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ANALYTIC GROUPS AND PUSHING SMALL SETS APART

JAN VAN MILL

Abstract. We say that a space X has the separation property provided that
if A and B are subsets of X with A countable and B first category, then
there is a homeomorphism f : X → X such that f(A) ∩ B = ∅. We prove
that a Borel space with this property is Polish. Our main result is that if
the homeomorphisms needed in the separation property for the space X come
from the homeomorphisms given by an action of an analytic group, then X is
Polish. Several examples are also presented.

1. Introduction

All spaces under discussion are separable and metrizable. By an action of a
topological group on a space we will always mean a continuous action.

Let G be a Polish group acting transitively on a second category space X. It
is not difficult to prove the following: if A and B are subsets of X with A count-
able and B first category, then there is an element g ∈ G such that gA ∩ B = ∅
(Proposition 3.4). In other words, the group G pushes countable sets apart from
first category sets. The standard proof of this is based on the fact that G satisfies
the Baire Category Theorem. There are simple examples that demonstrate that
a Polish group does not necessarily push arbitrary first category sets apart; hence
this result is ‘best possible’.

Let X be a space. We say that X has the separation property, abbreviated SP,
provided that if A and B are subsets of X with A countable and B first category,
then there is a homeomorphism f : X → X such that f(A)∩B = ∅. We will prove
among other things that every locally compact homogeneous space has the SP and
that this result cannot be generalized to Polish spaces.

This notion is related to the well-known notion of countable dense homogeneity.
Recall that a space X is countable dense homogeneous (CDH) if given any two
countable dense subsets D and E of X there is a homeomorphism f : X → X such
that f(D) = E. It is trivial to show that if X is a CDH Baire space, then it has the
SP. Indeed, let A and B be subsets of the CDH-Baire space X with A countable
and B first category. We may assume that A is dense. Since X is Baire, there
is a countable dense subset C of X with C ∩ B = ∅. Now let f : X → X be a
homeomorphism such that f(A) = C. Thus f pushes A and B apart. We will
present in §3 an example of a compact space which has the SP, but which is not
CDH. This shows that within the class of Baire spaces, the separation property is
strictly weaker than the property of being countable dense homogeneous.
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Inspired by Hrušák and Zamora Avilés [13], we prove the following:

Theorem 1.1. If X is a Borel space with the SP, then X is Polish.

For analytic spaces, the theorem is not true. The example constructed by Hrušák
and Zamora Avilés [13] under MA+¬CH+ω1 = ωL

1 in their Theorem 2.6 is an
analytic space Y with the SP which is not Polish.

We will show however that if the homeomorphisms needed in the separation
property come from an action of an analytic group, then the ‘underlying’ space is
Polish.

Theorem 1.2. Let G be an analytic group acting on a space X. Assume that for
all subsets A and B of X with A countable and B first category, there is an element
g ∈ G such that gA ∩ B = ∅. Then X is Polish.

Observe that G may be first category; hence the proof is different from the
standard proof for Polish groups that we talked about earlier.

Hence the space Y constructed by Hrušák and Zamora Avilés has enough home-
omorphisms for the separation property, but no analytic group acting on Y achieves
this. This would not be an interesting observation if there were no analytic group
acting on Y . We will show that Y admits a transitive action by an analytic group G
which consequently pushes points apart, but not much more since our results show
that no analytic group acting on Y is so rich that it pushes arbitrary countable sets
apart from arbitrary fist category sets. By applying the proof of Theorem 1.2 to
the space Y , we can push this even further. We will show that if G is an analytic
group acting on Y , then there is a countable subset D of Y which cannot be pushed
off itself by G, i.e., gD ∩ D �= ∅ for every g ∈ D. We summarize this in:

Theorem 1.3 (MA+¬CH+ω1 = ωL
1 ). There is an analytic space Y which is not

Polish but has the following properties:
(1) Y has the SP.
(2) There is an analytic group acting transitively and micro-transitively on Y

(hence Y is a coset space of an analytic group and is homogeneous).
(3) For any analytic group G acting on Y , there is a countable subset D of Y

such that gD ∩ D �= ∅ for every g ∈ G.

2. Terminology

Recall our convention that all spaces under discussion are separable and metriz-
able.

A space is Polish if it is completely metrizable. We call a space Borel if it is a
Borel subset of some Polish space. It is well-known that if a space is Borel, then it
is a Borel subset of any space it is a subspace of. An analytic space is a space that is
a continuous image of a Polish space. A space is co-analytic if it is the complement
of an analytic subset of some Polish space. It is well-known that a space is Borel if
and only if it is both analytic and co-analytic. This is due to Souslin; see e.g., [15,
14.11]. We will also need the well-known fact that an uncountable analytic space
contains a Cantor set. This is also due to Souslin, see e.g., [15, 14.13]. We adopt the
terminology of Kechris [15]. That is, Σ1

1(X) and Π1
1(X) denote the collections of

analytic and co-analytic subsets of X, respectively. Analytic sets have the following
well-known closure properties.
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Proposition 2.1 ([15, 14.4]). Let X and Y be Polish and f : X → Y continuous.
Then

(1) Σ1
1(X) is closed under countable unions and countable intersections.

(2) If A ∈ Σ1
1(X), then f(A) ∈ Σ1

1(Y ).
(3) If B ∈ Σ1

1(Y ), then f−1(B) ∈ Σ1
1(X).

A subset A of a space X is called meager or first category (in X) if it is a
countable union of nowhere dense subsets of X. If X is not meager (in itself), then
it is said to be of the second category. We denote the collection of first category
subsets of a space X by MGR(X). Observe that MGR(X) is a σ-ideal, that is, an
ideal of subsets of X closed under countable unions.

A space X is Baire if the intersection of countably many dense open subsets of
X is dense, or, equivalently, if the union of any countable subfamily of MGR(X)
has empty interior. If X is not a Baire space, then by a result of Hurewicz [14]
(see also [19, 1.9.13]), X contains a closed copy of the space of rational numbers
Q. The following result was proved in a more general context by Levi [16] (see also
[19, Exercise A.13.4]). We will use it in a similar way as in Hrušák and Zamora
Avilés [13].

Lemma 2.2. Every analytic Baire space has a dense Polish subspace.

A space X is completely Baire if every closed subspace of it is Baire. So by
Hurewicz’s result just quoted, a space is completely Baire if and only if it does not
contain a closed copy of Q. Among co-analytic spaces, this characterizes complete-
ness, as the following interesting result shows ([15, Corollary 21.21]).

Lemma 2.3. Let X be co-analytic. Then X is Polish iff X contains no closed copy
of Q iff X is completely Baire.

A space X is called homogeneous if for all x, y ∈ X there is a homeomorphism
f : X → X with f(x) = y. A homogeneous space that is not first category (in itself)
is a Baire space. This can be seen as follows. If it is not a Baire space, then it
contains a first category nonempty open subset, say U . By homogeneity, X has an
open cover by first category open subsets. But this cover has a countable subcover.
Hence X is first category (in itself), which is contradictory to our assumptions.
We will also need the simple fact that every clopen (= open and closed) subspace
of a zero-dimensional homogeneous space is homogeneous. A space X is strongly
locally homogeneous (abbreviated SLH) if it has an open base B such that for all
B ∈ B and x, y ∈ B there is a homeomorphism f : X → X which is supported
on B (that is, f is the identity outside B) and moves x to y. Observe that every
zero-dimensional homogenous space is SLH (the clopen sets do the job).

Let a : G × X → X be an action of the topological group G on the space X.
For every g ∈ G, the function x �→ a(g, x) is a homeomorphism of X. We use
gx as an abbreviation for a(g, x). This notation is sometimes slightly confusing,
especially if G is a group of homeomorphisms on some space. The action is called
transitive if for all x, y ∈ X there exists g ∈ G such that gx = y. This implies
that X is homogeneous. If H is a closed subgroup of a topological group G, then
G acts transitively on the coset space G/H = {xH : x ∈ G} and the natural
projection map π : G → G/H is open. If G acts on X, then the closed subgroup
Gx = {g ∈ G : gx = x} of G is called the stabilizer of x ∈ X. It is well-known,
and easy to prove, that if G acts transitively, then G/Gx is homeomorphic to X
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if for every open neighborhood of the neutral element e of G and for some x ∈ X
(equivalently, for every x ∈ X) we have that Ux is open. If the action has this
property, then it is called micro-transitive. So for a space X to be (homeomorphic
to) a coset space, it is necessary and sufficient that there is a topological group G
acting transitively and micro-transitively on X. The Effros Theorem from Effros [9]
(see also [1], [12] and [20]) implies that if both G and X are Polish and the action is
transitive, then it is micro-transitive. This result was generalized in van Mill [20]:
it suffices to assume that G is analytic and X is of the second category.

For a space X we let H(X) denote its group of homeomorphisms. If X is
compact, then the so-called compact-open topology on H(X) makes it a Polish
group. A subbasis for the compact-open topology on H(X) consists of all sets of
the form

[K, U ] = {f ∈ H(X) : f(K) ⊆ U},

where K and U are arbitrary subsets of X with K compact and U open. It is not
difficult to prove that the function (g, x) �→ g(x) is an action of H(X) on X.

Let X and (Y, �) be spaces. If f : A → Y is continuous and A ⊆ X is dense,
then we say that the oscillation of f at x ∈ X is zero if for every ε > 0 there
exists a neighborhood U of x in X such that the �-diameter of f(U ∩ A) is less
than ε. Evidently, the set of all points in X at which the oscillation of f is zero is a
Gδ-subset of X containing A. It is well-known, and easy to prove, that for complete
� the function f can be extended to a continuous function f̄ : B → Y , where B is
the set of all points of X at which the oscillation of f is zero [10, 4.3.16].

As usual, we let c denote the cardinality of the continuum.

3. Spaces that do or do not have the SP

In this section we present several examples of spaces that do or do not have the
SP.

(A) Properties of spaces with the SP. Our first results show that SP-spaces
are close to being complete.

Proposition 3.1. Let X be a space. Then

(1) If X has the SP, then X is Baire.
(2) If X contains a dense Polish subspace and has the SP, then X is completely

Baire.

Proof. For (1), assume that X is not Baire. Let U be the collection of all open
subsets U of X that belong to MGR(X). Then U �= ∅, and there is a countable
subcollection V of U such that

⋃
V =

⋃
U. This means that A =

⋃
U ∈ MGR(X).

Pick a point x ∈ A, and let f : X → X be a homeomorphism such that f(x) �∈ A.
There is an element U ∈ U containing x. But then f(U) belongs to U since f is a
homeomorphism, and f(U) �⊆ A, which evidently is a contradiction.

We now prove (2). Let G ⊆ X be a dense Polish subspace in X. If X is not
completely Baire, then it contains a closed subspace A which is homeomorphic to
the space of rational numbers Q (see §2). Let f : X → X be a homeomorphism
such that (X \G)∩ f(A) = ∅. Then f(A) is a closed copy of Q in the Polish space
G, which is clearly impossible. �
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Corollary 3.2. Let X be a space.
(1) If X is co-analytic, contains a dense Polish subspace and has the SP, then

X is Polish.
(2) If X is analytic and has the SP, then X has a dense Polish subspace and

is completely Baire.
(3) If X is Borel and has the SP, then X is Polish.

Proof. First observe that (1) is a direct consequence of Proposition 3.1(2) and
Lemma 2.3. For (2), first observe that X is Baire by Proposition 3.1(1). Hence
X has a dense Polish subspace by Lemma 2.2. It consequently suffices to apply
Proposition 3.1(2).

Finally, (3) is a direct consequence of (2) and (1). �
Remark 3.3. In [13], Hrušák and Zamora Avilés proved that if X is Borel and CDH,
then X is Polish. We pointed out in §1 that a Baire CDH-space has the SP. But
since not every CDH-space is Baire [11], Corollary 3.2(3) cannot be thought of as
a strengthening of the just-quoted result of Hrušák and Zamora Avilés. But they
are very strongly related of course, both in spirit and in their proofs.

Note that Corollary 3.2(3) is the statement of Theorem 1.1.

(B) Classes of spaces with the SP. We will now identify some classes of spaces
that have the SP.

Proposition 3.4. Let G be a Baire group acting transitively on a second category
space X. Then for all subsets A and B of X with A countable and B first category,
the set of elements g ∈ G such that gA ∩ B = ∅ is dense in G.

Proof. We may assume without loss of generality that B can be written as
⋃

n<ω Bn,
with every Bn closed and nowhere dense.

For a ∈ A and n < ω, put Ga,n = {g ∈ G : ga �∈ Bn}. Then evidently, Ga,n is
open. We will prove that it is dense as well. To see this, take an arbitrary h ∈ G
with open neighborhood U in G. Since G is Lindelöf, there is a countable F ⊆ G
such that FU = G. Observe that since G acts transitively,

X = Ga = (FU)a = F (Ua) =
⋃

{f(Ua) : f ∈ F}.

For every f ∈ F , the homeomorphism x �→ fx of X maps Ua onto f(Ua); hence
Ua ∈ MGR(X) if and only if f(Ua) ∈ MGR(X). Since X �∈ MGR(X) and F is
countable, this implies that Ua �∈ MGR(X). Hence Ua \ Bn �= ∅, so we may pick
h′ ∈ U such that h′a �∈ Bn.

Now since G is Baire, the set
⋂

a∈A

⋂
n<ω Ga,n is dense in G. This clearly finishes

the proof. �
Remark 3.5. It is a natural question whether a Baire group pushes arbitrary first
category subsets apart. But this is not true since there is a first category subset A
of R such that (x + A)∩A �= ∅ for every x ∈ R. Indeed, let � denote the standard
Cantor middle-third set in I. It is well known that every x ∈ [−1, 1] can be written
as x = α − β, where α, β ∈ �; cf. [19, 1.5.9]. Using this, it is easy to see that
A = Z + � is as required.

Let X be a homogeneous locally compact space, and consider its Alexandrov
one-point compactification αX = X ∪ {∞}. The group

{g ∈ H(αX) : g(∞) = ∞}
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is closed in H(αX), hence is Polish, and by homogeneity clearly acts transitively
on X. Hence by Proposition 3.4 we consequently get our first important class of
spaces with the SP:

Corollary 3.6. Every locally compact homogeneous space has the SP.

Remark 3.7. This means that the product of the Cantor set and the 1-sphere has
the SP. Since a moment’s reflection shows that it is not CDH, this shows that even
in the class of compact topological groups the separation property is strictly weaker
than the property of being countable dense homogeneous.

Remark 3.8. It is clear that the proof of Proposition 3.4 ‘works’ if G is Baire and
ℵ0-bounded, meaning that for every neighborhood U of the identity of G there is a
countable subset F of G such that FU = G. This implies for example that if X is
a compact homogeneous Hausdorff space such that its group of homeomorphisms
H(X) endowed with the compact-open topology is a Baire space and is ℵ0-bounded,
then X has the SP. In Appendix 2 of this paper, we will present an example of
a compact homogeneous Hausdorff space X which does not have the SP. In fact,
H(X) is neither a Baire space nor an ℵ0-bounded topological group.

In view of Corollary 3.6, the question arises whether every homogeneous Polish
space has the SP. The answer is in the negative, as the following example shows.

Example 3.9. There is a homogeneous Polish space Z on which some Polish group
G acts such that

(1) Z has precisely two G-orbits A and B such that A is Polish and B is meager.
Moreover, B has only countably many components.

(2) If C is a component of Z with C ∩A �= ∅, then C ⊆ A, and similarly for B.
(3) For every point z ∈ Z there is a sequence of components of B that converges

to z. In contrast, no sequence of components of A converges to a point.
(4) No topological group acts transitively on Z.
(5) Z does not have the SP.

Proof. This is example Z in [22], where (1) through (4) are proved. We will check
that (5) follows from (1) through (3). First observe that by (2), every component
of A is a component of Z, and similarly for B. Now let D be a countable subset of
B which intersects every component of B and, striving for a contradiction, assume
that there is a homeomorphism f : Z → Z such that f(D) ∩ B = ∅. A moment’s
reflection shows that f(B) ⊆ A. Since f permutes the components of Z, it follows
by the first part of (3) that A contains a sequence of components converging to a
point. But this contradicts the second part of (3). �

Corollary 3.2(3) shows that Borel spaces with the SP are Polish. Hence spaces
with the SP that are not Polish are rare. We will present such examples below.
Our aim is now to formulate a simple and usable criterion that detects the SP in
Polish spaces. Let X be a space with open cover U. We say that a map f : X → X
is limited by U if for each x ∈ X there is an element U ∈ U containing both x and
f(x). It was shown in [2, Lemma 5.1] that if X is Polish and {hn}n is a sequence
of homeomorphisms of X for which there exists a sequence of open covers {Un}n

of X such that
(1) Un is a barycentric refinement of Un−1;
(2) Un has mesh less than 2−n;
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(3) (hn ◦ · · · ◦ h0)−1(Un) has mesh less than 2−n;
(4) hn is limited by Un,

then limn→∞ hn ◦ · · · ◦h0 is a homeomorphism of X. (We use a complete metric on
X of course.) This is a form of the so-called Inductive Convergence Criterion for
Polish spaces. This result leads us to the result we are after.

Theorem 3.10. Let X be a Polish space with the following property: for every
x ∈ X, each nowhere dense subset A of X, and each open cover U of X, there
exists a homeomorphism f : X → X that is limited by U while moreover f(x) �∈ A.
Then X has the SP.

Proof. Let D and A be subsets of X with D countable and A ∈ MGR(X). We
may assume that A can be written as

⋃
n<ω An, with each An closed and nowhere

dense. We will construct a sequence of homeomorphisms (fn)n of X that satisfies
the conditions mentioned in the Inductive Convergence Criterion such that f =
limn→∞ fn ◦ · · · ◦ f0 is such that f(D) ∩ A = ∅. The inductive construction of this
sequence is completely trivial. To see this, pick an arbitrary point d ∈ D. The
conditions imply that there is an ‘arbitrarily close to the identity’ homeomorphism
f0 : X → X such that f0(d) �∈ A0. But then �(f0(d), A0) > 0, and so we can easily
arrange that in the limit f0(d) is not carried back to A0. So in an infinite process
we can free each point in D from each of the An’s. The details of checking this are
left to the reader. �
Corollary 3.11. Let X be a Polish SLH-space. Then X has the SP.

We will demonstrate that completeness is essential in this result.

Example 3.12. There is a connected Baire space that is SLH but does not have
the SP.

Proof. The example X in [17, 3.5] is a connected Baire space, is SLH, and has a
countable dense subset E such that f(E)∩E �= ∅ for any homeomorphism f : X →
X. Hence X does not have the SP. �

The assumption on SLH-ness in Corollary 3.11 is essential as well, even among
homogeneous spaces, as is demonstrated by Example 3.9.

(C) More examples. We will indicate now that the results in this section are
more or less optimal. Recall that a subset X of the Cantor set 2ω is ℵ1-dense
provided that every nonempty open subset of 2ω intersects X in a set of size ℵ1.
The following result is Theorem 2.6 in Hrušák and Zamora Avilés [13].

Theorem 3.13 (MA+¬CH+ω1 = ωL
1 ). Let X be an ℵ1-dense subset of 2ω. Then

(1) X is a co-analytic first category CDH-space.
(2) Y = 2ω \X is an analytic completely Baire CDH-space which is not Polish.

Let Y be as in Theorem 3.13(2). Observe that Y has the SP(see §1) and hence
has a dense Polish subspace by Corollary 3.2(2) (this can also be seen directly
of course). Hence Y demonstrates that Corollary 3.2(3) unfortunately cannot be
generalized to analytic spaces.

Observe that Y is not even a Borel space. If it were, then X would be Borel,
contradicting the fact that an uncountable analytic space contains a Cantor set and
hence has cardinality c > ℵ1.
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Remark 3.14. One can think of Theorem 1.2 as a generalization of Theorem 1.1
beyond Borel spaces. Stronger generalizations will be difficult to establish. See the
remarks about the Axiom of Projective Determinacy and the Axiom of Determinacy
in Hrušák and Zamora Avilés [13].

4. Proof of Theorem 1.2

Let G be an analytic group acting on a space X. Assume that for all subsets A
and B of X with A countable and B ∈ MGR(X) there is an element g ∈ G such
that gA ∩ B = ∅. We will prove that X is Polish.

Lemma 4.1. Every orbit of G is clopen in X and contains a dense Polish subspace.

Proof. We will complete the proof of the lemma in several steps.

Claim 1. If x ∈ X, then Gx �∈ MGR(X) and is a Baire space.

Proof. If Gx ∈ MGR(X), then there is by assumption an element g ∈ G such that
gx �∈ Gx and this is nonsense. So every orbit of G is second category in X (and
hence in itself). Since orbits are homogeneous, this implies that every orbit of G is
a Baire space. ♦

Claim 2. If x ∈ X, then Gx is closed and contains a dense Polish subspace.

Proof. Since the map g �→ gx is a continuous surjection G → Gx, it follows that
Gx is analytic. By Claim 1 we conclude that Gx is a Baire space; hence it has by
Lemma 2.2 a dense Polish subspace, say S.

Striving for a contradiction, assume that there is an element p ∈ Gx \ Gx.
Observe that Gp ⊆ Gx \ Gx. Hence Gx \ S ∈ MGR(X) and contains Gp. So
Gp ∈ MGR(X) and we contradict Claim 1. ♦

Claim 3. If x ∈ X, then Gx is open.

Proof. Since Gx �∈ MGR(X) and is closed by Claims 1 and 2, it has nonempty
interior. But then, clearly, Gx is open. ♦

So we are done. �

Hence the orbits of G form a (necessarily countable) clopen partition of X. Fix
an arbitrary x ∈ X, and consider its orbit Gx. Assume that A and B are subsets of
Gx with A countable and B ∈ MGR(Gx). Then B ∈ MGR(X). Hence there exists
by assumption an element g ∈ G such that gA ∩ B = ∅. Clearly, gA ⊆ Gx. Hence
G acts on Gx in the same way as it acts on X. As a consequence we may assume
without loss of generality that G acts transitively on X. Since G is analytic, this
implies that X is analytic.

By Lemma 4.1, pick a dense Polish subspace T in X. In addition, let X̃ be an
arbitrary completion of X. Write X̃ \ T as

⋃
n<ω An, where every An is closed in

X̃. Observe that since T is dense in X̃, An ∩ X ∈ MGR(X) for every n < ω.
Let a : G × X → X denote the action of G on X.

Lemma 4.2. There is a Borel set B in X̃ containing X such that a can be extended
to a continuous function ā : G × B → X̃ such that ā

(
G × (B \ X)

)
∩ X = ∅.
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Proof. We let π : G × X̃ → X̃ denote the projection. By [19, A.8.4] there is a Gδ-
subset S of G × X̃ containing G × X such that a can be extended to a continuous
function ā : S → X̃. Put C = X̃ \ π

(
(G × X̃) \ S

)
. Observe that (G × X̃) \ S

is analytic since G is analytic. Hence C is co-analytic. Moreover, C contains X
and G × C ⊆ S. Now by the separation theorem for analytic sets, [15, 14.7], there
is a Borel set B of X̃ such that X ⊆ B ⊆ C. We claim that it is as we want.
Assume that there are p ∈ B and g ∈ G such that ā(g, p) = x ∈ X. Pick a sequence
(xn)n of elements of X converging to p. Then by continuity of ā, the sequence
(gxn)n =

(
ā(g, xn)

)
n

converges to ā(g, p) = x. Hence gxn → x, but then, since G

acts on X, xn → g−1x ∈ X. Hence p belongs to X being equal to g−1x. �

Remark 4.3. Instead of Lemma 4.2, we could have used Theorem 2.2.7 in Becker
and Kechris [4]. However, for the proof of our theorem the classical Lavrentieff
Theorem suffices and so we decided not to use the more powerful Becker-Kechris
result. Moreover, the proof of Theorem 2.2.7 in [4] contains a small inaccuracy
which fortunately can easily be corrected. We will come back to this in Appendix 1
of this paper.

By abuse of notation, if U ⊆ G and p ∈ B, we denote ā(U × {p}) by Up.
Moreover, if U is a singleton, say {u}, then we denote Up by up.

Let P be a Polish space for which there exists a continuous surjection α : P → G.
Let S be the collection of all subsets S of G for which there exists an element

xS ∈ X such that SxS ∈ MGR(X). Observe that ∅ ∈ S.
Let U be the collection of all open subsets of P such that α(U) can be covered

by countably many element of S.

Lemma 4.4. P \
⋃

U �= ∅.

Proof. There is a countable subcollection E of U such that
⋃

E =
⋃

U. For every
U ∈ E there is a collection {SU

n : n < ω} of subsets of G and for every n an element
xU

n ∈ X such that
(1) SU

n xU
n ∈ MGR(X),

(2) α(U) ⊆
⋃

n<ω SU
n .

Put D = {xU
n : U ∈ E, n < ω}. There is an element g ∈ G such that

gD ∩
⋃

U∈E

⋃
n<ω

SU
n xU

n = ∅.

Then, clearly, g �∈
⋃

U∈E α(U). �

So P ′ = P \
⋃

U is a nonempty closed subset of P and hence is Polish.

Corollary 4.5. If V ⊆ P ′ is a nonempty relatively open set, then α(V ) cannot be
covered by a countable subfamily of S.

Proof. Suppose not. Pick a countable subfamily E of U such that
⋃

E =
⋃

U. It
follows easily that V ∪ (P \ P ′) = V ∪

⋃
E belongs to U, which is impossible since

V is a nonempty subset of P ′. �

Let W be a countable base for P ′. We assume without loss of generality that
∅ �∈ W. For W ∈ W and n < ω, put

S(W )n = {b ∈ B \ X : α(W )b ⊆ An}.
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Lemma 4.6. If W ∈ W and n < ω, then S(W )n ∩ X = ∅.

Proof. Suppose that there is a sequence (bm)m in S(W )n with limit x ∈ X. Since
An is closed, it clearly follows that α(W )x ⊆ An; hence α(W )x ⊆ An ∩ X ∈
MGR(X). So α(W ) ∈ S, which contradicts Corollary 4.5. �

Lemma 4.7. B \ X ⊆
⋃

W∈W

⋃
n<ω S(W )n.

Proof. Take b ∈ B \X arbitrarily. Observe that by Lemma 4.2, α(P ′)b ⊆ X̃ \X ⊆⋃
n<ω An. For every n < ω, put

Pn = {p ∈ P ′ : α(p)b ∈ An}.

Then Pn is closed in P ′, and
⋃

n<ω Pn = P ′. Hence by the Baire Category Theorem
for P ′, there exist n < ω and W ∈ W such that W ⊆ Pn. Hence α(W )b ⊆ An, and
so b ∈ S(W )n. �

Hence Lemmas 4.6 and 4.7 show that X is a Borel space. Since it is also an SP-
space, it is Polish by Corollary 3.2(3). This completes the proof of Theorem 1.2.

Remark 4.8. In view of Theorem 1.2, it is natural to ask the following. Suppose
that G is an analytic group acting on a space X. Assume that for every countable
subset A of X there is an element g ∈ G such that gA ∩ A = ∅. Is X Polish?
The answer to this question is in the negative. For a counterexample, consider any
uncountable first category topological group. Hence this shows that Theorem 1.2
is ‘best possible’.

5. Proof of Theorem 1.3

Let X and Y be as in Theorem 3.13. We assume MA+¬CH+ω1 = ωL
1 in this

section and hence that the conclusions of Theorem 3.13 hold.

(A) Pushing Theorem 1.2 further for Y . We will first show that the proof of
Theorem 1.2 can be used to get new information on Y .

Theorem 5.1. If G is an analytic group acting on Y , then there is a countable
subset D of Y such that gD ∩ D �= ∅ for every g ∈ G.

Note that since Y is not Polish, Theorem 1.2 gives us that there exist subsets A
and B of Y with A countable and B ∈ MGR(Y ) such that gA ∩ B �= ∅ for every
g ∈ G. The proper generalization of this to countable sets would be to demand
that both A and B are countable. It is easy to see that this is equivalent to the
statement of Theorem 5.1.

Proof. The proof is by contradiction, i.e., we assume that for every countable subset
D of Y there is an element g ∈ G with gD ∩ D = ∅.

There is by Lemma 4.2 a Borel set B in 2ω containing Y such that the action
a : G× Y → Y can be extended to a continuous function ā : G×B → 2ω such that
ā
(
G × (B \ Y )

)
∩ Y = ∅. Again by abuse of notation, if U ⊆ G and p ∈ B, we

denote ā(U × {p}) by Up. Moreover, if U is a singleton, say {u}, then we denote
Up by up.

Let P be a Polish space for which there exists a continuous surjection α : P → G.
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If x ∈ Y and h ∈ G, then

Gx,h = {g ∈ G : gx = hx}.
Observe that Gx,h is closed in G and contains h.

Let U be the collection of all open subsets of P for which there exist countable
subsets A ⊆ Y and H ⊆ G such that

α(U) ⊆
⋃

{Gx,h : x ∈ A, h ∈ H}.

Claim 1. P \
⋃

U �= ∅.

Proof. There is a countable subcollection E of U such that
⋃

E =
⋃

U. So if U

covers P , {α(U) : U ∈ E} covers G, and hence there are countable sets A ⊆ Y and
H ⊆ G such that

G =
⋃

{Gx,h : x ∈ A, h ∈ H}.
Since H is countable, there is a countable D ⊆ Y such that A ⊆ D and hD = D
for every h ∈ H. There is, by assumption, an element g ∈ G such that gD∩D = ∅.
Then clearly g �∈

⋃
{Gx,h : x ∈ A, h ∈ H}, which is a contradiction. ♦

So P ′ = P \
⋃

U is a nonempty closed subset of P and hence is Polish.

Claim 2. If V ⊆ P ′ is a nonempty relatively open set, then there do not exist
countable subsets A ⊆ Y and H ⊆ G such that α(V ) ⊆

⋃
{Gx,h : x ∈ A, h ∈ H}.

Proof. If this is not true, then pick a countable subfamily E of U such that
⋃

E =⋃
U. It now easily follows that V ∪ (P \ P ′) = V ∪

⋃
E belongs to U, which is

impossible since V is a nonempty subset of P ′. ♦

Let W be a countable open base for P ′. We assume without loss of generality
that ∅ �∈ W. For W ∈ W, put

S(W ) = {b ∈ B \ Y : |α(W )b| = 1}.

Claim 3. If W ∈ W, then S(W ) ∩ Y = ∅.

Proof. Suppose that there is a sequence (bn)n in S(W ) with limit y ∈ Y . Pick an
arbitrary t ∈ W , and put cn = α(t)bn and c = α(t)y, respectively. Observe that
cn → c. If s ∈ W is arbitrary, then

α(s)y = lim
n→∞

α(s)bn = lim
n→∞

cn = c.

This proves that α(W ) ⊆ Gy,h, where h = α(t), and hence contradicts Claim 2. ♦

Now put T = B ∩
⋃

W∈W S(W ). Then T is an Fσ-subset of B which misses Y
by Claim 3. Since Y is not Borel, there is an element b ∈ B \ (T ∪ Y ). Observe
that the ‘orbit’ Gb of b is contained in 2ω \ Y = X.

Claim 4. Gb is uncountable.

Proof. Striving for a contradiction, assume that Gb is countable, say Gb = {zn :
n < ω}. For every n, put

An = {t ∈ P ′ : α(t)b = zn}.
Then An is clearly closed, and

⋃
n<ω An = P ′. By the Baire Category Theorem,

the interior in P ′ of some An is nonempty. But then there exists W ∈ W such that
|α(W )b| = 1, i.e., b ∈ T . This is a contradiction. ♦
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This completes the proof since Gb is an uncountable analytic space, hence con-
tains a Cantor set. This is impossible since |X| = ℵ1 and c > ℵ1. �

Hence we conclude that an analytic group acting on Y is somehow ‘concentrated’
on a countable subset of Y . But do there exist analytic groups that act in a
nontrivial way on Y ? This question will now be considered.

(B) Y is homogeneous. We will prove that Y is a homogeneous space.
Let X be a space and fix an arbitrary point x ∈ X. By τ (x) we denote the type

of x, i.e., {
y ∈ X :

(
∃h ∈ H(X)

)(
h(x) = y

)}
.

Observe that types are always homogeneous spaces.
For a CDH-space X, types are particularly nice. Bennett [6] proved that all types

τ (x) for x ∈ X are clopen (see also [19, 1.6.7]). This gives us that every CDH-space
is the topological sum of an at most countable family of homogeneous spaces.

Now consider the space Y and pick an arbitrary y ∈ Y . Since Y is CDH, τ (y)
is clopen in Y . Let U be an open subset of 2ω such that U ∩ Y = τ (y). There
is a nonempty clopen subset C of 2ω such that C ⊆ U . Put Y ′ = C ∩ Y and
X ′ = X ∩ C, respectively. Then Y ′ is homogeneous, being a clopen subspace of
the zero-dimensional homogeneous space τ (y). Also, X ′ is an ℵ1-dense subset of
C. Since C and 2ω are homeomorphic, Y and Y ′ are homeomorphic by Baldwin
and Beaudoin [3, Lemma 3.1]. Hence Y is homogeneous.

(C) Y is a coset space of an analytic group. Since Y is zero-dimensional and
homogeneous, it is SLH. By van Mill [21, Theorem 3.2] there is an analytic group
acting transitively on Y . Since Y is second category, this action is micro-transitive
by the improved Effros Theorem (see §2). Hence Y is a coset space of some analytic
group.

Appendix 1. On the Lavrentieff theorem for group actions

The classical Lavrentieff Theorem [10, 4.3.21] was generalized by Becker and
Kechris as follows:

Theorem A1.1 ([4, 2.2.7]). Let G be a Polish group, X a Polish space and A ⊆ X.
If a : G × A → A is a continuous action of G on A, there is a co-analytic set B,
with A ⊆ B ⊆ X, and a continuous action b : G×B → B such that a = b�(G×A).
Moreover, if A is analytic, we can find such a B which is Borel. Finally, if G is
locally compact, B can be taken to be Gδ.

It is asked in [4, 2.2.8] whether the set B in Theorem A1.1 can be taken to be
Gδ. This question was solved in the negative recently by Ding and Gao [7]. They
proved that every nonlocally compact Polish group can serve as a counterexample:
for every nonlocally compact Polish group G there are a Polish space X, a Π1

1-
complete subset A of X and a nonextendable continuous action a : G × A → A.

The aim of this appendix is to point out that the proof of Theorem A1.1 by Becker
and Kechris contains a small inaccuracy. Fortunately, it can easily be corrected.
We will also provide a negative answer to Question 4.7 in Ding and Gao [7].

Let � be the standard Cantor middle-third set. Let {E, F, G} be a clopen
partition of � by nonempty sets. Pick an arbitrary point x ∈ E, and write E \ {x}
as the disjoint union of nonempty clopen subsets {En : n < ω}. Similarly, pick
y ∈ F , {Fn : n < ω}, z ∈ G, and {Gn : n < ω}. For n < ω let f2n : E2n → Fn
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and let f2n+1 : E2n+1 → Gn be arbitrary homeomorphisms. Let f : E \ {x} →
(F \ {y}) ∪ (G \ {z}) be the homeomorphism

⋃
n<ω fn.

Put A = � \ {x, y, z}, and define an involution σ : A → A by

σ(u) =

{
f(u), (u ∈ E \ {x}),
f−1(u),

(
u ∈ (F \ {y}) ∪ (G \ {z})

)
.

Lemma A1.2. The oscillation of σ at y and z is zero and σ̄(y) = σ̄(z) = x, while
the oscillation of σ at x is not zero.

Proof. Let U be a neighborhood of x which is contained in E. Then clearly V (U) =
f(U \ {x}) ∪ {y, z} is a neighborhood of {y, z} which is contained in F ∪ G.

We prove simultaneously that the oscillation of σ at y is zero and that σ̄(y) =
x. Let U have small diameter. Then V (U) is a neighborhood of y such that
σ(V (U) ∩ A) ⊆ U and hence has small diameter, and similarly for z.

On the other hand, no matter how small we take U , it will always contain a
tail of the sequence (En)n. Hence σ(U) contains tails of the sequences (Fn)n and
(Gn)n. This means that the diameter of σ(U) is always larger than or equal to,
say, the distance of y and z divided by 2. �

Let G = Z2 = {0,1}, A as above and X = �. The involution σ on A defines in
the obvious way an action a : G × A → A. Put

B = {s ∈ X : (∀ g ∈ G)(the oscillation of a at (g, s) is zero)}.
Observe that the oscillation of a is zero at every point of the form (0, s), where
s ∈ X. Hence B is simply the set of all s ∈ X at which the oscillation of σ is zero.
So we conclude from Lemma A1.2 that B = � \ {x}. The action a : G × A → A
can however not be extended to an action b : G×B → B since by Lemma A1.2 this
would imply that b(1, y) = x �∈ B, contrary to what is asserted in the proof of [4,
2.2.7].

Now that we know what the problem is, it is a triviality to fix it by a slight
modification of the proof of [4, 2.2.7]. We remark that the proof works for analytic
groups, not only for Polish groups.

Theorem A1.3. Let G be an analytic group, X a Polish space and A ⊆ X. If
a : G×A → A is a continuous action of G on A, there is a co-analytic set B, with
A ⊆ B ⊆ X, and a continuous action b : G × B → B such that a = b�(G × A).
Moreover, if A is analytic, we can find such a B which is Borel. Finally, if G is
locally compact, B can be taken to be Gδ.

Proof. We may assume that A is dense in X. Let Ĝ be a Polish space containing
G as a dense subspace, and let π : Ĝ × X → X denote the projection. Put

Z = {(g, x) : g ∈ Ĝ, x ∈ X, and the oscillation of a at (g, x) is zero}.
Then Z is a Gδ-subset of the Polish space Y = Ĝ × X containing G × A, and
the function a : G × A → A can be extended to a continuous function b : Z →
X [10, 4.3.16]. Observe that G × X is analytic; hence (G × X) \ Z is analytic
(Proposition 2.1). Hence π

(
(G × X) \ Z

)
is analytic and clearly misses A. Put

B0 = X \ π
(
(G × X) \ Z

)
,

and observe that

(1) B0 ∈ Π1
1(X), A ⊆ B0, G × B0 ⊆ Z.
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Now b−1(B0) ∈ Π1
1(Z) by Proposition 2.1(3), and b−1(B0) contains G × A. Hence

(G × X) \ b−1(B0) is analytic, and so is π
(
(G × X) \ b−1(B0)

)
. Put

B1 = B0 \ π
(
(G × X) \ b−1(B0)

)
,

and observe that by Proposition 2.1(1),

(2) B1 ∈ Π1
1(X), A ⊆ B1, G × B1 ⊆ b−1(B0).

Proceeding in this way, we find that there is a sequence {Bn : n < ω} of subsets of
X such that for every n < ω,

(3) Bn ∈ Π1
1(X), A ⊆ Bn+1 ⊆ Bn, G × Bn+1 ⊆ b−1(Bn).

Now put B =
⋂

n<ω Bn. Then B ∈ Π1
1(X) by Proposition 2.1(1), A ⊆ B, and by

(3),
G × B ⊆ b−1(B).

Now the reasoning in [4, 2.2.7] can be followed verbatim to complete the proof. �

As we stated at the beginning of this appendix, Ding and Gao [7] proved that
for every nonlocally compact Polish group G there are a Polish space X, a Π1

1-
complete subset A of X and a nonextendable continuous action a : G × A → A.
Here nonextendable means that A is not a proper subset of any subset B of X such
that a can be extended to a continuous action b : G × B → B. They asked the
following:

Question A1.4 (Ding and Gao [7, 4.7]). If G is a Polish group acting on a subset
A of a Polish space X and the action cannot be extended, is there a Polish G-
space X ′ and a homeomorphic embedding of X into X ′ whose restriction on A is a
G-embedding?

Informally, can the fact that the action is not extendable be remedied by expand-
ing the space? We will show that this is not always possible. We will show that
G and A as described earlier solve Question A1.4 in the negative. Indeed, suppose
that there is a Polish space X containing � such that the action G × A → A can
be extended to an action G × X → X. Since A is G-invariant, so is its closure �.
This is a contradiction.

Appendix 2. A homogeneous compact Hausdorff space

In this appendix all spaces under discussion are Tychonoff. Let S denote the
Sorgenfrey line.

Our aim is to describe an example of a homogeneous compact Hausdorff space
Z which does not have the SP. In fact, Z contains a countable dense subset E
such that h(E) ∩ E �= ∅ for every h ∈ H(Z). We will show that H(Z) endowed
with the compact-open topology is not a Baire space and is not ℵ0-bounded. So,
as to be expected, familiar techniques in the metrizable context of producing new
homeomorphisms from old ones by taking limits do not work in the general setting
of compact Hausdorff spaces. See [5] for a similar result.

We assume the reader is familiar with the papers [17, 18]. As was noted in [17,
Remark 4.1], the construction presented there works for any Rn, where n ≥ 1.

Let F = {f : dom(f) and range(f) are Gδ-subsets of R and f : dom(f) →
range(f) is a homeomorphism}. For every x ∈ R put V (x) = x + Q. Let X be
the space constructed on [17, page 145] (with R taking the role of R2). We assume
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without loss of generality that 0 �∈ X, i.e., that Q ⊆ Y = R \ X. The crucial
property of X is

Fact 1. If f ∈ F and |{x ∈ dom(f) : f(x) �∈ V (x)}| = c, then there exists x ∈
dom(f) ∩ X such that f(x) �∈ X.

Observe that Y + Q = Y . We split each y ∈ Y into two points, y− and y+. The
points of X will not be split. Order the set

S(X) = X ∪ {y−, y+ : y ∈ Y }

in the natural way, so that y− always precedes y+. Endow S(X) with the order
topology derived from this order. Then S(X) is easily seen to be a locally compact,
zero-dimensional first countable space. In addition, X as a subspace of R is precisely
the same space as X as a subspace of S(X). Moreover, the sets

{y+ : y ∈ Y }, {y− : y ∈ Y }

are both homeomorphic to subspaces of S. The construction of splitting some but
not all points of R is well-known and was used by many authors. See, e.g., van
Douwen [8] and [18, §6].

The following result is [18, Theorem 6.3].

Fact 2. S(X) is homogeneous.

Now consider the clopen arc Z = [0+, 1−] in S(X). Then Z is clearly com-
pact and also homogeneous, being a clopen subspace of the homogeneous zero-
dimensional space S(X) (Fact 2).

Let D be a countable dense subset of X, and put E = (D + Q) ∩ X ′.
Let f : Z → Z be an arbitrary homeomorphism. We will show that f(E)∩E �= ∅.

Lemma A2.1. There is a countable subset A of X ′ = X ∩ (0, 1) such that for
S = X ′ \ A we have f(S) = S.

Proof. For every n ∈ Z, put An = {x ∈ X ′ : fn(x) �∈ X ′}. The function d �→ fn(d)
embeds An into Z\X ′. Since An has a countable base and Z\X ′ is the union of two
subspaces each homeomorphic to a subspace of S, it follows that An is countable
(this is well-known; see, e.g., [18, 3.10]). Hence A =

⋃
n∈Z An is countable. It is

clear that S = X ′ \ A is as required. �

Lemma A2.2. f(E) ∩ E �= ∅.

Proof. We adopt the notation in Lemma A2.1.
By [19, A.8.5], there are Gδ-subsets G and H of R\A such that g = (f�S) : S → S

can be extended to a homeomorphism ḡ : G → H. Hence ḡ ∈ F, and if |{x ∈ G :
ḡ(x) �∈ V (x)| = c, then by Fact 1 there exists x ∈ G ∩ X such that ḡ(x) �∈ X.
But then x ∈ S and f(x) = ḡ(x) �∈ X, which contradicts Lemma A2.1. Hence we
conclude that

(1) |{x ∈ S : f(x) �∈ V (x)}| < c.

For every q ∈ Q, let Bq = {x ∈ X ′ : f(x) = x + q}. We claim that Bq is closed in
X ′. To see this, let (xn)n be a sequence in Bq converging to an element x ∈ X ′.
Then f(xn) converges on the one hand to f(x) ∈ Z and on the other hand to
x + q ∈ X. From this we conclude that f(x) = x + q ∈ X ′.
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From (1) and the fact that A is countable, we conclude that

(2)
∣∣X ′ \

⋃
q∈Q

Bq

∣∣ < c.

Hence Lemma 3.3 in [17] shows that there exists q ∈ Q such that Bq has nonempty
interior in X ′. But then Bq meets E, say in x, and hence f(x) = x + q ∈ E. �

Hence we conclude from Lemma A2.2 that Z does not have the SP. We will now
show that H(Z) is not a Baire space and is not ℵ0-bounded.

Proposition A2.3. H(Z) is neither a Baire space nor an ℵ0-bounded topological
group.

Proof. Enumerate E as {en : n < ω}. For all n, m < ω, put

Dn,m = {f ∈ H(Z) : f(en) = em}.

Then by Lemma A2.2, H(Z) =
⋃

n,m<ω Dn,m. Hence it suffices to prove that
for fixed n, m < ω we have that Dn,m is nowhere dense in H(Z). But this is a
triviality. Indeed, pick a finite collection K of compact subsets of Z and for every
K ∈ K an open subset U(K) in Z such that

⋂
K∈K[K, U(K)] �= ∅, say contains

the homeomorphism f . We may assume without loss of generality that every U(K)
is clopen. If f(en) �= em, then there is nothing to prove. Suppose therefore that
f(en) = em. There is a clopen neighborhood V of en such that if em ∈ U(K) for
some K ∈ K, then f(V ) ⊆ U(K), and if em �∈ U(K), then f(V ) ∩ U(K) = ∅.
Since f(V ) is homogeneous, being clopen, there is a homeomorphism ξ of Z that
is supported on f(V ) while moreover ξ(em) �= em. Consider g = ξ ◦ f . Then
g(en) = ξ(em) �= em; hence g �∈ Dn,m. It is easy to see that g ∈

⋂
K∈K[K, U(K)].

We next prove that H(Z) is not ℵ0-bounded, as follows. We need the following
fact, which is Lemma 6.2 from [18]: Let [a+, b−] and [c+, d−] be clopen arcs in S(X)
such that c− a = d− b ∈ Q. Then [a+, b−] and [c+, d−] are order-isomorphic. Now
for every y ∈ Y ∩ (0, 1

4 ), consider the clopen arcs

Ly = [y+, (y+1
4 )−], Ry = [(y+ 1

2 )+, (y+3
4 )−].

These arcs are order-isomorphic, hence homeomorphic, by what we just said. Since
they are clopen and disjoint, there consequently is an involution fy of Z which
is supported on Ly ∪ Ry while moreover fy(Ly) = Ry. Observe that for every
y ∈ Y ∩ (0, 1

4 ) we have

fy([0+, 1
2

−]) = ([0+, 1
2

−] \ Ly) ∪ Ry;

hence the collection

(3) {fy([0+, 1
2

−]) : y ∈ Y ∩ (0, 1
4 )}

is uncountable.
Consider the open neighborhood

P =
[
[0+, 1

2

−], [0+, 1
2

−]
]
∩

[
[ 12

+
, 1−], [12

+
, 1−]

]
of the identity homeomorphism of Z (our notation is confusing since we use brackets
with two different meanings), and let F ⊆ H(Z) be an arbitrary countable set. If
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f ∈ F , then g ∈ fP if and only if g([0+, 1
2

−]) = f([0+, 1
2

−]). This means that if
g ∈ FP, then g([0+, 1

2

−]) belongs to the countable collection

(4) {f([0+, 1
2

−]) : f ∈ F}.

Hence by (3), there exists y ∈ Y ∩ (0, 1
4 ) such that fy �∈ FP. �

This suggests the following questions.

Question A2.4. What are the compact (homogeneous) Hausdorff spaces X for which
H(X) is a Baire space?

Question A2.5. What are the compact (homogeneous) Hausdorff spaces X for which
H(X) is ℵ0-bounded?

Remark A2.6. If X is a homogeneous compact Hausdorff space for which H(X) is
ℵ0-bounded, then X is Dugundji and hence dyadic. This follows from Uspenskĭı [23,
Theorem 1]. Since first countable or orderable dyadic compacta are metrizable (see
[10, p. 231]), the fact that H(Z) is not ℵ0-bounded is a consequence of Uspenskĭı’s
result. I am indebted to Shura Arhangel′skĭı for drawing my attention to Uspenskĭı’s
paper.
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