ∈ N. Let

Ui be the component of T \ {ci} that contains c and recall that the Ui ’s form a W-
neighbourhood basis at c. Let i ∈ N and select a c j ∈ (ci, c) ⊂ Ui . Note that xk ∈ Ui

for each k ≥ j, thus we may conclude that limi→∞ xi = c in the weak topology.

Remark 4.6. There are many R-trees with Ec as end-point set that do not satisfy the

premises of Theorem 4.5. For instance, the constructions in [30, Theorem 2] and
[14, Lemma 3.5] show that every almost zero-dimensional space can be represented

as a closed end-point set of an R-tree.

Note that the proof of Theorem 4.5 allows us to weaken the premise that for some
ε > 0 every open arc with diam < ε is relatively compact to the topological condi-

tion:

(∗) Each x ∈ eT has a neighbourhood U in T such that every open arc in U is

relatively compact in T.

By the same argument we have:

Proposition 4.7 If T is an R-tree that satisfies condition (∗), then eT is an Ec-factor

or eT = ∅.

4.3 Line-Free Groups in Banach Spaces

Let (X, | · |) be a normed vector space and let (X∗, | · |) denote its dual. In this subsec-

tion we do not assume a priori that a vector space is separable. If ε > 0, then Bε de-
notes the closed ball {x ∈ X : |x| ≤ ε}. Let F = { f0, f1, . . . } be a countable subset of

X∗ and define the linear continuous map TF : X → Rω by TF(x) = ( f0(x), f1(x), . . . )
for x ∈ X. Assume that F is total, that is, that TF is an injection. The F-topology on
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X is obtained by pulling back the product topology of the Fréchet space Rω. We say
that a subset of A is relatively complete in X with respect to the F-topology if there is

an A ′ such that A ⊂ A ′ ⊂ X and TF(A ′) is closed in Rω. This is equivalent to say-
ing that for any or all invariant metrics d on X that generate the F-topology we have

that every Cauchy sequence that is contained in A converges in X with respect to d.

Define GF = T−1
F (Zω) and note that GF is a line-free group in X that is closed in the

F-topology. Dobrowolski and Grabowski [17] have shown that every weakly closed

line-free subgroup of a separable X can be represented as GF for some total sequence

in the dual.
Dobrowolski, Grabowski, and Kawamura present the following statement as [18,

Main Theorem].

Claim 4.8 Let (X, | · |) be a Banach space and let F be a total sequence of functionals

from the dual X∗. Assume that the norm bounded subsets of GF are relatively complete

in the F-topology. If GF is separable, then GF is either discrete or homeomorphic to Ec.

Remark 4.9. Unfortunately, the proof given in [18] does not fully support Claim 4.8.
The problem is that at the beginning of the proof it is asserted that the total sequence

F admits a Kadec norm. A Kadec norm ‖ · ‖ for F is a norm on X that is equivalent

to | · | with the property that whenever a sequence x1, x2, . . . converges to a point x

in X in the F-topology and limi→∞ ‖xi‖ = ‖x‖, then limi→∞ ‖xi − x‖ = 0. The

sequence F is called norming if there is an equivalent norm on X that is LSC with
respect to the F-topology or, equivalently, there is a bounded neighbourhood U of

0 in X that is closed in the F-topology. Every Kadec norm for F is LSC with respect

to the F-topology; see [4, p. 176]. In fact, F admits a Kadec norm if and only if F

is norming; see Davis and Johnson [7]. It is known that a separable Banach space X

admits a non-norming total sequence of functionals if and only if dim(X∗∗/X) = ∞;

see Davis and Lindenstrauss [8]. In view of these considerations the word “total” in
Claim 4.8 should be replaced by “norming”. Observe that the important Corollaries

1 and 2 in [18] still follow from the corrected version of Claim 4.8 and hence the

negative fall-out from our observation should be limited. We do not know whether
Claim 4.8 is valid.

The same problem also affects Theorem 3.1 and Proposition 3.2 in Ancel, Do-
browolski, and Grabowski [3]. Thus also in these results “norming” needs to be sub-

stituted for merely “total”. Again we do not know whether Theorem 3.1 and Propo-

sition 3.2 in [3] are valid as written.

Remark 4.10. We observe that if a bounded subset A of X is relatively complete in the
F-topology then A is relatively compact in the F-topology. Thus the use of the word

“complete” in Claim 4.8 (and “closed” in Theorem 4.11) suggests a level of generality

that is not actually present.
Let A ⊂ A ′ ⊂ X be such that A ⊂ BM for some M ∈ N and TF(A ′) is closed

in Rω. We may assume that A ′ is the closure of A in the F-topology. Note that

TF(A) is contained in the compactum C =

∏
i∈ω[−M| fi|,M| fi|] and that C therefore

contains TF(A ′) which is the closure of TF(A). We have that TF(A ′) is compact which

means that A ′ is compact in the F-topology.

The following generalization of the corrected Claim 4.8 follows in a straightfor-

ward manner from Theorem 1.1.
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Theorem 4.11 Let (X, | · |) be a normed vector space and let F be a total sequence of

functionals from the dual X∗. Let U be a bounded neighbourhood of 0 in GF such that

TF(U ) is closed in Rω. If GF is separable, then GF is either discrete or homeomorphic

to Ec.

With Remark 4.10 we see that the condition that TF(U ) is closed in Rω is equiv-

alent to requiring that U be compact (or complete) with respect to the F-topology
on X.

There exists a total sequence of functionals F on the separable Banach space c such

that GF is one-dimensional but not homeomorphic to Ec; see Remark 4.4 and [13].

Proof Let X, F, and U be as in the premise and assume that GF is separable and non-
discrete. For Theorem 1.1 we let W be the restriction of the F-topology to GF. Note

that W is zero-dimensional and coarser than the norm topology because dim Zω = 0
and TF is continuous. Let n ∈ N be such that B1/n ∩ GF ⊂ U ⊂ Bn. Since both the

norm-topology and W are compatible with the group structure, it suffices to verify

the conditions of Theorem 1.1 for the point x = 0. Let m ∈ N and consider B1/m.
Define V = GF ∩

1
2mn

U . Note that V ⊂ B1/2m and that TF(V ) = Zω ∩ 1
2mn

TF(U ) thus

V with the F-topology is homeomorphic to a closed subset of Rω and topologically

complete. Since V ⊃ GF ∩ 1
2mn

(GF ∩ B1/n) = GF ∩ B1/2mn2 , we have that V is a
neighbourhood of 0 in GF.

Now let y ∈ V and k ∈ ω be arbitrary and consider the basic W-neighbourhood

C = {z ∈ GF : fi(z) = fi(y) for 0 ≤ i ≤ k} of y. Since GF is non-discrete, there is an
a with y + a ∈ C and 0 < |a| < 1/2m. Since V is bounded, we may choose l to be the

least element ofω such that y+la /∈ V . Since y ∈ V , we have y+(l−1)a ∈ V ⊂ B1/2m

thus y+la ∈ (GF∩B1/m)\V . Note that y+la ∈ C because fi(a) = fi(y+a)− fi(y) = 0

for every i ≤ k thus we have shown that V is nowhere dense in GF ∩B1/m with respect

to the F-topology.

4.4 Polishable Ideals on ω

We now turn to an application of Theorem 1.1 to ideals on ω, and we thank S. Todor-
čević for bringing these spaces to our attention; see [33] for background informa-

tion. The following definitions and Theorems 4.12, 4.13, and 4.14 are taken from
Solecki [31, 32] where the reader can find more details and references.

Let D = {xn : n ∈ ω} be a countable infinite set that is enumerated such that

xn 6= xk if n 6= k. Consider the power set P(D) with the symmetric difference △
group structure. We equip P(D) with the standard Cantor set topology that comes
with identification with 2D. An ideal I on D is a subset of P(D) such that I contains

the finite sets B ∈ I whenever B ⊂ A ∈ I, and A ∪ B ∈ I whenever A,B ∈ I. A
function ϕ : P(D) → [0,∞] is a submeasure on D if ϕ(∅) = 0, ϕ(X) ≤ ϕ(X ∪ Y ) ≤
ϕ(X) + ϕ(Y ) for any X,Y ⊂ D, and 0 < ϕ({x}) < ∞ for any x ∈ D. With a

submeasure ϕ we associate two ideals on D:

Exh(ϕ) = {A ⊂ D : limm→∞ ϕ({xn ∈ A : n ≥ m}) = 0},

Fin(ϕ) = {A ⊂ D : ϕ(A) <∞}.
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Observe that Exh(ϕ) ⊂ Fin(ϕ). If ϕ is a measure rather than just a submeasure and
ϕ is LSC as a function from 2D to [0,∞], then Exh(ϕ) = Fin(ϕ). An ideal is clearly a

subgroup of 2D. An ideal I is Polishable if there exists a Polish group topology τ on I

such that the family of Borel sets with respect to τ is equal to the family of Borel sets of

I with respect to the topology inherited from 2D. This class of ideals was first studied

by Kechris and Louveau [24]. If such a Polish topology exists, then it is unique; see
[23, Theorem 9.10].

Theorem 4.12 If ϕ is an LSC submeasure on ω, then

d(A,B) = ϕ(A△B) for A,B ⊂ ω

restricts to an invariant, complete, separable metric on Exh(ϕ).

Observe that the topology on I = Exh(ϕ) generated by d is stronger than the

subspace topology that I inherits from 2ω. So for ideals of the form Exh(ϕ) this
describes in an explicit way a Polish topology on I that witnesses that I is Polishable.

Note that in general the d-topology on Fin(ϕ) may be nonseparable. The following

results provide useful context; see also van Engelen [19].

Theorem 4.13 If I is a Polishable ideal on ω, then it is homeomorphic to Q , 2ω,

Q × 2ω , or Qω.

Theorem 4.14 Let I be an ideal on ω. Then the following statements hold (where ϕ
stands for an LSC submeasure on ω):

(1) I is Polishable if and only if I = Exh(ϕ) for some finite ϕ.

(2) I is Fσ in 2ω if and only if I = Fin(ϕ) for some ϕ.

(3) I is Polishable and Fσ if and only if I = Exh(ϕ) = Fin(ϕ) for some ϕ.

As an application of Theorem 1.1 we have:

Theorem 4.15 Let I be a Polishable Fσ-ideal on ω and let ϕ be an LSC submeasure

with I = Exh(ϕ) = Fin(ϕ). If τ denotes the Polish topology on I that is generated by ϕ,

then the following statements are equivalent.

(1) (I, τ) is homeomorphic to Ec.

(2) dim(I, τ) > 0.

(3) (I, τ) is not σ-compact.

(4) (I, τ) is not locally compact.

(5) (I, τ) is not homeomorphic to Z, 2ω, or Z × 2ω .

(6) There is no B ⊂ ω with I = {A ⊂ ω : A ∩ B is finite}.

(7) For every ε > 0 we have {n ∈ ω : ϕ({n}) ≤ ε} /∈ I.

(8) There is a B ∈ 2ω \ I with limn→∞ ϕ({n} ∩ B) = 0.

Proof The implications (1) ⇒ (2), (3) ⇒ (4), and (4) ⇒ (5) are obvious. For

(2) ⇒ (3), note that τ is stronger than the zero-dimensional topology thus (I, τ) is
totally disconnected. Consequently, σ-compactness implies zero-dimensionality.

(5) ⇒ (6). Let B be such that I = {A ⊂ ω : A ∩ B is finite}. Then the sets

{F ∪ A : A ∈ C}, where F is a finite subset of B and C is a clopen subset of the
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compactum 2ω\B, form a basis for a separable metric topology τ ′ on I that is locally
compact and hence Polish. Noting that the basis sets are closed in 2ω and that τ ′ is

compatible with the group structure on I we have τ = τ ′. Observe that (I, τ) ≈ 2ω

if B is finite, (I, τ) ≈ Z if ω \ B is finite, and (I, τ) ≈ Z × 2ω otherwise.

(6) ⇒ (7). Assume that there is an ε > 0 with

B = {k ∈ ω : ϕ({k}) ≤ ε} ∈ I.

If A\B is finite, then A\B ∈ I thus A ∈ I. If A ∈ I, then A ∈ Exh(ϕ) and ϕ(A\n) ≤ ε
for some n ∈ ω. Consequently, A \ n ⊂ B and A \ B is finite. We have shown that

I = {A ⊂ ω : A ∩ (ω \ B) is finite}.

(7) ⇒ (8). Assume (7) and let k ∈ ω. If we define Ak = {n ∈ ω : ϕ({n}) ≤ 2−k}
then by assumption ϕ(Ak) = ∞. Since ϕ is LSC, we can find an mk ∈ ω such

that ϕ(Ak ∩ mk) > k. Define B =

⋃∞
k=0 Ak ∩ mk and note that ϕ(B) = ∞ thus

B /∈ I. If k ∈ ω, let Mk = max{m0, . . . ,mk} and note that for each n > Mk we have

ϕ({n} ∩ B) ≤ 2−k. Condition (8) is verified.

(8) ⇒ (1). Assume condition (8) so there is a B with ϕ(B) = ∞ and
limn→∞ ϕ({n} ∩ B) = 0. We shall use Theorem 1.1 where W is the topology that I

inherits from 2ω. Let U be some τ-neighbourhood of an X ∈ I. Since both topologies

are compatible with the group structure, it suffices to consider the case that X = ∅.
Let ε > 0 be such that {A : ϕ(A) ≤ 2ε} ⊂ U . Note that V = {A : ϕ(A) ≤ ε} is a

subset of U that is closed in the compactum 2ω because ϕ is LSC. Thus V is certainly
closed and complete with respect to W.

It remains to show that V is nowhere dense in (U ,W). Let m be such that ϕ({n}∩
B) ≤ ε for all n ≥ m. Let Wn = {A ′ ⊂ ω : A ′ ∩ n = A ∩ n} for n > m be a basic
neighbourhood of some A ∈ V in 2ω . Define for each k ≥ n,

Ak = (A ∩ n) ∪ (B ∩ (k \ n))

and note that Ak ∈ Wn ∩ I for every k ≥ n and An ⊂ A. Since limk→∞ B ∩ (k \ n) =

B \ n in 2ω and ϕ is LSC, we have

lim inf
k→∞

ϕ(Ak) ≥ lim inf
k→∞

ϕ(B ∩ (k \ n)) ≥ ϕ(B \ n) ≥ ϕ(B) − ϕ(B ∩ n) = ∞.

Let l be the first index with ϕ(Al) > ε. Since ϕ(An) ≤ ϕ(A) ≤ ε, we have l > n > m

and

ϕ(Al) ≤ ϕ(Al−1) + ϕ({l − 1} ∩ B) ≤ 2ε.

Thus Al ∈ Wn ∩ (U \V ) and we have that V is nowhere dense in (U ,W).

Remark 4.16. The equivalence (4) ⇔ (6) is already contained in Solecki [31, 32].

Remark 4.17. Let ϕ be an LSC submeasure on ω and let τ be the topology that is

generated on Fin(ϕ) by the metric d(A,B) = ϕ(A△B). By the same argument used

for the implication (8) ⇒ (1) in Theorem 4.15 we find that every point in Fin(ϕ)
has a τ-neighbourhood basis consisting of sets that are closed in 2ω . This implies

that (Exh(ϕ), τ) is almost zero-dimensional. Also, if it is given that (Fin(ϕ), τ) is
separable, then the space is almost zero-dimensional with a compactum as witness.

Consequently, by Theorem 3.2 we have that τ is Polish and hence Fin(ϕ) is Polishable

(and of course Fσ).
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Example 4.18 We first consider a simple example of an ideal that is homeomorphic
to Ec. Define the following LSC measure on ω:

η(A) =

∑

n∈A

1

n + 1
.

Since η is a measure, we have Exh(η) = Fin(η), and we call this ideal the harmonic

ideal Iharm . Note that Iharm ≈ Q × 2ω. Since
∑∞

n=1
1
n

= ∞, condition (8) of Theo-
rem 4.15 is satisfied and we have that Iharm with its Polish topology is homeomorphic

to Ec. Alternatively, we can consider the following imbedding of Iharm in the Banach

space ℓ1:

(α(A))n =

{
1/(n + 1), if n ∈ A;

0, if n ∈ ω \ A.

Then η(A△B) = ‖α(A) − α(B)‖ and α is a homeomorphism between Iharm with
its Polish topology and the closed Erdős type subset α(Iharm) of ℓ1. In Dijkstra [9]

α(Iharm) is shown to be homeomorphic to Ec and is called harmonic Erdős space.

Remark 4.19. Consider a ϕ as in Theorem 4.15. Define a USC function ϕ̃ : 2ω →
[0, 1] by ϕ̃(A) = 1/(1 + ϕ(A)), and note that with the same method as employed

in the proof of the implication (8) ⇒ (1) in Theorem 4.15 one can show that ϕ̃

is a Lelek function thus Ec = G
eϕ
0 . Clearly, G

eϕ
0 is homeomorphic to the graph G

of ϕ↾I with the product topology from 2ω × R. Then h(A) = (A, ϕ(A)) defines a
continuous bijection between I with the Polish topology and G, which is a copy of

Ec. The question arises why we use Theorem 1.1 to prove Theorem 4.15 rather than

directly linking I with Ec. The reason is that h is in general not a homeomorphism.

Let us consider a simple example. Using Example 4.18, define for each A ⊂ ω,

ϕ(A) =

{
η(A), if 0 /∈ A;

max{2, η(A)}, if 0 ∈ A.

It is easily verified that ϕ is also an LSC submeasure with Exh(ϕ) = Fin(ϕ) = Iharm

and that η and ϕ generate the same Polish topology τ on Iharm . Consider now the
open neighbourhood V = {A : η({0}△A) < 1} of {0} in (Iharm, τ) and hence

dim V = 1. Note that ϕ↾V is constant, thus h(V ) carries the zero-dimensional topol-
ogy that V inherits from 2ω. We have that h is not a homeomorphism.

Example 4.20 We look at the case that I is Polishable but not Fσ.

Consider first the following LSC submeasure on ω × ω:

ϕ1(A) = max{2−n : (n,m) ∈ A},

where A ⊂ ω × ω and max ∅ = 0. Note that

I1 = Exh(ϕ1) = {A ⊂ ω × ω : A ∩ ({n} × ω) is finite for n ∈ ω}
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and that I1 is homeomorphic to Qω. It is easily seen that I1 with the Polish topology
generated by ϕ1 is homeomorphic to Zω ≈ R \ Q .

Secondly, we consider the ideal:

IEU =

{
A ⊂ ω : lim

n→∞

|A ∩ n|

n
= 0

}
.

This ideal is the most important of the Erdős–Ulam density ideals, see Farah [21]. It

is well known that this ideal is equal to Exh(ψ), where

ψ(A) = sup
n∈ω

|A ∩ [2n − 1, 2n+1 − 2]|

2n

for A ⊂ ω. Note that ψ(IEU) ⊂ Q , thus IEU is zero-dimensional in the Polish topol-

ogy. Since this topology is clearly not locally compact, we have that IEU is homeo-
morphic to R \ Q in the Polish topology.

Define an ideal I2 on ω∪(ω×ω) by I2 = {A∪B : A ∈ Iharm and B ∈ I1}. Then we

have that I2 is homeomorphic to Iharm × I1 ≈ Qω . The Polish topology is generated
by ϕ2(A ∪ B) = η(A) + ϕ1(B) for A ⊂ ω and B ⊂ ω × ω. We have that I2, with its

Polish topology, is homeomorphic to Ec × (R \ Q) ≈ Ec.
Finally, consider the LSC submeasure ϕ3 on ω × ω that is given by

ϕ3(A) =

∞∑

k=0

min{2−k, η({n : (k, n) ∈ A})}.

Then we have

I3 = Exh(ϕ3) = {A ⊂ ω × ω : {n : (k, n) ∈ A} ∈ Iharm for k ∈ ω}.

Note that I3 is homeomorphic to (Iharm)ω ≈ Qω and that I3 with the Polish topol-

ogy is homeomorphic to Eω
c . It was proved by Dijkstra, van Mill, and Steprāns [15]

that E
ω
c is not homeomorphic to Ec, so we have found a new topological type for

Polishable ideals.
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[9] J. J. Dijkstra, A criterion for Erdős spaces. Proc. Edinb. Math. Soc. (2) 48(2005), no. 3, 595–601.
[10] , A homogeneous space that is one-dimensional but not cohesive. Houston J. Math. 32(2006),

no. 4, 1093–1099.
[11] , Characterizing stable complete Erdős space.
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