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Abstract

Let M be either a topological manifold, a Hilbert cube manifold, or a Menger
manifold and let D be an arbitrary countable dense subset of M . Consider the
topological group H(M,D) which consists of all autohomeomorphisms of M that
mapD onto itself equipped with the compact-open topology. We present a complete
solution to the topological classification problem for H(M,D) as follows. If M is
a one-dimensional topological manifold, then we proved in an earlier paper that
H(M,D) is homeomorphic to Q

ω, the countable power of the space of rational
numbers. In all other cases we find in this paper that H(M,D) is homeomorphic
to the famed Erdős space E, which consists of the vectors in Hilbert space �2

with rational coordinates. We obtain the second result by developing topological
characterizations of Erdős space.
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CHAPTER 1

Introduction

All spaces under discussion are separable and metrizable. The main results of
this paper were announced in Dijkstra and van Mill [20].

If X is compact then the standard topology on the group of homeomorphisms
H(X) of X is the so-called compact-open topology (which coincides with the topol-
ogy of uniform convergence). For noncompact locally compact spaces we give H(X)
the topology that this group inherits from H(αX), where αX is the one-point com-
pactification. In either case we have that H(X) a Polish topological group. If A is a
subset of a space X then H(X,A) stands for the subgroup {h ∈ H(X) : h(A) = A}
of H(X).

Brouwer [11] showed that R is countable dense homogeneous, that is, for all
countable dense subsets A and B of R there is an h ∈ H(R) with h(A) = B. It is
not difficult to prove that every R

n has this property. In view of Brouwer’s result
it is a natural idea to investigate the group H(Rn,Qn). It was shown in Dijkstra
and van Mill [21] that the group H(R,Q) is homeomorphic to the zero-dimensional
space Q

ω, the countable infinite product of copies of the rational numbers Q. In
contrast, we showed in [21] (see also [15]) that H(Rn,Qn) for n ≥ 2 contains a
closed copy of the famed Erdős space E which is known to be one-dimensional, see
[29]. This result led us to consider the question whether H(Rn,Qn) (for n ≥ 2) is
in fact homeomorphic to Erdős space. We prove here that it is. We show that if
D is a countable dense subset of a locally compact space X, then H(X,D) is an
Erdős space factor, which means that H(X,D)× E is homeomorphic to E. Under
rather mild extra conditions, the group H(X,D) is found to be homeomorphic to
Erdős space. This is the case if X contains a nonempty open subset homeomorphic
to R

n for n ≥ 2, an open subset of the Hilbert cube Q, or an open subset of some
universal Menger continuum. As an application it follows that if M is an at least
2-dimensional manifold (with or without boundary) and D is a countable dense
subset of M , then H(M,D) is homeomorphic to Erdős space. These results can be
found in Chapter 10.

Homeomorphism groups of manifolds are very well studied. Let I denote the in-
terval [0, 1] and letH∂(In) stand for the subgroup of H(In) consisting of homeomor-
phisms that fix the boundary of the n-cube I

n. Anderson [5] proved that H∂(I) is
homeomorphic to the separable Hilbert space �2 (see [8, Proposition VI.8.1] or [32]).
It was shown by Luke and Mason [35] that H∂(I2) is an absolute retract, which
implies that H∂(I2) ≈ �2 (apply for instance Dobrowolski and Toruńczyk [26]).
For n ≥ 3 it is open whether H∂(In) is an absolute retract. This is one of the
most interesting open problems in infinite-dimensional topology. For the Hilbert
cube Q, that is for n = ∞, the analogous problem was solved by Ferry [30] and
Toruńczyk [42]. They proved that H(Q) is homeomorphic to �2 (observe that Q

1



2 JAN J. DIJKSTRA AND JAN VAN MILL

has no boundary). For 2 < n < ∞ it is unknown what the topological classifica-
tion of H∂(In) or H(In) is. By our results, the subgroups H∂(In, (Q ∩ I)n) and
H(In, (Q ∩ I)n) are known; they are homeomorphic to Erdős space.

Recall that Erdős space E is the ‘rational’ Hilbert space, that is, the set of
vectors in �2 the coordinates of which are all rational. This space was introduced
by Hurewicz who asked to compute its dimension. Erdős [29] proved that E is one-
dimensional by establishing that every nonempty clopen subset of E has diameter at
least 1. This result, in combination with the obvious fact that E is homeomorphic
to E× E, lends the space its importance in dimension theory. The paper [29] also
features a closed subspace of �2 which has the same properties as we just listed for
E. This space is now known as complete Erdős space Ec. The space Ec surfaced
in topological dynamics as the ‘endpoint’ set of several interesting objects; see
Kawamura, Oversteegen, and Tymchatyn [31] for more information.

The heart of the present paper is formed by the Chapters 7 and 8 where we
prove a series of increasingly powerful topological characterizations of Erdős space.
Chapters 3–6 contain the lemmas that prepare the ground for the proofs of the
characterization theorems. Chapters 9 and 10 contain the main applications of our
characterization theorems. In Chapter 2 we introduce Erdős space with its basic
properties. What sets Erdős space apart from familiar spaces is that in addition to
the one-dimensional topology that it inherits from �2, an important role is played
by the zero-dimensional topology that E inherits from the product space Q

ω. This
bitopological aspect was captured by Oversteegen and Tymchatyn [38] by the in-
troduction of the class of almost zero-dimensional spaces of which E and Ec are
universal elements. Chapter 3 contains information about R-trees, the relevance of
which to the Erdős spaces was established in [38] and developed further in [31].
Chapter 4 is devoted to semi-continuous functions and in particular to Lelek func-
tions. The standard example of a Lelek function is an arclength function for a Lelek
fan [33]. These functions are central to the understanding and characterization of
Erdős spaces because of the proof by Kawamura, Oversteegen, and Tymchatyn [31]
that complete Erdős space is homeomorphic to the endpoint set of the Lelek fan.
In Chapter 5 we develop the cohesion concept. The idea of a cohesive space by
which we mean a space that has a open cover consisting of sets that do not contain
nonempty clopen subsets of the space is implicitly present in Erdős [29]. It is a very
weak form of connectedness that plays an important role in the characterization
theorems. In Chapter 6 we prove an “unknotting theorem” for Lelek functions.
This theorem is made possible by the uniqueness of the Lelek fan as proved by
Charatonik [14] and Bula and Oversteegen [12]. In Chapter 7 we present extrinsic
characterizations of Erdős space, by which we mean characterizations that depend
on particular imbeddings of the space in a space with more structure, in our case
the graph of a Lelek function. We obtained inspiration for these characterizations
from Sierpiński’s [40] characterization of absolute Fσδ-spaces and from van Enge-
len’s [28] characterization of the space Q

ω. From there we proceed by finding the
more powerful intrinsic characterizations in Chapter 8, namely characterizations in
terms of purely topological concepts that are internal to the space. In Chapter 9 we
use the theorems in Chapter 8 to characterize the class of Erdős space factors. As a
corollary we find that Erdős space is homeomorphic to its countable infinite power.
Here we have a striking contrast with Ec which is not homeomorphic to Eω

c , as was
proved by Dijkstra, van Mill, and Steprāns [23]. We also find that Erdős space
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is homeomorphic to Ec × Q
ω. Our main applications can be found in Chapter 10

where we demonstrate the power of our characterizations by deriving from them
the above results on homeomorphism groups H(M,D) with relative ease.

We conclude with the observation that Erdős space started its career as a
curious example in dimensional theory. It turns out however that it is a fundamental
object that surfaces in many places. In addition, it allows for a useful and easily
applied topological characterization just as several other fundamental objects in
topology: the Cantor set (Brouwer [10]), the Hilbert cube (Toruńczyk [43]), Hilbert
space (Toruńczyk [44]), and the universal Menger continua (Bestvina [9]).





CHAPTER 2

Erdős space and almost zero-dimensionality

Let R+ = [0,∞), I = [0, 1], and let ω = {0} ∪ N. By a zero-dimensional space
we mean a space with dim = 0 so in particular a non-empty space.

Let p ∈ [1,∞) and consider the Banach space �p. This space consists of all
sequences z = (z0, z1, z2, . . . ) ∈ R

ω such that
∑∞

i=0 |zi|p < ∞. The topology on �p

is generated by the norm ‖z‖ =
(∑∞

i=0 |zi|p
)1/p

. It is well known that this topology
is the weakest topology that makes all the coordinate projections z 	→ zi and the
norm function continuous. This fact can also be formulated as follows: the norm
topology on �p is generated by the product topology (that is inherited from R

ω)
together with the sets {z ∈ �p : ‖z‖ < t} for t > 0. We extend the p-norm over Rω

by putting ‖z‖ = ∞ when z ∈ R
ω \ �p. Note that the norm as a function from R

ω

to [0,∞] is lower semi-continuous but not continuous.

Definition 2.1. Let X be a space. A function f : X → [−∞,∞] is called lower
semi-continuous (abbreviated LSC) if f−1((t,∞]) is open in X for every t ∈ R.
Similarly, f is called upper semi-continuous (abbreviated USC) if f−1([−∞, t)) is
open in X for every t ∈ R.

The following two spaces are featured in Erdős [29]: Erdős space

(2.1) E = {x ∈ �2 : xi ∈ Q for each i ∈ ω}
and complete Erdős space

(2.2) Ec = {x ∈ �2 : xi ∈ {0} ∪ {1/n : n ∈ N} for each i ∈ ω}.
The name complete Erdős space was introduced by Kawamura, Oversteegen, and
Tymchatyn [31] who used the following representation of that space:

(2.3) E′
c = {x ∈ �2 : xi /∈ Q for each i ∈ ω}.

Note that Ec is closed in �2 and that E′
c is not closed but a Gδ-set in �2, thus

both spaces are topologically complete. It is a consequence of the characterization
theorem for complete Erdős space that is presented in [31] that Ec and E′

c are
homeomorphic; see [16]. The properties of complete Erdős space have been studied
extensively in [31], [25], [23], and [22].

Let T stand for the zero-dimensional topology that E inherits from Q
ω. Observe

that T is weaker than the norm topology and hence that E is totally disconnected.
We have by the remark above that the graph of the norm function, when seen as a
function from (E,T) to R

+, is homeomorphic to E. So, informally, we can think of
E as a ‘zero-dimensional space with some LSC function declared continuous’. We
find it convenient to work with USC rather than LSC functions and we therefore
define η : Qω → R

+ by

(2.4) η(z) = 1/(1 + ‖z‖),
5



6 JAN J. DIJKSTRA AND JAN VAN MILL

where 1/∞ = 0.
There is an interesting connection between the two topologies on E that we

would like to draw attention to. Because the norm is LSC on R
ω every closed ε-ball

in E is also closed in the zero-dimensional space Qω. Thus we have that every point
in E has arbitrarily small neighbourhoods which are intersections of clopen sets.

Definition 2.2. A subset A of a space X is called a C-set in X if A can be
written as an intersection of clopen subsets of X. A space is called almost zero-
dimensional if every point of the space has a neighbourhood basis consisting of C-
sets of the space. If Z is a set that contains X then we say that a (separable metric)
topology T on Z witnesses the almost zero-dimensionality of X if dim(Z,T) ≤ 0,
O ∩ X is open in X for each O ∈ T, and every point of X has a neighbourhood
basis in X consisting of sets that are closed in (Z,T). We will also say that the
space (Z,T) is a witness to the almost zero-dimensionality of X.

Thus E is almost zero-dimensional. In fact, it is a universal object for the class
of almost zero-dimensional spaces, see Theorem 4.15. The space Q

ω is a witness to
the almost zero-dimensionality of Erdős space. More generally, if ϕ : Z → R is a
USC or LSC function with a zero-dimensional domain, then Z is easily seen to be
a witness to the almost zero-dimensionality of the graph of ϕ.

Remark 2.3. Observe that every C-set is closed and that finite unions and
finite intersections of C-sets are also C-sets. The concept of an almost zero-
dimensional space is due to Oversteegen and Tymchatyn [38]. The definition given
here is easier to use than the original one in [38] and shown to be equivalent in
Dijkstra, van Mill, and Steprāns [23]. Note that almost zero-dimensionality is
hereditary. It is proved in [38] that every almost zero-dimensional space is at most
one-dimensional; see also Levin and Pol [34] and Abry and Dijkstra [1].

Lemma 2.4 of the preprint version is now Lemma 4.10.

Remark 2.4. A space X is almost zero-dimensional if and only if there is a
topology on X witnessing this fact. This fact can easily be seen as follows. If X is
almost zero-dimensional then there exists a collection B of subsets of X such that

(1) for every x ∈ X and every neighbourhood U of x there is a B ∈ B such
that x ∈ intB ⊂ B ⊂ U and

(2) every B ∈ B is an intersection of clopen subsets of X.

Since X is separable metric we may assume that B is countable and we can find
for each B ∈ B a countable collection CB of clopen sets such that B =

⋂
CB. Then

it is easily verified that {C,X \ C : C ∈ CB , B ∈ B} is a subbasis for a separable
metric topology that witnesses the almost zero-dimensionality of X.

Remark 2.5. Let (X,T) be a witness to the almost zero-dimensionality of some
space X and let O be open in X. Since X is separable metric we can write O as a
union of countably many sets that are closed in the topology T. Thus every open
set of X is Fσ in the witness topology T and dually every closed set is Gδ with
respect to T.



CHAPTER 3

Trees and R-trees

An R-tree is a locally arcwise connected and uniquely arcwise connected space.
Let X be a uniquely arcwise connected space. If x, y ∈ X with x 
= y then [x, y]
denotes the unique arc in X that has x and y as endpoints; [x, x] denotes the
singleton {x}. We shall also use [x, y) = [x, y] \ {y}, and (x, y) = [x, y) \ {x}. We
define the set of interior points ofX by iX = {z ∈ X : z ∈ (x, y) for some x, y ∈ X}.
The set of endpoints of X is eX = X \ iX. If p, x, y ∈ X then there is a unique
z ∈ X such that [p, x]∩ [p, y] = [p, z]. We define the meet function ∧p : X×X → X
by setting x ∧p y = z. Note that [x, z] ∪ [z, y] = [x, y] so x ∧p y = p ∧y x = y ∧x p.

Mayer and Oversteegen [36] proved that any R-tree T admits a convex metric
ρ, that is a metric that generates the topology of T and that has the property
ρ(x, y) + ρ(y, z) = ρ(x, z) whenever y ∈ [x, z] ⊂ T.

Let T be an R-tree. The weak topology on T is the topology that is generated
by the following subbasis

(3.1) S = {C : C is a component of T \ {x} for some x ∈ T}.
Note that since T is locally arcwise connected every C ∈ S is an open subset of
T that is arcwise connected and therefore itself an R-tree. So the weak topology
is weaker, but not necessarily strictly weaker, than the original topology. Let Tw

stand for the set T equipped with the weak topology and let eTw denote the set
eT with the topology that is inherited from Tw. Note that it follows from the next
lemma that on compact subsets of T (such as arcs) the weak topology coincides
with the given topology.

Lemma 3.1. If T is an R-tree then Tw is a separable metric space and dim(eTw)
≤ 0.

Proof. Let ρ be a convex metric on T. By the definition of the subbasis S

the space Tw is obviously T1. Consider a countable dense subset D of T and select
for every x, y ∈ D with x 
= y a countable dense subset Qxy in (x, y). Define the
countable set

(3.2) Q =
⋃

{Qxy : x, y ∈ D with x 
= y}
and the following subcollection of S

(3.3) S′ = {C : C is a component of T \ {x} for some x ∈ Q}.
Since the components of T \ {x} form a pairwise disjoint open collection in the
separable space T we have that this collection is countable and hence S′ is countable
as well. Let p, x ∈ T and let C be a component of T\{x} such that p ∈ C. Note that
[p, x) ⊂ C. Select q, y ∈ D such that ρ(p, q), ρ(x, y) < ρ(p, x)/2. Put z = x ∧p y
and r = p ∧x q. Since ρ(x, z) + ρ(z, y) = ρ(x, y) we have ρ(x, z) < ρ(p, x)/2.
Analogously, we find that ρ(p, r) < ρ(p, x)/2. Consequently, [q, y] ∩ [p, x] = [r, z]

7



8 JAN J. DIJKSTRA AND JAN VAN MILL

is a nondegenerate arc. So (r, z) ⊂ (p, x) and we can find an a ∈ Qqy ⊂ Q that is
contained in (p, x). Consider the component K of T \ {a} that contains p. If b ∈ K
then [p, b] ⊂ K and hence [p, b]∩ [p, x] is a (possibly degenerate) subarc of [p, x] that
contains p but not a. So [p, b] cannot contain x and hence b ∈ C. Consequently,
K = K ∪{a} ⊂ C. So have proved that Tw is regular and has a countable subbasis
S′, in short, Tw is a separable metric space.

Since every element x of Q is an interior point of T we have that {C ∩ eT : C
a component of T \ {x}} forms a clopen partition of eT. So every C ∩ eT where
C ∈ S′ is clopen in eTw. Consequently, eTw is zero-dimensional. �

The following lemma refines the result that eT is almost zero-dimensional, which
was proved by Oversteegen and Tymchatyn [38].

Lemma 3.2. Let (T, ρ) be an R-tree with a convex metric. Let p ∈ T be a fixed
point and let ϕ : Tw → R

+ be defined by ϕ(x) = ρ(p, x). Then ϕ is an LSC function
such that the natural projection π from the graph of ϕ to T is a homeomorphism.
Consequently, eTw witnesses the almost zero-dimensionality of eT.

Proof. First we show that ϕ is LSC. Let x ∈ T and t ∈ R
+ such that ϕ(x) > t.

Then x 
= p and we can select a y ∈ (p, x) such that ϕ(y) > t. Let C be the
component of T \ {y} that contains x and let a ∈ C. Since [a, x] ⊂ C we have
a ∧p x ∈ (y, x] so ϕ(a) ≥ ϕ(a ∧p x) > ϕ(y) > t.

Note that the graph of ϕ, G = {(x, ϕ(x)) : x ∈ Tw}, inherits the topology from
Tw × R

+ and that π(x, ϕ(x)) = x. Since ρ(p, x) is continuous as a function on
T and the topology on Tw is weaker than the topology on T we have that π−1 is
continuous. To show that π is continuous let x ∈ Tw and let ε > 0. It is obvious
that π is continuous at (p, 0) so assume that x 
= p. Select a y ∈ (p, x) such that
ρ(x, y) ≤ ε/3 and let C be the component of T \ {y} that contains x. Note that

(3.4) U = {(a, ϕ(a)) : a ∈ C and ϕ(a) < ϕ(x) + ε/3}

is an open neighbourhood of (x, ϕ(x)) in G. Let (z, ϕ(z)) ∈ U and put a = x ∧p z.
We have ρ(p, x) = ρ(p, a)+ρ(a, x) and ρ(p, z) = ρ(p, a)+ρ(a, z) thus ϕ(z)−ϕ(x) =
ρ(p, z)− ρ(p, x) = ρ(a, z)− ρ(a, x) < ε/3. So we conclude that

(3.5) ρ(a, z) < ρ(a, x) + ε/3.

Since [x, z] = [x, a] ∪ [a, z] ⊂ C we have that a ∈ (y, x] and so by (3.5),

(3.6) ρ(x, z) = ρ(x, a) + ρ(a, z) < 2ρ(x, a) + ε/3 < 2ρ(x, y) + ε/3 ≤ ε.

Finally, we note since ϕ is LSC closed ε-balls around any p are closed with
respect to the weak topology so using also Lemma 3.1 we find that eTw witnesses
the almost zero-dimensionality of eT. �

Definition 3.3. If A is a nonempty set then A<ω denotes the set of all finite
strings of elements of A, including the null string ∅. If s ∈ A<ω then |s| denotes its
length. In this context the set A is called an alphabet . Let Aω denote the set of all
infinite strings of elements of A. If s ∈ A<ω and σ ∈ A<ω ∪Aω, then we put s ≺ σ
if s is an initial substring of σ, that is, there is a τ ∈ A<ω∪Aω with s�τ = σ, where
� denotes concatenation of strings. If σ ∈ A<ω ∪ Aω and k ∈ ω, then σ�k ∈ A<ω

is characterized by σ�k ≺ σ and |σ�k| = k.
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Definition 3.4. A tree T on an alphabet A is a subset of A<ω that is closed
under initial segments, i.e., if s ∈ T and t ≺ s then t ∈ T . Elements of T are called
nodes. An infinite branch of T is an element σ of Aω such that σ�k ∈ T for every
k ∈ ω. The body of T , written as [T ] is the set of all infinite branches of T . If
s, t ∈ T are such that s ≺ t and |t| = |s| + 1, then we say that t is an immediate
successor of s and succ(s) denotes the set of immediate successors of s in T . A tree
is called pruned if succ(s) 
= ∅ for each node s.

If S and T are trees over A respectively B, then we define the product tree
S ∗ T as follows. If s = a1 . . . al ∈ S and t = b1 . . . bl ∈ T are two strings of equal
length, then we define the string s ∗ t over A× B by s ∗ t = (a1, b1) . . . (al, bl). We
define S ∗ T = {s ∗ t : s ∈ S, t ∈ T, |s| = |t|} and note that it is a tree over A×B.

Let T be a tree over a countable set A. Consider the Banach space �1 with
norm ‖z‖ =

∑∞
i=0 |zi|. Let {ek : k ∈ ω} be the standard basis for �1 given by

eki = 0 if k 
= i and eki = 1 if k = i. If z, z′ ∈ �1 then we let 〈z, z′〉 denote the line
segment {z + t(z′ − z) : t ∈ I}. Let ν : T → ω be an injection. We define a function
γ : T ∪ [T ] → �1 as follows: if σ ∈ T ∪ [T ] then

(3.7) γ(σ) =

|σ|∑

k=1

2−keν(σ�k).

We define

(3.8) TR = γ([T ]) ∪
⋃

{〈γ(s), γ(t)〉 : s ∈ T and t ∈ succ(s)}.

We note the following fact: ‖γ(σ)‖ = 1 − 2−|σ| for σ ∈ T ∪ [T ], where 2−∞ = 0.
Also observe that if we equip [T ] with the topology that this set inherits from the
product space Aω with A discrete, then γ�[T ] is an imbedding. It is easily verified
that the norm produces a convex metric ρ on TR and that this space is an R-tree.
Note also that the weak topology on TR coincides with the norm topology. If the
tree T is pruned and if succ(∅) has at least two elements, then eTR = γ([T ]) =
TR ∩ {z ∈ �1 : ‖z‖ = 1}.

Oversteegen and Tymchatyn [38] have shown that a space is almost zero-
dimensional if and only if it is homeomorphic to eT for some R-tree T. We need a
slightly more precise version of that result. Our refinement can be extracted from
the proof in [38] but we give a direct proof here for the sake of completeness.

Lemma 3.5. If X is almost zero-dimensional as witnessed by a topology T on
X, then there are an R-tree T and a homeomorphism h : X → eT such that also
h : (X,T) → eTw is a homeomorphism.

Proof. We may assume that X has at least two elements. Let {Ci : i ∈ N} be
a basis for T consisting of clopen sets such that both C1 and X \C1 are not empty.
We put A = {0, 1} and consider the tree A<ω. We define

(3.9) Ds =
⋂

{Ci : i ≤ l, si = 1} ∩
⋂

{X \ Ci : i ≤ l, si = 0},

where s = s1 . . . sl ∈ A<ω and
⋂
∅ = X. Let T = {s ∈ A<ω : Ds 
= ∅} and note

that T is a pruned tree and that | succ(∅)| = 2. Thus eTR = γ([T ]). For every
x ∈ X we define τ (x) ∈ [T ] by x ∈

⋂∞
k=0Dτ(x)�k. Clearly, τ is an imbedding of

(X,T) into [T ] with the topology that is inherited from the Cantor set Aω.
By the fact that T is a witness topology we can find a countable collection B

of subsets of X such that
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(a) for every x ∈ X and every neighbourhood U of x there is a B ∈ B such
that x ∈ intB ⊂ B ⊂ U and

(b) every B ∈ B is closed with respect to T.

If Y ⊂ eTR, s ∈ T , and ε > 0, then we define the following subsets of iTR:

(3.10) Δ(Y, s) =
⋃

{(y, γ(s)] : y ∈ Y }
and

(3.11) Δε(Y, s) = {z ∈ TR : ρ(z,Δ(Y, s)) < ε(1− ‖z‖)}.
Note that Δε(Y, s) is open in TR and that Δ+

ε (Y, s) = Y ∪Δε(Y, s) is an R-tree for
ε ≤ 1 by the convexity of ρ.

We now consider T = γ(τ (X))∪ iTR and we let the topology on T be generated
by the basis

(3.12) {O ∩ T : O open in TR} ∪ {Δ+
2−j (γ(τ (intB)), s) : j ∈ N, B ∈ B, s ∈ T}.

Observe that T is a second countable Hausdorff space that is uniquely arcwise con-
nected and locally arcwise connected. Clearly, we have that γ ◦ τ : X → γ(τ (X)) =
eT is a homeomorphism. Since the weak topology is generated by points in the
interior of an R-tree we have that the weak topology on T coincides with the topol-
ogy inherited from TR = (TR)w. Consequently, we have that γ ◦ τ : (X,T) → eTw is
also a homeomorphism.

The only thing left is to verify that T is a regular space which implies that it
is separable metric. We obviously only have to consider points γ(τ (x)) = z ∈ eT

that are contained in basic sets of the form U = Δ+
2−j (γ(τ (intB)), s). Let B′ ∈ B

be such that x ∈ intB′ ⊂ B′ ⊂ intB and consider the closed set

(3.13) V = {z ∈ T : ρ(z,Δ(γ(τ (B′)), s)) ≤ 2−j−1(1− ‖z‖)}.
Since V contains Δ+

2−j−1(γ(τ (intB
′)), s) it is a neighbourhood of x in T. It now

suffices to show that V is contained in U . Let z ∈ V . If z′ ∈ iT then clearly
z′ ∈ U . Now let z′ ∈ eT. Then ‖z′‖ = 1 and ρ(z′,Δ(γ(τ (B′)), s)) = 0. Let
0 < ε < 1 − ‖γ(s)‖) and select a b ∈ B′ such that ρ(z′, (γ(τ (b)), γ(s)]) < ε.
Then by convexity of ρ we have ρ(z′, y) < ε, where y = γ(τ (b)) ∧s z

′. Note that
‖y‖ > 1 − ε > ‖γ(s)‖ and that y = γ(s′) for some s′ ∈ T . We then have that

s′ ≺ τ (b) and hence ρ(y, γ(τ (b)) = 2−|s′| = 1− ‖y‖ < ε. So ρ(z′, γ(τ (b))) < 2ε and
we may conclude that ρ(z′, γ(τ (B′))) = 0. Since B′ is closed in (X,T) we have that
γ(τ (B′)) is closed in (eT, ρ) and hence z′ ∈ γ(τ (B′)) ⊂ U . �



CHAPTER 4

Semi-continuous functions

Definition 4.1. Let ϕ, ψ : X → R
+ be such that X is a space and ψ(x) ≤ ϕ(x)

for all x ∈ X. We define

(4.1) Gϕ
ψ = {(x, ϕ(x)) : x ∈ X and ϕ(x) > ψ(x)}

and

(4.2) Lϕ
ψ = {(x, t) : x ∈ X and ψ(x) ≤ t ≤ ϕ(x)}

both equipped with the topology inherited from X × R
+. We say that ϕ is a

Lelek function with bias ψ if X is zero-dimensional, ϕ and ψ are USC, X ′ = {x ∈
X : ψ(x) < ϕ(x)} is dense in X, and Gϕ

ψ is dense in Lϕ�X′

ψ�X′ . If ϕ is a Lelek function
with bias 0, then ϕ is simply called a Lelek function.

For a space X we let π1 : X × R
+ → X and π2 : X × R

+ → R
+ denote the

projections.

Remark 4.2. Let ϕ : X → R
+ be a USC function with dimX = 0. Note

that ϕ is continuous at points from ϕ−1(0). Let Y be the graph of ϕ with the
topology that is lifted from X (so Y and X are homeomorphic). Let (x, ϕ(x)) ∈ Gϕ

0

and note that since ϕ is USC a basic neighbourhood of the point has the form
B(U, t) = Gϕ

0 ∩ (U × [t,∞)), where U is a clopen neighbourhood of x in X and
0 < t < ϕ(x). Note that

(4.3) π1(B(U, t)) = U ∩ ϕ−1([t,∞))

is a closed subset of X so B(U, t) is closed in Y . This makes Y a witness to the
almost zero-dimensionality of Gϕ

0 . So every open subset of Gϕ
0 is an Fσ-set in Y .

Remark 4.3. If ϕ is a Lelek function and O is an open subset of Gϕ
0 , then

π1(O) is of the first category in itself. This result can be seen as follows. We can
cover O with countably many sets of the form B(U, t) such that there is an s < t
with B(U, s) ⊂ O. Let (x, ϕ(x)) be an element of such a B(U, t) and let V be a
neighbourhood of x in X. Since ϕ is Lelek there must be a y ∈ U ∩ V such that
s < ϕ(y) < t and hence y ∈ π1(O) \π1(B(U, t)) by (4.3). So π1(B(U, t)) is nowhere
dense in π1(O) and π1(O) is of the first category in itself.

Proposition 4.4. If ϕ : X → R
+ is a Lelek function with X topologically

complete, then every nonempty clopen subset C of Gϕ
0 fails to be closed in the full

graph of ϕ and the projection π2(C) is an interval that has 0 as one of its endpoints.

Proof. Put Z = X \ π1(G
ϕ
0 \ C) and note that by Remark 4.2 the space Z

is a Gδ-set in X and hence topologically complete. Also, π1(C) is a first category
Fσ-subset of Z by Remarks 4.2 and 4.3. Thus π1(C) is not closed in Z and we can

11
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find an x ∈ Z ∩ (π1(C) \ π1(C)). Since Z \ π1(C) = ϕ−1(0) we have ϕ(x) = 0.
Recalling that ϕ is continuous at x we find that (x, 0) is a cluster point of C.

Now let (x, ϕ(x)) ∈ C be such that there is a t /∈ π2(C) with 0 < t < ϕ(x).
Then C ∩ (X × [t,∞)) = C ∩ (X × (t,∞)) is a clopen, nonempty subset of Gϕ

0 that
is closed in the graph of ϕ, a contradiction. �

Definition 4.5. If ϕ : X → R then we define

(4.4) M(ϕ) = sup{|ϕ(x)| : x ∈ X} ∈ [0,∞].

If X = ∅ then we use the convention M(ϕ) = sup ∅ = 0.

Remark 4.6. A USC function ϕ : X → R
+ with dimX = 0 is a Lelek function

if and only if Gϕ
0 is dense in Lϕ

0 . For the “if” part note that X ′ = π1(G
ϕ
0 ) and

X = π1(L
ϕ
0 ). For the “only if” part use the fact that ϕ is continuous in points of

ϕ−1(0) = X \X ′.
We obviously have that the domain of a Lelek function ϕ is dense in itself and

that M(ϕ) > 0. Lelek functions with compact domain C exist (see Lelek [33]).
The domain C must be a Cantor set and ϕ(C) = [0,M(f)]. If ϕ is a Lelek function
with a compactum C as domain and we identify the set C × {0} to a point in Lϕ

0 ,
then we obtain a Lelek fan. Note that Gϕ

0 is the endpoint set of the fan. According
to Kawamura, Oversteegen and Tymchatyn [31] we have in this case that Gϕ

0 is
homeomorphic to complete Erdős space.

Definition 4.7. Let ϕ : X → [0,∞] be a function and let X be a subset of a
metric space (Y, d). We define extY ϕ : Y → [0,∞] by

(4.5) (extY ϕ)(y) = lim
ε↘0

M(ϕ�(X ∩ Uε(y))) for y ∈ Y ,

where Uε(y) = {x ∈ Y : d(x, y) < ε}. Observe that M(ϕ�(X ∩ Uε(y))) is a nonde-
creasing function of ε so the limit is always well-defined. Note that the metric on Y
is mentioned strictly for the sake of convenience and that the definition of extY ϕ
does not depend on the choice of d. Note also that the image of extY ϕ is contained
in the closure of ϕ(X) ∪ {0}.

Lemma 4.8. Let X be a subset of a space Y and let ϕ : X → [0,∞] be a function.
Put ψ = extY ϕ.

(a) Then ψ is a USC function and ψ�Y \X = 0. If ϕ is USC then ψ extends
ϕ and the graph of ϕ is dense in the graph of ψ�X.

(b) If ϕ is a bounded Lelek function, dimY = 0, and X is dense in Y , then

Gϕ
0 is dense in Lψ

0 (thus ψ is also a Lelek function).
(c) If dimX = 0 and F is a countable collection of closed subsets of X, then

there is a zero-dimensional compactification C of X such that (extC ϕ)�F
= extF (ϕ�F ) for each F ∈ F, where F is the closure in C.

Proof. It is clear that the closure of ϕ in X × [0,∞] contains ψ�X and that
ψ�Y \X = 0. In order to prove that ψ is USC let y ∈ Y and let t > ψ(y). Then
there is an ε > 0 such that s = M(ϕ�(X ∩ Uε(y))) < t. Obviously, every element
y′ ∈ Uε(y) has the property ψ(y′) ≤ s < t. Now let ϕ be USC. If y ∈ X and
ε > 0, then since ϕ is USC there is a δ > 0 such that ϕ(x) < ϕ(y) + ε for every
x ∈ X ∩Uδ(y). Thus ϕ(y) ≤ M(ϕ�(X ∩Uδ(y))) ≤ ϕ(y)+ ε and hence ψ(y) = ϕ(y).

For point (b) let ϕ be a bounded Lelek function and hence ψ(Y ) ⊂ R
+. Let

(y, t) ∈ Lψ
0 and let ε > 0. Note that M(ϕ�(X ∩ Uε(y))) ≥ ψ(y) ≥ t so we can find



4. SEMI-CONTINUOUS FUNCTIONS 13

an x ∈ X ∩ Uε(y) with ϕ(x) > t − ε/2, where we used the assumption that X is
dense in Y . Put s = max{0, t − ε/2} thus 0 ≤ s ≤ ϕ(x) and |t − s| ≤ ε/2. Since
ϕ is Lelek there is a z ∈ X ∩ Uε(y) such that ϕ(z) > 0 and |s − ϕ(z)| < ε/2. So
(z, ϕ(z)) is a point in Gϕ

0 that is ε-close to (y, t) with respect to the max metric on

Y × R̂.
For point (c) consider a closed collection {Fi : i ∈ N} in X. We will construct

recursively a sequence B1 ⊂ B2 ⊂ · · · of countable boolean algebras consisting of
clopen subsets of X. Let B1 be the boolean algebra that is generated by some
countable clopen basis for the topology on X. Assume that Bn has been con-
structed. Let B ∈ Bn and let i ∈ N. If B ∩ Fi = ∅ then we put C(B, i) = B. If
B ∩ Fi 
= ∅ then we consider the open neighbourhood

(4.6) U = {x ∈ X : ϕ(x) < 2−n +M(ϕ�(B ∩ Fi))}

of the closed set B ∩ Fi. We now let C(B, i) be a clopen neighbourhood of B ∩ Fi

that is contained in U . We let Bn+1 be the boolean algebra that is generated by
Bn ∪ {C(B, i) : B ∈ Bn, i ∈ N}.

Let C be the Stone space that corresponds to the boolean algebra B =
⋃∞

n=1 Bn.
Note that C is a metrizable and zero-dimensional compactification of X. Let i ∈ N

and let y ∈ F i \ F . It is clear that (extF i
(ϕ�Fi))(y) ≤ (extC ϕ)(y). Let V be

a neighbourhood of y in C and let k ∈ N. We may assume that V is a basic
neighbourhood so that V ∩X = B for some B ∈ B. Let n ≥ k such that B ∈ Bn.
Since y ∈ F i we have B ∩ Fi 
= ∅ and we consider C(B, i) ∈ Bn+1. Since C(B, i) is

an element of B that contains B ∩ Fi we have that C(B, i) is a neighbourhood of
y. Consequently,

(4.7) (extC ϕ)(y) ≤ M(ϕ�C(B, i)) ≤ 2−n +M(ϕ�(B ∩ Fi))

≤ 2−k +M(ϕ�(V ∩ Fi)).

Since V and k are arbitrary we have that (extC ϕ)(y) ≤ (extF i
(ϕ�Fi))(y). �

Lemma 4.9. If ϕ, ψ : X → R
+ are USC functions such that ψ(x) ≤ ϕ(x) for

all x ∈ X, then there exists a USC function χ : X → R
+ such that χ ≤ ϕ − ψ,

the natural bijection h from the graph of ϕ to the graph of χ is continuous, the
restriction h�Gϕ

ψ : Gϕ
ψ → Gχ

0 is a homeomorphism, and for every Y ⊂ X such that
ϕ�Y is a Lelek function with bias ψ�Y we have that χ�Y is a Lelek function.

Proof. Consider the homeomeomorphism α : [0,∞) → [0, 1) that is defined
by the rule α(t) = t/(t+ 1). Note that the derivative α′(t) ≤ 1 so for each x ∈ X
we have α(ϕ(x))− α(ψ(x)) ≤ ϕ(x) − ψ(x). Thus for the purpose of this proof we
may assume that ϕ and ψ are functions into the interval [0, 1). Let X 
= ∅, let d be
a metric on X and let Uε(x) denote the open ε-neighbourhood of x ∈ X. Let ρ be
the corresponding max metric on X × [0, 1): ρ((x, t), (y, s)) = max{d(x, y), |t− s|}.
Consider the set A = {(x, t) : 0 ≤ t ≤ ψ(x)}. Since ψ is USC we have that A is
a closed subset of X × [0, 1). Define for x ∈ X, χ(x) = ϕ(x)ρ((x, ϕ(x)), A). Note
that ρ((x, ϕ(x)), A) ≤ ϕ(x)− ψ(x) thus χ(x) ≤ ϕ(x)(ϕ(x)− ψ(x)) ≤ ϕ(x)− ψ(x).
Clearly, the rule h(x, ϕ(x)) = (x, χ(x)) defines a continuous bijection from the
graph of ϕ to the graph of χ.

First we verify that ξ(x) = ρ((x, ϕ(x)), A) is a USC function which implies that
χ is USC as the product of two nonnegative USC functions. Let t be such that
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ξ(x) < t and put ε = 1
2 (t− ξ(x)). Select an (a, s) ∈ A such that

(4.8) ρ((x, ϕ(x)), (a, s)) = max{d(x, a), |ϕ(x)− s|} < ξ(x) + ε.

Since ϕ is USC there is a δ ∈ (0, ε) such that ϕ(y) < ϕ(x)+ε whenever d(x, y) < δ.
Let y be arbitrary such that d(x, y) < δ. Then by (4.8),

(4.9) d(a, y) ≤ d(a, x) + d(x, y) < ξ(x) + ε+ δ < t.

If s ≥ ϕ(y) then ρ((y, ϕ(y)), (a, ϕ(y)) = d(y, a) < t and since (a, ϕ(y)) ∈ A we have
ξ(y) < t. If s < ϕ(y) then by (4.8), 0 < ϕ(y) − s = ϕ(y) − ϕ(x) + ϕ(x) − s <
ε+ ξ(x) + ε = t. So by (4.9), ρ((y, ϕ(y)), (a, s)) < t and consequently ξ(y) < t.

Obviously, ϕ(x) = ψ(x) implies (x, ϕ(x)) ∈ A and hence χ(x) = 0. If χ(x) = 0
then ϕ(x) = 0 = ψ(x) or ξ(x) = 0. If ξ(x) = 0 then (x, ϕ(x)) ∈ A because A
is closed. Thus ϕ(x) ≤ ψ(x) which means that ϕ(x) = ψ(x). We have shown
that X ′ = {x ∈ X : χ(x) > 0} = {x ∈ X : ϕ(x) > ψ(x)} and hence h�Gϕ

ψ is a

(continuous) bijection from Gϕ
ψ to Gχ

0 .

In order to show that h−1�Gχ
0 is continuous consider an x ∈ X ′ and a basic

neighbourhood B of (x, ϕ(x)) in Gϕ
ψ. Since ϕ is USC we may assume that B =

(Uε(x) × (t, 1)) ∩ Gϕ
ψ for some ε > 0 and t ∈ (0, ϕ(x)). Put s =

√
t/ϕ(x) and

note that s < 1. Since ξ is USC we can find a δ ∈ (0, ε) such that for each
y ∈ Uδ(x) we have ξ(y) < ξ(x)/s. Let (y, χ(y)) be an arbitrary element of V =
(Uδ(x) × (sχ(x), 1)) ∩ Gχ

0 and note that V is an open neighbourhood of (x, χ(x)).
We have

(4.10) ϕ(y) =
χ(y)

ξ(y)
>

sϕ(x)ξ(x)

ξ(y)
> s2ϕ(x) = t

and hence h−1(V ) ⊂ B.
Let Y ⊂ X be such that ϕ�Y is a Lelek function with bias ψ�Y . First, note

that Y ′ = {x ∈ Y : χ(x) > 0} = Y ∩ X ′ = {x ∈ Y : ψ(x) < ϕ(x)} is dense
in Y . Now consider an ε > 0, an x ∈ Y ′, and a t such that 0 ≤ t ≤ χ(x).
Define the continuous map α : X × [0, 1) → [0, 1) by α(x, s) = sρ((x, s), A). Since
α(x, ψ(x)) = 0 and α(x, ϕ(x)) = χ(x) we can find an s ∈ [ψ(x), ϕ(x)] with α(x, s) =

t. Since Gϕ�Y ′

ψ�Y ′ is dense in Lϕ�Y ′

ψ�Y ′ there is a y ∈ Y ′ such that d(y, x) < ε and

|χ(y)− t| = |α(y, ϕ(y))− α(x, s)| < ε. So (x, t) and (y, χ(y)) are ε-close. �

Lemma 4.10. Let X and Z be spaces such that Z is a witness to the almost
zero-dimensionality of X. Then the union of the topologies on X and Z is a basis
for a topology T on Z such that the given topology on Z witnesses the almost zero-
dimensionality of (Z,T).

Note that X is an open subspace of (Z,T) and that T is zero-dimensional at
every point of Z \X.

Proof. Note that X is a subset but not necessarily a subspace of Z. Let B1

and B2 be countable bases for the topologies on X and Z, respectively. Since B∩X
is open in X whenever B ∈ B2 we have that B1∪B2 is a basis for the topology T on
Z and that X is an open subspace of (Z,T). Since basic neighbourhoods of points
x ∈ Z \X are elements of B2 and dimZ ≤ 0 we have that T is zero-dimensional at
x. Note that T is Hausdorff because it contains B2.

We now verify that Z witnesses the almost zero-dimensionality of (Z,T). If
x ∈ Z \X then basic neighbourhoods of x with respect to T can be chosen to be
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clopen subsets of Z. If x ∈ X then by assumption there is a neighbourhood basis
for x in the open set X such that every element is closed in Z. Note that this result
also implies that (X,T) is a regular space and hence it is separable metric because
there is a countable basis. �

Lemma 4.11. Let X be a space and let Z be a zero-dimensional space that
contains X as a subset (but not necessarily as a subspace). Then the following
statements are equivalent:

(1) Z is a witness to the almost zero-dimensionality of X and
(2) there exists a USC function ϕ : Z → I such that ϕ−1(0) = Z \ X and

the map h : X → Gϕ
0 that is defined by the rule h(x) = (x, ϕ(x)) is a

homeomorphism.

In this lemma it does not matter whether the codomain of ϕ is I or R+, but in
the applications it is useful to have a bounded ϕ.

Proof. To prove (2) ⇒ (1) assume (2). Consider the projection π1 : Z×I → Z.
If O is open in Z then O ∩X = (π1 ◦ h)−1(O) is open in X. Let x ∈ X and let U
be a neighbourhood of x in X and note that ϕ(x) > 0 because h(X) = Gϕ

0 . Then
h(U) is a neighbourhood of h(x) in Gϕ

0 thus there is a neighbourhood V of x in Z
and an ε ∈ (0, ϕ(x)) such that Gϕ

0 ∩ (V × [ϕ(x) − ε, ϕ(x) + ε]) ⊂ h(U). Since ϕ
is USC we can find a (closed) neighbourhood W of x in Z such that W ⊂ V and

ϕ(y) < ϕ(x) + ε for all y ∈ W . Then W̃ = {y ∈ W : ϕ(y) ≥ ϕ(x) − ε} is closed

in Z because ϕ is USC. If y ∈ W̃ then ϕ(y) ≥ ϕ(x) − ε > 0 so h(y) ∈ Gϕ
0 . Also

y ∈ W and hence ϕ(y) < ϕ(x)+ε which implies that h(y) ∈ h(U) and y ∈ U . Thus

we have that W̃ is contained in U . Note that h(W̃ ) = Gϕ
0 ∩ (W × [ϕ(x)− ε, 1]) is

a neighbourhood of h(x) in Gϕ
0 thus W̃ is a neighbourhood of x in X. We have

verified that Z witnesses the almost zero-dimensionality of X.
To prove (1) ⇒ (2) assume (1). With Lemma 4.10 let T be the topology on Z

that is generated by the topologies on X and Z. According to Lemma 3.5 we may
assume that the space Z̃ = (Z,T) is the set of end-points of some R-tree T and
that Z = eTw. Let ρ be a convex metric on T and let p ∈ T. Define ϕ : Z → (0, 1]
by ϕ(x) = 1/(1 + ρ(p, x)) for x ∈ eTw and note that according to Lemma 3.2 the

function ϕ is USC and Z̃ is homeomorphic to the graph of ϕ. Thus we have a
homeomorphism f : Z̃ → Gϕ

0 that is given by the rule f(x) = (x, ϕ(x)).
We define the function ψ : Z → [0, 1] by

(4.11) ψ(x) = extZ(ϕ�Z \X).

According to Lemma 4.8 ψ is a USC extension of ϕ�Z \ X. If x ∈ X then since

X is an open subspace of Z̃ and ϕ is USC there is a neighbourhood U of x in Z
and a t ∈ (0, ϕ(x)) such that (U × (t,∞)) ∩ Gϕ

0 ⊂ f(X). Consequently, ϕ(y) ≤ t
for each y ∈ U ∩X and we have that ψ(x) ≤ t < ϕ(x). If x ∈ Z \X then ϕ(x) ≤
M(ϕ�(Uε(x) \X)) for each ε > 0 and hence ϕ(x) ≤ ψ(x) ≤ ϕ(x). We have shown
that f(X) = Gϕ

ψ. With Lemma 4.9 we can find a USC function χ : Z → I such

that {x ∈ Z : χ(x) > 0} = {x ∈ Z : ψ(x) < ϕ(x)} = X and g(x, ϕ(x)) = (x, χ(x))
defines a homeomorphism g from Gϕ

ψ to Gχ
0 . We define h = g ◦ f and note that it

is the required homeomorphism from X to Gχ
0 . �
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Remark 4.12. Let T be a witness to the almost zero-dimensionality of some
space X and put Z = (X,T). We discuss the relation between the Borel complexi-
ties of X and Z. According to Lemma 4.11 we may assume that X is the graph of
some USC function ϕ : Z → I. Let Πα and Σα stand for the productive respectively
additive absolute Borel class of rank α. For instance, Π2 and Σ2 correspond to the
complete respectively σ-compact spaces.

Note that L(ϕ) = {(x, r) ∈ Z × R : r ≤ ϕ(x)} is closed in Z × R because ϕ is
USC. Then X = L(ϕ)\

⋃∞
n=0 L(ϕ−2−n) is a Gδ-subset of Z× I. Thus if Z belongs

to Πα for α ≥ 2 or Σα for α ≥ 3, then X belongs to the same Borel class.
Now let C be a zero-dimensional compactification of Z and let ψ = extC ϕ

extend ϕ with Lemma 4.8.a. According to Remark 2.5 applied to C as a witness to
the graph of ψ we have that Z ∈ Πα+1 whenever X ∈ Πα and Z ∈ Σα+1 whenever
X ∈ Σα. For infinite α we even have that Z belongs to the same Borel class as X.

Definition 4.13. If ϕ : X → R
+ and ψ : Y → R

+, then ϕ× ψ : X × Y → R
+

is defined by (ϕ× ψ)(x, y) = ϕ(x)ψ(y).

Lemma 4.14. If ϕ : X → R
+ and ψ : Y → R

+ are USC functions, then ϕ× ψ

is USC as well and the natural map h : Gϕ
0 ×Gψ

0 → Gϕ×ψ
0 is a homeomorphism. If,

moreover, ϕ is a Lelek function and Y ′ = {y ∈ Y : ψ(y) > 0} is dense in Y , then
ϕ× ψ is a Lelek function as well.

Proof. Since ϕ and ψ are nonnegative it is obvious that ϕ × ψ is USC. The

map h is given by h(x, t, y, s) = (x, y, ts) for (x, t) ∈ Gϕ
0 and (y, s) ∈ Gψ

0 . It
is obvious that h is a continuous bijection. It remains to show that h−1 is con-
tinuous. Let x ∈ X and y ∈ Y be such that ϕ(x) > 0 and ψ(y) > 0. Let
x1, x2, . . . ∈ X and y1, y2, . . . ∈ Y be such that limi→∞ xi = x, limi→∞ yi = y, and
limi→∞ ϕ(xi)ψ(yi) = ϕ(x)ψ(y). By the USC property we have lim supi→∞ ϕ(xi) ≤
ϕ(x) and lim supi→∞ ψ(yi) ≤ ψ(y). Since ψ(y) > 0 we can write lim supi→∞ ψ(yi)/
ψ(y) ≤ 1. Observe that

(4.12)

lim sup
i→∞

ϕ(xi) ≤ ϕ(x) = lim
i→∞

ϕ(xi)ψ(yi)

ψ(y)

≤ lim inf
i→∞

ϕ(xi) · lim sup
i→∞

ψ(yi)

ψ(y)

≤ lim inf
i→∞

ϕ(xi).

So we have limi→∞ ϕ(xi) = ϕ(x) and by symmetry limi→∞ ψ(yi) = ψ(y).
Now, let ϕ be a Lelek function and let Y ′ be dense in Y . Then X ′ = {x ∈

X : ϕ(x) > 0} is also dense. Consequently, X ′ × Y ′ = {(x, y) : (ϕ × ψ)(x, y) > 0}
is dense in X × Y . Let (x, y) ∈ X ′ × Y ′, let t ∈ [0, ϕ(x)ψ(y)], let U × V be a
neighbourhood of (x, y) in X ′ × Y ′, and let ε > 0. Since 0 ≤ t/ψ(y) ≤ ϕ(x) we
can find an x′ ∈ U such that |ϕ(x′) − (t/ψ(y))| < ε/ψ(y). We then have that
(x′, y) ∈ U × V and |(ϕ× ψ)(x′, y)− t| < ε. In conclusion, we have that ϕ× ψ is a
Lelek function. �

The following result is already implicitly contained in the papers [38, 31].

Theorem 4.15. The following statements about a space X are equivalent:

(1) X is almost zero-dimensional,
(2) X is homeomorphic to the graph of some USC or LSC function with a

domain of dimension at most 0,
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(3) X is imbeddable in complete Erdős space Ec, and
(4) X is imbeddable in Erdős space E.

Proof. (3) ⇒ (4) follows from the fact Ec ⊂ E.
(4) ⇒ (1) follows from the fact that almost zero-dimensionality is hereditary.
(1) ⇒ (2) follows from Lemma 4.11.
Assume (2) and let ϕ : Z → (0, 1) be USC such that dimZ = 0. Let K be

a zero-dimensional compactification of Z and consider extK ϕ : K → I. Note that
{x ∈ K : (extK ϕ)(x) > 0} contains Z and is therefore dense in K. Let C be a
Cantor set and let ψ : C → I be a Lelek function. We may assume that there
is a p ∈ C such that ψ(p) = 1. Define χ : K × C → I by χ = (extK ϕ) × ψ.

Note that χ(x, p) = (extK ϕ)(x) = ϕ(x) for x ∈ X so Gϕ
0 and G

χ�Z×{p}
0 are

identical topological spaces. We have that K ×C is a Cantor set and according to
Lemma 4.14, χ is a Lelek function. So according to Kawamura, Oversteegen, and
Tymchatyn [31] Gχ

0 is homeomorphic to Ec. We have shown that (2) ⇒ (3). �
In contrast, the class of totally disconnected spaces has no universal element,

see Pol [39].
In [1, 2] Abry and Dijkstra introduce the notion of an almost n-dimensional

space as an extension of almost zero-dimensionality. They prove an n-dimensional
version of Theorem 4.15 that includes the construction of higher dimensional ana-
logues of complete Erdős space that are universal spaces for almost n-dimensionality.

Remark 4.16. The following spaces have a natural representation as in point
(2) of the theorem. Let X be a subset of �p such that X is zero-dimensional in the
topology of coordinate-wise convergence and call X equipped with this topology Z.
The norm function N(x) = ‖x‖ is LSC on Z and since the norm function together
with the coordinate projections generate the norm topology on �p we have that X
is homeomorphic to the graph of N�Z.

Corollary 4.17. Every almost zero-dimensional space has an almost zero-
dimensional completion.

Note that if an almost zero-dimensional space X is σ-compact, then dimX ≤ 0.

Remark 4.18. Let X be an almost zero-dimensional space. Then we can
identify X with the graph of an LSC function ϕ : Z → R with zero-dimensional
domain Z. Let {Ai : i ∈ N} be a countable collection of C-sets in X and let
π : Z × R → Z be the projection. We show that we may assume without loss of
generality that every π(Ai) is closed in Z. Write every Ai =

⋂∞
j=1Cij , where every

Cij is clopen in X. Let B be the collection of clopen subsets of Z. Strengthen the
topology on Z by using

(4.13) B′ = B ∪ {π(Cij), Z \ π(Cij) : i, j ∈ N}
as a subbasis. Note that now every π(Ai) is closed in Z, that Z is still zero-
dimensional and separable metric, that ϕ is still LSC, and that the topology on X
is unchanged.

Theorem 4.19. A nonempty subset of an almost zero-dimensional space X is
a retract of X if and only if it is a C-set in X.

Proof. Let r : X → A be a retraction and let x be an arbitrary point in X \A.
Thus r(x) 
= x and hence by almost zero-dimensionality there is a clopen C in X
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with x ∈ C and r(x) /∈ C. Consider the clopen neighbourhood D = C \ r−1(C) of
x and note that D ∩ A = ∅.

For the converse, let A be a nonempty C-set of X. We may by Theorem 4.15
and Remark 4.18 assume that X is the graph of an LSC function ϕ : Z → I such
that Z is zero-dimensional and the image of A under the projection π : Z × I → Z
is closed in Z. Put A′ = π(A). Let d be a metric on Z and let ρ be a corresponding
metric on Z × I: ρ((x, s), (y, t)) = d(x, y) + |s − t|. Since dimZ = 0 we can
construct a pairwise disjoint collection U of nonempty clopen subsets of Z such
that

⋃
U = Z \ A′ and diamU < d(U,A′) for every U ∈ U. Select for every U ∈ U

a yU ∈ U such that

(4.14) ϕ(yU ) < inf{ϕ(x) : x ∈ U}+ d(U,A′)

and put pU = (yU , ϕ(yU )) ∈ X. Choose for every U ∈ U a ξU ∈ A such that

(4.15) ρ(pU , ξU ) ≤ 2ρ(pU , A).

We define the retraction r : X → A by

(4.16) r(x, ϕ(x)) =

{
(x, ϕ(x)), if x ∈ A′;

ξU , if x ∈ U ∈ U.

All we need to show is that r is continuous. First note that r�A and r�Z \ A
are obviously continuous. So consider a sequence x1, x2, . . . in Z \ A′ such that
limi→∞ xi = x ∈ A′ and limi→∞ ϕ(xi) = ϕ(x). For every i ∈ N there is a (unique)
U(i) ∈ U with xi ∈ U(i). We have for each i ∈ N,

(4.17)

d(yU(i), x) ≤ d(yU(i), xi) + d(xi, x)

≤ diamU(i) + d(xi, x)

≤ d(U(i), A′) + d(xi, x)

≤ 2d(xi, x)

thus limi→∞ yU(i) = x. Since ϕ is LSC we have

(4.18) lim inf
i→∞

ϕ(yU(i)) ≥ ϕ(x).

On the other hand,

(4.19)

lim sup
i→∞

ϕ(yU(i)) ≤ lim sup
i→∞

(ϕ(xi) + d(U(i), A′))

≤ ϕ(x) + lim
i→∞

d(xi, x)

= ϕ(x).

Thus we have limi→∞ pU(i) = (x, ϕ(x)). Note that

(4.20)

ρ(ξU(i), (x, ϕ(x))) ≤ ρ(ξU(i), pU(i)) + ρ(pU(i), (x, ϕ(x)))

≤ 2ρ(pU(i), A) + ρ(pU(i), (x, ϕ(x)))

≤ 3ρ(pU(i), (x, ϕ(x)))

and hence limi→∞ r(xi, ϕ(xi)) = limi→∞ ξU(i) = (x, ϕ(x)), as required. �

This theorem generalizes the known result that the retracts of a zero-dimension-
al space are precisely the nonempty closed subsets. Note that a space is zero-dimen-
sional if and only if every closed set is a C-set. Thus every one-dimensional, almost
zero-dimensional space has closed subsets that are not C-sets and hence not retracts
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of the space. For Erdős space an example would be for instance the unit sphere S.
In that space every clopen set that contains the zero vector intersects S so S is no
C-set.

The following consequences of Theorem 4.19 are immediate.

Corollary 4.20. Let A be a C-set in an almost zero-dimensional space X.
Every clopen subset of A can be extended to a clopen subset of X. If B is a C-set
in A then B is also a C-set in X.

It is shown in Abry, Dijkstra, and van Mill [3] that Theorem 4.19 and Corol-
lary 4.20 are not valid in the class of totally disconnected spaces.





CHAPTER 5

Cohesion

As was mentioned in Chapter 1, Erdős [29] proved that every nonempty clopen
subset of E is has diameter at least 1. This means that every vector in E has a
neighbourhood that does not contain any nonempty clopen subsets of E. This
property of E turns out to be crucial, and we formalize it as follows.

Definition 5.1. Let X be a space and let A be a collection of subsets of X.
The space X is called A-cohesive if every point of the space has a neighbourhood
that does not contain nonempty clopen subsets of any element of A. If a space X
is {X}-cohesive then we simply call X cohesive.

Thus the prototypical examples of cohesive almost zero-dimensional spaces are
E and Ec. In fact, it follows easily from Erdős’ proof [29] that the empty set is the
only bounded clopen set in these spaces; see also Corollary 8.11. Proposition 4.4
shows that if ϕ is a Lelek function with complete domain, then Gϕ

0 is cohesive.

Remark 5.2. Let X be A-cohesive.
If O is an open subset of X then O is {O ∩A : A ∈ A}-cohesive as follows. Let

x ∈ O and let U be a neighbourhood of x in X that does not contain a nonempty
clopen subsets of any A ∈ A. Select a closed neighbourhood V of x in X that is
contained in U ∩O. If C is clopen in A∩O with A ∈ A and C ⊂ V , then C is open
in A and closed in V ∩A and hence in A as well. Also C ⊂ V ⊂ U thus C must be
empty.

If Y is any space then X × Y is {A × B : A ∈ A and B ⊂ Y }-cohesive. Let
(x, y) ∈ X × Y and select a neighbourhood U of x in X that does not contain
nonempty clopen subsets of any element of A. Let C ⊂ U×Y be a clopen subset of
A×B with A ∈ A and B ⊂ Y and assume that (a, b) ∈ C. Then C ∩ (A×{b}) is a
nonempty clopen subset of A×{b} that is also contained in U×{b}, in contradiction
to the properties of U .

In particular, the product of a cohesive space with any space is cohesive and
the concept is open hereditary.

A cohesive space is obviously at least one-dimensional at every point but it
is easily seen that the converse is not valid. However, the situation is simple for
topological groups:

Proposition 5.3. A topological group is cohesive if and only if it is not zero-
dimensional.

Proof. Let (G, ·) be a topological group that is not cohesive. Thus there is
a point x ∈ G every neighbourhood of which contains nonempty clopen subsets
of G. We may assume that x equals the unit element e. Let U be an arbitrary
neighbourhood of e and select a neighbourhood V of e such that V −1 · V ⊂ U .

21
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Then there is a nonempty clopen set C with C ⊂ V . Select x ∈ C and note that
x−1 · C is a clopen neighbourhood of e that is contained in U . Thus the group G
is zero-dimensional at e and hence a zero-dimensional space. �

It is shown by Dijkstra [18] that Proposition 5.3 cannot be extended from
topological groups to arbitrary homogeneous spaces.

A one-point connectification of a space X is a connected extension Y of the
space such that the remainder Y \X is a singleton. It was shown in [33] that the
endpoint set of the Lelek fan has a one-point connectification. The relevance of this
concept to complete Erdős space was recognized in [31], where it was proved that
the endpoint set of the Lelek fan is homeomorphic to Ec.

Proposition 5.4. If a space admits a one-point connectification, then it is
cohesive. If an almost zero-dimensional space is cohesive, then it admits a one-
point connectification.

Proof. Let X ⊂ Y such that Y \X = {a} and Y is connected. If x ∈ X let
U be a closed neighbourhood of x in Y that does not contain a. If C is a subset
of U that is clopen in X, then C is obviously a clopen subset of Y that does not
contain a. Thus C is empty.

Let X be almost zero-dimensional and cohesive. Then we can construct a
countable collection B consisting of subsets of X such that

(1) for every x ∈ X and every neighbourhood U of x there is a B ∈ B such
that x ∈ intB ⊂ B ⊂ U ,

(2) every B ∈ B is an intersection of clopen subsets of X, and
(3) every B ∈ B fails to contain nonempty clopen subsets of X.

The combination of the properties (2) and (3) is preserved under finite unions. Let
B1 and B2 satisfy both (2) and (3). Note that B1∪B2 =

⋂
{C1∪C2 : C1, C2 clopen

and B1 ⊂ C1, B2 ⊂ C2} thus B1 ∪ B2 also satisfies (2). If C is a nonempty clopen
set that is contained in B1 ∪ B2, then C is not contained in B1 and we pick an
x ∈ C \ B1. Select a clopen set D such that x /∈ D and B1 ⊂ D. Then C \D is a
clopen nonempty set that is contained in B2, a contradiction.

Consider the countable set D = {(B1, B2) ∈ B2 : B1 ⊂ intB2} and select for
every D = (B1, B2) ∈ D a continuous function fD : X → I such that fD(B1) ⊂ {1}
and fD(X \B2) ⊂ {0}. Let h be the Alexandroff-Urysohn imbedding of X into the
Hilbert cube ID, given by h(x)D = fD(x). Let Y = h(X)∪{0}, where 0 represents
the element of ID with all coordinates equal to 0. Let C be a clopen subset of Y
that does not contain 0. Then there exist a finite subset {D1, . . . , Dn} of D such
that the set h−1(C) is contained in

⋃n
i=1 f

−1
Di

((0, 1]). Thus the clopen set h−1(C)
is contained in the union of n elements of B and must be empty. Consequently,
C = ∅ and Y is connected. �

It is shown by Abry, Dijkstra, and van Mill [4] that there are totally discon-
nected cohesive spaces that do not admit a one-point connectification.

Remark 5.5. If X is almost zero-dimensional and cohesive and T is a witness
topology on X, then as in the proof of Proposition 5.4 X has a countable covering
B consisting of sets that are closed in (X,T) such that no element of B contains
nonempty sets that are clopen in X. Observe that since T is zero-dimensional every
element of B has empty interior in (X,T). Thus any witness topology on a cohesive
space is of the first category.
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Erdős space is obviously an Fσδ-subset of Hilbert space thus it is an (absolute)
Fσδ-space. Since {z ∈ E : |zi| ≤ 2−i for i ∈ ω} is a closed copy of Qω in E we have
that E is an essential Fσδ-space. In fact, it follows that the empty set is the only
open subset of E that is a Gδσ-space. Recall that a space is homeomorphic to Q

ω

if and only if it is a zero-dimensional, first category Fσδ-space with the property
that no nonempty open subset is a Gδσ-space, see Steel [41] or van Engelen [28,
Theorem A.2.5]. The following proposition follows if we combine these observations
with Remarks 4.12 and 5.5.

Proposition 5.6. Let T be a witness topology on E. Then (E,T) is a Gδσδ-
space but no Gδσ-space. If T is an Fσδ-topology then (E,T) is homeomorphic to
Q

ω.

Remark 5.7. Let X be almost zero-dimensional and consider the (zero-dimen-
sional) topology T that is generated by all clopen subsets of X. The following
observation shows why this topology is in general not usable as a witness topology.
If X is cohesive then the space (X,T) has uncountable character at every point.

Let x ∈ X and let {Ui : i ∈ N} be a collection of clopen neighbourhoods of
x. Let B = {Bi : i ∈ N} be a collection that satisfies conditions (1)–(3) as in the
proof of Proposition 5.4. We may assume that B1 contains x. For every n ∈ N

we can find a point an ∈ Un \
⋃n

i=1 Bi. Let Cn be a clopen subset of X such that
an /∈ Cn and

⋃n
i=1 Bi ⊂ Cn. We define V =

⋂∞
n=1 Cn and note that V is a closed

set that contains B1 and hence x. If y ∈ V then there is an n ∈ N such that Bn

is a neighbourhood of y in X. Observe that Bn ⊂ Ck for each k ≥ n and hence
Bn∩

⋂n−1
i=1 Ci is a neighbourhood of y that is contained in V . Thus we have that V

is a clopen neighbourhood of x. Note that for any n, an /∈ V and hence V does not
contain Un, proving that {Un : n ∈ N} is no neighbourhood basis of x in (X,T).

Lemma 5.8. Let ϕ be a USC function from a zero-dimensional space X to R
+

and let A be a collection of subsets of X such that ∅ /∈ A, Gϕ
0 is {Gϕ�A

0 : A ∈ A}-
cohesive, and A′ = {x ∈ A : ϕ(x) > 0} is dense in A for each A ∈ A. Then there
exists a USC function ψ : X → R

+ such that ψ ≤ ϕ, Gϕ
0 = Gϕ

ψ, and for each A ∈ A

we have that ϕ�A is a Lelek function with bias ψ�A.

Proof. Let d be a metric onX and let Uε(x) denote the open ε-neighbourhood
of x ∈ X. We define for x ∈ X and ε > 0 the following subinterval of R+:

(5.1)
Jε(x) = {t ∈ R

+ : for each A ∈ A, the set Uε(x)× (t,∞)) ∩Gϕ
0

contains no nonempty clopen subsets of Gϕ�A
0 }.

Since ϕ is USC there exists for each x ∈ X and t > ϕ(x) an ε > 0 such that
(Uε(x) × (t,∞)) ∩ Gϕ

0 = ∅ and hence t ∈ Jε(x). Note also that if ε < δ then
Jδ(x) ⊂ Jε(x). Consequently,

(5.2) ψ(x) = lim
ε↘0

inf Jε(x)

is a well-defined function from X to R
+ with the property ψ(x) ≤ ϕ(x) for all

x ∈ X.
We verify that Gϕ

ψ = Gϕ
0 which is equivalent to the statement {x ∈ X : ϕ(x) >

0} = {x ∈ X : ψ(x) < ϕ(x)}. Let x ∈ X so be such that ϕ(x) > 0. By cohesion
and upper semi-continuity there is an ε > 0 such that (Uε(x)× (ϕ(x)− ε,∞)∩Gϕ

0

contains no nonempty clopen subset of Gϕ�A
0 for any A ∈ A. This means that
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ϕ(x) − ε ∈ Jε(x) and hence ψ(x) ≤ inf Jε(x) ≤ ϕ(x) − ε < ϕ(x). Since the other
inclusion follows immediately from the fact that 0 ≤ ψ we are done.

To prove that ψ is USC let ψ(x) < t. Then there is an ε > 0 such that

(Uε(x)× (t,∞))∩Gϕ
0 contains no nonempty clopen subsets of Gϕ�A

0 for any A ∈ A.
So for each y ∈ Uε(x) we have ψ(y) ≤ t.

Let A ∈ A. It remains to verify that ϕ�A is a Lelek function with bias ψ�A.
Since A′ is dense in A and equal to {x ∈ A : ψ(x) < ϕ(x)} it suffices to show that

Gϕ�A
ψ�A is dense in Lϕ�A′

ψ�A′ . Let x ∈ A′, let t ∈ (ψ(x), ϕ(x)), and let ε > 0. There is

a δ < ε such that Y = (Uδ(x)× (t,∞)) ∩Gϕ
0 contains no nonempty clopen subsets

of Gϕ�A
0 . Select a clopen neighbourhood C of x in X that is contained in Uδ(x)

and consider the set V = (C × (t,∞)) ∩ Gϕ�A
0 . Since V is a nonempty subset of

both Y and Gϕ�A
0 we have that it has boundary points in Gϕ�A

0 . These boundary
points must be of the form (y, t) with ϕ(y) = t > 0 and y ∈ C ∩ A. Consequently,

(y, ϕ(y)) is an element of Gϕ�A
0 that is sufficiently close to (x, t). �

If we combine Lemma 5.8 with Lemma 4.9, then we obtain

Lemma 5.9. Let ϕ be a USC function from a zero-dimensional space X to R
+

and let A be a collection of subsets of X such that ∅ /∈ A, Gϕ
0 is {Gϕ�A

0 : A ∈ A}-
cohesive, and A′ = {x ∈ A : ϕ(x) > 0} is dense in A for each A ∈ A. Then there
exists a USC function χ : X → R

+ such that χ ≤ ϕ, the natural bijection h from
the graph of ϕ to the graph of χ is continuous, the restriction h�Gϕ

0 : G
ϕ
0 → Gχ

0 is
a homeomorphism, and for every A ∈ A we have that χ�A is a Lelek function.

Lemmas 5.7, 5.8, 5.9, and Remark 5.10 of the preprint version are now Lem-
mas 4.8, 4.9, 4.11, and Remark 4.12.

Proposition 5.10. If E is a nonempty, cohesive, almost zero-dimensional
space, then there is a Lelek function χ such that E is homeomorphic to Gχ

0 and
hence E admits a dense imbedding in Ec.

Proof. Assume that E is such a space. With Theorem 4.15 we can find a
USC function ϕ : X → I such that E is homeomorphic to Gϕ

0 and dimX = 0.
Since E is cohesive we can find with Lemma 5.9 a Lelek function χ : X → I such
that Gχ

0 is homeomorphic to Gϕ
0 . Let K be a zero-dimensional compactification

of X and note that Lemma 4.8 implies that extK χ is a Lelek function as well
such that Gχ

0 is a dense subset of GextK χ
0 . Since the domain of extK χ is compact

we have according to Kawamura, Oversteegen, and Tymchatyn [31] that Ec is

homeomorphic to GextK χ
0 . �

Remark 5.11. The cohesion concept also plays an important role in character-
izing complete Erdős space. For instance, the proof above can easily be adapted to
show that a nonempty space E is homeomorphic to Ec if and only if E is cohesive
and there is a topology T on E that witnesses the almost zero-dimensionality of E
such that every point in E has a neighbourhood that is compact in (E,T). This
and other characterizations of Ec can be found in Dijkstra and van Mill [22].

Theorems 5.13 and 5.16 of the preprint version are now Theorems 4.15 and
4.19.
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Unknotting Lelek functions

Let ϕ : X → R
+ and ψ : Y → R

+ be functions. We say that ϕ and ψ are m-
equivalent functions if there exists a homeomorphism h : X → Y and a continuous
map α : X → (0,∞) such that ψ◦h = α·ϕ. Note that this is an equivalence relation

and that if ϕ and ψ are m-equivalent, then Gϕ
0 is homeomorphic to Gψ

0 . Note also
that a function that is m-equivalent to a Lelek function is also a Lelek function.

In this section we will prove a Uniqueness Theorem and a Homeomorphism
Extension Theorem for Lelek functions with compact domain. Our Uniqueness
Theorem is essentially a controlled version of the Characterization Theorem of the
Lelek fan that is due to Charatonik [14] and Bula and Oversteegen [12].

Lemma 6.1. Let ϕ : C → R
+ and ψ : D → R

+ be Lelek functions with C and D
compact metric spaces. If M(ϕ) = M(ψ) and ε > 0, then there is a clopen partition
U of C and a homeomorphism h : C → D such that meshU < ε, mesh h[U] < ε,
and for each U ∈ U,

(6.1)

∣
∣
∣
∣log

M(ψ ◦ h�U)

M(ϕ�U)

∣
∣
∣
∣ < ε.

Proof. As noted in Remark 4.6 C and D must be Cantor sets. Since ϕ and
ψ are USC with compact domains we have ϕ(a) = M(ϕ) = M(ψ) = ψ(b) for some
a ∈ C, b ∈ D. Select clopen partitions A = {A0, . . . , Am} and B = {B0, . . . , Bn}
of C respectively D such that a ∈ A0, b ∈ B0, meshA < ε and meshB < ε. For
i ∈ {1, . . . ,m} the Lelek property allows us to select distinct points bi ∈ B0 \ {b}
(that approximate b) such that

(6.2)

∣
∣
∣
∣log

ψ(bi)

M(ϕ�Ai)

∣
∣
∣
∣ < ε/2.

Choose disjoint clopen sets V1, . . . , Vm in D such that bi ∈ Vi ⊆ B0 \ {b} and

(6.3) log
M(ψ�Vi)

ψ(bi)
∈ [0, ε/2)

by upper semi-continuity. Note that

(6.4)

∣
∣
∣
∣log

M(ψ�Vi)

M(ϕ�Ai)

∣
∣
∣
∣ ≤

∣
∣
∣
∣log

M(ψ�Vi)

ψ(bi)

∣
∣
∣
∣+

∣
∣
∣
∣log

ψ(bi)

M(ϕ�Ai)

∣
∣
∣
∣ < ε.

Conversely, we can find disjoint clopen sets U1, . . . , Un contained in A0 \ {a} with

(6.5)

∣
∣
∣
∣log

M(ψ�Bi)

M(ϕ�Ui)

∣
∣
∣
∣ =

∣
∣
∣
∣log

M(ϕ�Ui)

M(ψ�Bi)

∣
∣
∣
∣ < ε.

Define U = {A1, . . . , Am, U1, . . . , Un, A0 \
⋃n

i=1 Ui}. Let h : C → D be a home-
omorphism with h(Ai) = Vi and h(Uj) = Bj for 1 ≤ i ≤ m, 1 ≤ j ≤ n and
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h(A0 \
⋃n

i=1 Ui) = B0 \
⋃m

i=1 Vi. Note that

(6.6) log
M(ψ�B0 \

⋃m
i=1 Vi)

M(ϕ�A0 \
⋃n

i=1 Ui)
= log

ψ(b)

ϕ(a)
= 0,

so with (6.4) and (6.5) the lemma is proved. �

Remark 6.2 of the preprint version is now Remark 5.2.

Theorem 6.2 (Uniqueness). If ϕ : C → R
+ and ψ : D → R

+ are Lelek func-
tions with C and D compact and if t > | log(M(ϕ)/M(ψ))|, then there are a home-
omorphism h : C → D and a continuous α : C → (0,∞) such that ψ ◦ h = α·ϕ and
M(log ◦ α) < t.

Proof. Let ε = t − | log(M(ψ)/M(ϕ))| > 0 and select metrics on C and D
that are bounded by 1. We construct by recursion sequences of clopen partitions
U0,U1, . . . of C and homeomorphisms h0, h1, . . . from C to D for every n ∈ ω,

(1) if n ≥ 1 then Un refines Un−1,
(2) meshUn ≤ 2−n,
(3) meshhn[Un] ≤ 2−n,
(4) if n ≥ 1 then hn(U) = hn−1(U) for each U ∈ Un−1, and
(5) if n ≥ 1, U ∈ Un−1, V ∈ Un such that V ⊂ U , then | log(γV /γU )| < ε2−n,

where

(6.7) γU =
M(ψ ◦ hn−1�U)

M(ϕ�U)
, γV =

M(ψ ◦ hn�V )

M(ϕ�V )
.

Let h0 : C → D be some homeomorphism and put U0 = {C}. Note that the
induction hypotheses are trivially satisfied for n = 0. Assume now that hn and Un

have been constructed for some n ∈ ω. Let U ∈ Un and note that M(γUϕ�U) =
M(ψ�hn(U)) thus we may apply Lemma 6.1 to the pair γUϕ�U and ψ�hn(U) to
produce a clopen partition VU of U and a homeomorphism fU : U → hn(U) such
that meshVU ≤ 2−n−1, mesh fU [VU ] ≤ 2−n−1, and

(6.8)

∣
∣
∣
∣log

M(ψ ◦ fU�V )

M(γUϕ�V )

∣
∣
∣
∣ < ε2−n−1

for each V ∈ VU . Define

(6.9) Un+1 =
⋃

U∈Un

VU and hn+1 =
⋃

U∈Un

fU .

Let V ∈ VU and note that

(6.10)
γV
γU

=
M(ψ ◦ hn+1�V )

γUM(ϕ�V )
=

M(ψ ◦ fU�V )

M(γUϕ�V )

thus hypothesis (5) is satisfied if one also uses formula (6.8). The other induction
hypotheses are trivially satisfied and the induction is complete.

Obviously, h = limn→∞ hn is a homeomorphism C → D. Define for n ≥ 0 the
continuous function αn : C → (0,∞) by

(6.11) αn(x) = γU for x ∈ U ∈ Un.

Note that α0(x) = M(ψ)/M(ϕ) and that

(6.12) | log(αn(x)/αn−1(x))| < ε2−n
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for each x ∈ C and n ≥ 1. Thus log ◦α0, log ◦α1, . . . is a uniform Cauchy sequence
of continuous functions into R and α = limn→∞ αn : C → (0,∞) is well-defined and
continuous. We have

(6.13) | logα(x)| < | logα0(x)|+
∞∑

n=1

ε2−n = | log(M(ψ)/M(ϕ))|+ ε = t

for all x ∈ C. Now, let x ∈ C and select for each n a Un ∈ Un with x ∈ Un. Since
hn(Un) = hk(Un) for all k > n we have h(x) ∈ hn(Un). By upper semi-continuity
and diamUn ≤ 2−n, diamhn(Un) ≤ 2−n we have limn→∞ M(ϕ�Un) = ϕ(x) and
limn→∞ M(ψ◦hn�Un) = ψ(h(x)). Thus by (6.11) and (6.7) we have for each x ∈ C,

(6.14)

α(x)ϕ(x) = lim
n→∞

αn(x)M(ϕ�Un)

= lim
n→∞

γUn
M(ϕ�Un)

= lim
n→∞

M(ψ ◦ hn�Un)

= ψ(h(x)),

as required. �

Proposition 6.3 of the preprint version is now Proposition 5.3.

Lemma 6.3. Let ϕ, ψ : C → R
+ be Lelek functions with C compact. Let A

be a nonempty closed subset of C such that ϕ�A = ψ�A, {x ∈ A : ϕ(x) > 0} is

dense in A, and Gϕ�A
0 is nowhere dense in both Gϕ

0 and Gψ
0 . If t is a real number

with t > | log(M(ψ)/M(ϕ))|, then there exist a homeomorphism h : C → C and a
continuous map α : C → (0,∞) such that h�A = idA, α�A = 1A, ψ ◦ h = α·ϕ, and
M(log ◦ α) < t.

Proof. Let d be a metric on C with diamC < 1. We construct a sequence
U0,U1, . . . of clopen partitions of C with induction hypotheses:

(1) if n ≥ 1 then Un refines Un−1,
(2) if n ≥ 1, U ∈ Un−1, and U ∩ A = ∅, then U ∈ Un,
(3) if n ≥ 1, U ∈ Un, U∩A = ∅, and U /∈ Un−1, then | log(M(ψ�U)/M(ϕ�U))|

< t2−n+1,
(4) if U ∈ Un and U∩A 
= ∅, then diamU < 2−n and | log(M(ψ�U)/M(ϕ�U))|

< t2−n.

Put U0 = {C} and note that hypothesis (4) is satisfied and that the other hypothe-
ses are void.

Assume now that Un has been found and let U be an element of Un with
U ∩ A 
= ∅. So we have r = | log(μ2/μ1)| < t2−n, where μ1 = M(ϕ�U) and

μ2 = M(ψ�U). Put δ = t2−n − r. Since Gϕ�A
0 is nowhere dense in both Gϕ

0 and

Gψ
0 we can select two points p1 and p2 in U \A such that

(6.15) ϕ(p1) > μ1e
−δ and ψ(p2) > μ2e

−δ.

Let {V1, . . . , Vk} be a cover of U ∩A consisting of clopen, pairwise disjoint subsets
of C such that Vi ∩ A 
= ∅, Vi ⊂ U \ {p1, p2}, and diamVi < 2−n−1 for each i.
Let i ∈ {1, . . . , k} and note that by the initial assumptions we have that si =
M(ϕ�Vi ∩A) = M(ψ�Vi ∩A) > 0. Since ϕ and ψ are USC we can choose a clopen
neighbourhood Wi of Vi ∩ A in Vi such that

(6.16) Wi ⊂ {x ∈ Vi : ϕ(x), ψ(x) < sie
t2−n−1}.
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Note that both M(ϕ�Wi) and M(ψ�Wi) are in the interval [si, sie
t2−n−1

) so we
have

(6.17) −t2−n−1 < log(M(ψ�Wi)/M(ϕ�Wi)) < t2−n−1.

Put W0 = U \
⋃k

i=1 Wi and note that by (6.15),

(6.18) log
M(ψ�W0)

M(ϕ�W0)
≤ log

μ2

ϕ(p1)
= log

μ2

μ1
+ log

μ1

ϕ(p1)
< r + δ = t2−n.

and, analogously, log(M(ϕ�W0)/M(ψ�W0)) < t2−n. We define WU = {W0,W1,
. . . ,Wk} and

(6.19) Un+1 = {U ∈ Un : U ∩ A = ∅} ∪
⋃

{WU : U ∈ Un, U ∩A 
= ∅}.
and note that the induction hypotheses for n+ 1 are satisfied.

The induction having been completed we define the collection of clopen sets

(6.20) V = {U : U ∈ Un for some n and U ∩ A = ∅}.
Hypothesis (4) implies that

⋃
V = C \ A. It follows from hypotheses (1) and (2)

that V is a partition of C \ A. Let U be an element of V and let n be the first
integer such that U ∈ Un. Note that n ≥ 1 since U ∩ A = ∅. By hypothesis (3) we
have | log(M(ψ�U)/M(ϕ�U))| < t2−n+1. Applying Theorem 6.2 to ϕ�U and ψ�U
we find a homeomorphism fU : U → U and a continuous map βU : U → (0,∞) such
that ψ ◦ fU = βU ·ϕ�U and M(log ◦ βU ) < t2−n+1 ≤ t. We define h : C → C and
α : C → (0,∞) by

(6.21) h(x) =

{
x, if x ∈ A;

fU (x), if x ∈ U ∈ V,

and

(6.22) α(x) =

{
1, if x ∈ A;

βU (x), if x ∈ U ∈ V.

It is obvious that h�A = idA, α�A = 1A, ψ ◦ h = α·ϕ, and M(log ◦ α) < t. It is
also obvious that h is a bijection and that h�C \ A and α�C \ A are continuous.
So let x ∈ A and let m ∈ N. Then there is a U ∈ Um that contains x and hence
diamU < 2−m. Let y ∈ U . If y ∈ A then h(y) = y ∈ U and α(y) = 1 = α(x). If
y ∈ U \A then there is a V ∈ V that contains y. By hypothesis (1) we have V ⊂ U
and hence h(y) ∈ U and | log(α(y))| < t2−n+1 for some n > m. This proves the
continuity of h and α. �

Theorem 6.4 (Homeomorphism Extension). Let ϕ : C → R
+ and ψ : D → R

+

be Lelek functions with C and D compact. Let A ⊂ C and B ⊂ D be closed sets

such that Gϕ�A
0 and Gψ�B

0 are nowhere dense in Gϕ
0 respectively Gψ

0 . Let h : A → B
be a homeomorphism and let α : A → (0,∞) be a continuous map such that ψ ◦h =
α·(ϕ�A). If t is a real number with t > | log(M(ψ)/M(ϕ))| and t > M(log ◦ α),

then there exist a homeomorphism h̃ : C → D and a continuous map α̃ : C → (0,∞)

such that h̃�A = h, α̃�A = α, ψ ◦ h̃ = α̃·ϕ, and M(log ◦ α̃) < t.

Proof. Let d and ρ be metrics on C respectively D. If A = ∅ then the
theorem is simply Theorem 6.2 thus we may assume that A 
= ∅. Let {qi : i ∈ N} be
a countable dense subset of A that is enumerated in such a way that {j : qj = qi}
is infinite for every i ∈ N. We may assume that α has been continuously extended
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over C in such a way that M(log ◦ α) < t is still valid. Select for every i ∈ N

points ai ∈ C \ A and bi ∈ D \ B such that d(qi, ai) < 2−i, ρ(h(qi), bi) < 2−i, and
α(ai)ϕ(ai) = ψ(bi) > 0, as follows. First use the fact that ψ is Lelek to find a point
b′i ∈ D \ B with ρ(h(qi), b

′
i) < 2−i and ψ(b′i) > 0. Since α·ϕ is also Lelek we can

choose an ai ∈ C \A such that d(qi, ai) < 2−i and 0 < α(ai)ϕ(ai) < ψ(b′i). Finally,
using Proposition 4.4 and again the Lelek property of ψ, we find a bi ∈ D \ B
close enough to b′i such that ρ(h(qi), b

′
i) < 2−i and α(ai)ϕ(ai) = ψ(bi). We can

easily arrange that all the ai’s and bi’s are distinct. We define Â = A∪{ai : i ∈ N},
B̂ = B∪{bi : i ∈ N}, α̂ = α�Â, and the homeomorphism ĥ : Â → B̂ by ĥ�A = h and

h(ai) = bi for i ∈ N. Obviously, ψ ◦ ĥ = α̂·ϕ�Â. Note that every point (ai, ϕ(ai)) is

an isolated point of Gϕ�Â
0 but not isolated in Gϕ

0 so Gϕ�Â is just as Gϕ�A
0 nowhere

dense in Gϕ
0 . Analogously, we have that also Gψ�B̂

0 is nowhere dense in Gψ
0 .

The preceding paragraph shows that we may assume without loss of generality
that {x ∈ A : ϕ(x) > 0} is dense in A. Put

(6.23) δ = t−max{M(log ◦ α), | log(M(ψ)/M(ϕ))|}
and select a b ∈ D \ B such that ψ(b) > M(ψ)e−δ. Choose a homeomorphism
h1 : C → D and a continuous map α1 : C → (0,∞) such that h1�A = h, α1�A = α,
and M(log◦α1) = M(log◦α). Define ξ = (1/α1)·(ψ ◦h1) and note that ξ is a Lelek
function on C which coincides with ϕ on A. Using the fact that ξ is USC we find
a clopen neighbourhood U of A such that h−1

1 (b) /∈ U and M(ξ�U) < M(ϕ)eδ. We
define the continuous function α2 : C → (0,∞) by

(6.24) α2(x) =

{
α1(x), if x ∈ U ;
M(ψ)/M(ϕ), if x ∈ C \ U .

We have

(6.25) M(log ◦ α2) ≤ max{M(log ◦ α1), | log(M(ψ)/M(ϕ))|} = t− δ.

Then χ = (1/α2)·(ψ ◦ h1) is a Lelek function on C which coincides with ξ on U .

Note that χ�A = ξ�A = ϕ�A and that Gχ�A
0 is nowhere dense in Gχ

0 just as Gψ�B
0

is nowhere dense in Gψ
0 . Observe that

M(χ�U) = M(ξ�U) < M(ϕ)eδ,(6.26)

M(χ�C \ U) ≤ M(ϕ)

M(ψ)
M(ψ ◦ h1) = M(ϕ),(6.27)

M(χ) ≥ χ(h−1
1 (b)) =

M(ϕ)

M(ψ)
ψ(b) > M(ϕ)e−δ,(6.28)

and hence | log(M(χ)/M(ϕ))| < δ. According to Lemma 6.3 there exist a homeo-
morphism h2 : C → C and a continuous map β : C → (0,∞) such that h2�A = idA,
β�A = 1A, χ ◦ h2 = β·ϕ, and M(log ◦ β) < δ. We define the homeomor-

phism h̃ : C → D and the continuous map α̃ : C → (0,∞) by h̃ = h1 ◦ h2 and
α̃ = (α2 ◦ h2)·β. We have

h̃�A = h1 ◦ h2�A = h1�A = h,(6.29)

α̃�A = (α2 ◦ h2�A)·(β�A) = (α2�A)·1A = α1�A = α,(6.30)

ψ ◦ h̃ = ψ ◦ h1 ◦ h2 = (α2·χ) ◦ h2 = (α2 ◦ h2)·β·ϕ = α̃·ϕ,(6.31)

M(log ◦ α̃) ≤ M(log ◦ α2) +M(log ◦ β) < (t− δ) + δ = t(6.32)

and the proof is complete. �





CHAPTER 7

Extrinsic characterizations of Erdős space

In this chapter we present two characterizations of Erdős space in terms of
imbeddings of the space into graphs of Lelek functions.

Definition 7.1. Let X be a space. We call a system (Xs)s∈T a Sierpiński
stratification of X if T is a nonempty tree over a countable alphabet and Xs is a
closed subset of X for each s ∈ T such that:

i. X∅ = X and Xs =
⋃
{Xt : t ∈ succ(s)} for all s ∈ T , and

ii. if σ ∈ [T ] then the sequence Xσ�0, Xσ�1, . . . converges to a point xσ ∈ X.

Recall that Sierpiński [40] has shown that a space is an Fσδ-space if and only
if it admits a Sierpiński stratification and that van Engelen [28, Theorem A.1.6]
has shown that a zero-dimensional space X is homeomorphic to Q

ω if there exists a
Sierpiński stratification (Xs)s∈T ofX such thatXt is nowhere dense inXs whenever
t ∈ succ(s). Our characterizations of E were inspired by these results.

Definition 7.2. SLC is the class of all pairs (ϕ,X) such that ϕ : C → R
+ is a

USC function with a zero-dimensional compact domain that contains X for which
there exist a nonempty tree T over a countable set and closed subsets Xs of C for
each s ∈ T such that:

(1) X∅ = C and Xt ⊂ Xs whenever s ≺ t and s, t ∈ T ,
(2) for each s ∈ T and we have Xs ∩X ⊂

⋃
{Xt : t ∈ succ(s)},

(3) if σ ∈ [T ] then
⋂∞

k=0Xσ�k is a singleton {xσ} ⊂ X,

(4) for each s ∈ T and t ∈ succ(s) we have that Gϕ�Xt

0 is nowhere dense in

Gϕ�Xs

0 , and

(5) for each s ∈ T ,
⋃
{Gϕ�Xt

0 : t ∈ succ(s)} is dense in Lϕ�Xs

0 .

(SLC stands for Sierpiński-Lelek-compact.)

We illustrate this definition with an example. Let K be a Cantor set in R that
contains 0 and let A be a countable dense subset of K. Put X = Aω and C = Kω.
Let p ≥ 1 and let ‖ · ‖ denote the p-norm on R

ω. We define ϕ : C → I by ϕ(z) =
1/(1+‖z‖). If we put T = A<ω and Xa0...ak−1

= {a0}×· · ·×{ak−1}×K×K×· · · ,
then it is not hard to see that (ϕ,X) is an element of SLC, cf. Proposition 8.12.

Lemma 7.3. If (ϕ,X) ∈ SLC then there are a tree T and a system (Xs)s∈T as
in Definition 7.2 with the following additional properties: every Xs is nonempty, T
is the Baire tree N

<ω, and

(6) for all s, t ∈ T with |s| = |t| we have s = t or Xs ∩Xt = ∅.

Proof. Let ϕ, X, T , and (Xs)s∈T be given as in Definition 7.2. First note that
we can delete any node s from T with the property Xs = ∅ without affecting the

properties (1)–(5). Now if s ∈ T then Xs 
= ∅ and hence Lϕ�Xs

0 
= ∅. By condition
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(5) we have that there is an immediate successor t of s such that Gϕ�Xt

0 
= ∅
and hence Gϕ�Xs

0 
= ∅. Conditions (4) and (5) combined now show that there are
infinitely many t′ ∈ succ(s). By relabelling we can arrange that T = N

<ω.
We will now verify that we can make the Xs disjoint. Let A be the countable

set {(i, s) ∈ N×N
<ω : |s| = i− 1}. Let π : A → N be the projection π(i, s) = i and

let π : A<ω ∪ Aω → N
<ω ∪ N

ω = T ∪ [T ] also denote the induced projection. We
will construct by recursion with respect to the length l of strings from (Xs)s∈T a
new system (Ys)s∈A<ω that satisfies the following hypotheses for l ∈ ω:

(a) if s, t ∈ A<ω and |s| = |t| = l, then s = t or Ys ∩ Yt = ∅,
(b) if s ∈ A<ω and |s| = l, then Ys is a clopen subset of Xπ(s).

We begin with Y∅ = X∅ = C. For every s ∈ T we find a pairwise disjoint collection
{Ci

s : i ∈ N} of clopen subsets of C such that its union equals C \Xs. Let us assume
that Ys has been found for s ∈ A<ω with |s| = l and let a = (i, n1n2 . . . ni−1) ∈ A.
We define

(7.1) Ys�a = Xπ(s)�i ∩ Ys ∩
i−1⋂

j=1

C
nj

π(s)�j
.

Note that hypothesis (b) is satisfied because Ys is clopen in Xπ(s) which contains
Xπ(s)�i. For hypothesis (a) consider s, t ∈ A<ω with |s| = |t| = l and a, b ∈ A with

s�a 
= t�b. If s 
= t then by hypothesis Ys ∩ Yt = ∅ and hence Ys�a ∩ Yt�b = ∅. So
we may assume that s = t. Let a = (i, n1 . . . ni−1) and b = (j, k1 . . . kj−1). If i < j

then Ys�b is contained in Cki

π(s)�i
, which set is disjoint from Xπ(s)�i and hence from

Ys�a. So we may put i = j and hence there is an m such that nm 
= km. The
desired conclusion now follows from the fact

(7.2) Ys�a ∩ Ys�b ⊂ Cnm

π(s)�m
∩ Ckm

π(s)�m
= ∅.

We now put T ′ = {s ∈ A<ω : Ys 
= ∅}. Since by the definition Yt ⊂ Ys whenever
t ∈ succ(s) we have that T ′ is a tree and we also have condition (1) for the system
(Ys)s∈T ′ . Condition (6) follows from hypothesis (a) and conditions (4) and (3)
follow from hypothesis (b) and, for (3), compactness. We verify that for every
s ∈ A<ω,

(7.3)
⋃

{Yt : t ∈ succ(s)} = Ys ∩
⋃

{Xπ(t) : t ∈ succ(s)}.

Since the other direction is trivial it suffices to prove that every element x of the
right hand side of (7.3) is contained in the left hand side. Choose the lowest index
i such that x ∈ Xπ(s)�i. So for every j < i, x /∈ Xπ(s)�j and hence there is an

nj ∈ N with x ∈ C
nj

π(s)�j
. Putting a = (i, n1 . . . ni−1) we find that x ∈ Ys�a.

With hypothesis (b) we may conclude from (7.3) that condition (5) is satisfied.
For condition (2) consider an s ∈ T ′. Since Xπ(s) satisfies condition (2) we have,
again by (7.3),

(7.4)

Ys ∩X = Ys ∩X ∩Xπ(s)

⊂ Ys ∩
⋃

{Xπ(t) : t ∈ succ(s)}

=
⋃

{Yt : t ∈ succ(s)}.

Thus Ys also satisfies condition (2). Finally, as argued above we can replace T ′ by
N

<ω. �
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Remark 7.4. Let (ϕ,X) ∈ SLC with a system (Xs)s∈T . It follows from
conditions (1)–(3) that (Xs ∩ X)s∈T is a Sierpiński stratification of X and that
X = {xσ : σ ∈ [T ]}. Note that it follows from condition (5) that every ϕ�Xs is
a Lelek function. It is also easily seen that if h is a homeomorphism from the
domain C of ϕ to another Cantor set D and α : C → (0,∞) is continuous, then
((α·ϕ) ◦ h−1, h(X)) is also in SLC. Finally, conditions (1) and (6) imply that if
Xs ∩Xt 
= ∅ then Xt ⊂ Xs and s ≺ t or Xs ⊂ Xt and t ≺ s.

Theorem 7.5. Let (ϕ,X), (ψ, Y ) ∈ SLC. Then there exists a homeomorphism
f from the domain C of ϕ to the domain D of ψ and a continuous map β : C →
(0,∞) such that f(X) = Y and ψ ◦ f = β·ϕ (and hence Gϕ�X

0 is homeomorphic to

Gψ�Y
0 ).

Remark 7.6. Let (ϕ,X), (ψ, Y ) ∈ SLC, let T = N
<ω, and let (Xs)s∈T re-

spectively (Ys)s∈T be systems of nonempty closed sets in C respectively D as in
Definition 7.2 that also satisfy condition (6) of Lemma 7.3. Van Engelen’s proof
[28, pp. 115–120] of the characterization of Qω in terms of Sierpiński stratifications
shows that there exists a homeomorphism h : C → D with h(X) = Y . This homeo-
morphism will in general not correspond to an m-equivalence between the functions
ϕ and ψ. In order to get a continuous β : C → (0,∞) such that ψ̃ ◦ h = β·ϕ̃ and
h(X) = Y we need to add an additional ingredient to van Engelen’s construc-
tion in the form of the Homeomorphism Extension Theorem for Lelek functions
(Theorem 6.4).

Proof. Let (ϕ,X), (ψ, Y ), (Xs)s∈T , and (Ys)s∈T be as in Remark 7.6. With
the Uniqueness Theorem for Lelek functions (Theorem 6.2) we may assume that
C = D and ψ = ϕ. Choose a metric d on C with diamC < 1. Split ω into
two infinite sets E and F . If n ∈ ω then E(n) denotes the set {i ∈ E : i < n}.
Similarly for F . Let τE : E → T be a bijection that is monotone: if n, k ∈ E then
τE(n) ≺ τE(k) implies n ≤ k. Let τF : F → T also be a monotone bijection and let
τ : ω → T be the function τE ∪ τF . Note that monotonicity implies that τ (0) = ∅.

By induction on n we will construct clopen partitions U0,U1, . . . of C, homeo-
morphisms h0, h1, . . . : C → C, and continuous maps β0, β1, . . . : C → (0,∞) such
that, using the notation fn = hn ◦ · · · ◦ h0, we have for each n ≥ 0 and U ∈ Un,

(1) meshUn < 2−n,
(2) Un refines Un−1 if n ≥ 1,
(3) hn(U) = U ,
(4) if m ∈ E(n) then fn(Xτ(m)) ∩ U = fm(Xτ(m)) ∩ U ,

(5) if k ∈ F (n) then f−1
n (Yτ(k) ∩ U) = f−1

k (Yτ(k) ∩ U),
(6) if n ∈ E and fn(Xτ(n)) ∩ U 
= ∅, then there exists a k ∈ F such that

|τ (n)| = |τ (k)| and fn(Xτ(n)) ∩ U = Yτ(k) ∩ U ,
(7) if n ∈ F and Yτ(n) ∩ U 
= ∅, then there exists an m ∈ E such that

|τ (n)| = |τ (m)| and Yτ(n) ∩ U = fn(Xτ(m)) ∩ U .

(8) | log(βn(x)/βn−1(x))| < 2−n for n ≥ 1 and each x ∈ f−1
n (U),

(9) ϕ�U = (βn·ϕ) ◦ f−1
n �U .

Put U0 = {C}, let h0 be the identity map idC , and let β0 be the constant map
1C . Note that for the case n = 0 the induction hypotheses are trivially satisfied.

Observe that if fn(Xτ(n)) ∩ U 
= ∅, where U ∈ Un, then the natural number k
promised in hypothesis (6) is unique by condition (6) in Lemma 7.3. Similarly for
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m in (7). Suppose for a moment that we completed the construction. Hypotheses
(1), (2), and (3) imply that f = limn→∞ fn exists and is a homeomorphism of
C. We claim that f(X) = Y . To this end, let x ∈ X be arbitrary. There is a
unique σ ∈ [T ] = N

ω such that x ∈
⋂∞

k=0Xσ�k. For every i let ni ∈ E be such
that τ (ni) = σ�i and let Ui be the unique element of Uni

that contains fni
(x). By

hypothesis (6)ni
there is a ki ∈ F such that k = |τ (ni)| = |τ (ki)| and

(7.5) fni
(x) ∈ fni

(Xτ(ni)) ∩ Ui = Yτ(ki) ∩ Ui.

So by (3) and (4) we have for every j that

(7.6) fni+j(x) ∈ fni+j(Xτ(ni)) ∩ Ui = fni
(Xτ(ni)) ∩ Ui = Yτ(ki) ∩ Ui,

which means that f(x) ∈ Yτ(ki). Since |τ (ki)| = i for every i, this proves that

f(x) ∈
⋂∞

k=0 Yτ(mk) ⊂ Y. Hence f(X) ⊂ Y , and, by symmetry, f−1(Y ) ⊂ X.
It is obvious that hypothesis (8) implies that (log ◦ βn)n is a uniform Cauchy

sequence and hence β = limn→∞ βn : C → (0,∞) exists and is continuous. Observe
that by uniform convergence of (fn)n and (βn)n we have that limn→∞ f−1

n = f−1

and limn→∞ βn ◦ f−1
n = β ◦ f−1. Let x ∈ C and note that we have by upper

semi-continuity of ϕ and hypothesis (9):

(7.7)

β(x)ϕ(x) = lim
n→∞

βn(x)ϕ(x) = lim
n→∞

ϕ(fn(x))

≤ ϕ(f(x)) = lim
n→∞

ϕ(fn(f
−1
n (f(x))))

= lim
n→∞

βn(f
−1
n (f(x)))ϕ(f−1

n (f(x)))

≤ β(x)ϕ(x).

So we have ϕ ◦ f = β·ϕ.
It remains to perform the induction. Suppose that for some n the partition Un,

the homeomorphism hn, and the map βn have been found. Because of the symmetry
between X and Y we may assume without loss of generality that n+ 1 ∈ E.

Select a clopen partition V of C that refines Un and with the property meshV <
2−n−1. Consider an arbitrary element V of V such that AV = fn(Xτ(n+1))∩V 
= ∅.
Note that ϕ�AV is a Lelek function and hence M(ϕ�AV ) > 0. Since ϕ is USC we

have that {x ∈ V : ϕ(x) < M(ϕ�AV )e
2−n−1} is an open neighbourhood of AV . We

now select a clopen subset UV of V containing AV such that

UV ⊂ {x ∈ V : ϕ(x) < M(ϕ�AV )e
2−n−1},(7.8)

fn(Xτ(m)) ∩ UV = ∅(7.9)

whenever m ∈ E(n+ 1) with fn(Xτ(n+1) ∩Xτ(m)) ∩ V = ∅,
and

(7.10) Yτ(m) ∩ UV = ∅
whenever m ∈ F (n+ 1) with fn(Xτ(n+1)) ∩ Yτ(m) ∩ V = ∅.

Define

(7.11) Un+1 = ({V : V ∈ V, AV = ∅} ∪ {UV , V \ UV : V ∈ V, AV 
= ∅}) \ {∅}
and note that this collection satisfies hypotheses (1)n+1 and (2)n+1.

Let U be an arbitrary element of Un+1 and put

(7.12) A = fn(Xτ(n+1)) ∩ U.
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We will define hn+1 and βn+1 by determining hn+1�U and βn+1�f−1
n (U). We con-

sider two cases.
Case I: either A = ∅ or there is a k ∈ F (n+ 1) with

(7.13) fn(Xτ(n+1)) ∩ U = Yτ(k) ∩ U and |τ (n+ 1)| = |τ (k)|.

In this case we put hn+1�U = idU and βn+1(x) = βn(x) for each x ∈ f−1
n (U). This

definition trivially satisfies the hypotheses (3)–(9) for n+ 1 and U .
Case II: all situations that are not covered by Case I. Put l = |τ (n+ 1)|. Note

that l > 0 because if l = 0 then Xτ(n+1) = C and we are in Case I. Since τE is
a monotone bijection there are unique integers ν0 < ν1 < · · · < νl in E such that
τ (νi) = τ (n+1)�i for 0 ≤ i ≤ l. Let 0 ≤ i < l and let W be the element of Un that
contains U and note that fn(Xτ(νi))∩W contains the nonempty set fn(Xτ(n+1))∩U .
Thus by hypothesis (6) there is a κi ∈ F with |τ (κi)| = |τ (νi)| = i and fn(Xτ(νi))∩
W = Yτ(κi) ∩W . Thus fn(Xτ(νi)) ∩ U = Yτ(κi) ∩ U and τ (κi) ≺ τ (κi+1) for every
i < l. Select with condition (5) in Definition 7.2 a j ∈ N such that there is a

b ∈ Yτ(κl−1)�j ∩ U with the property ϕ(b) > M(ϕ�A)e−2−n−1

. Let κl ∈ F be such

that τ (κl) = τ (κl−1)
�j and put B = Yτ(κl)∩U . By the way that Un+1 was obtained

from V (see (7.8)) we have that | log(M(ϕ�A)/M(ϕ�B))| < 2−n−1. Note that if the
intersection of anyXs or Ys with U is nonempty, then ϕ�Xs∩U respectively ϕ�Ys∩U
is a Lelek function. Thus with Theorem 6.2 we can find a homeomorphism g : A →
B and a continuous map α : A → (0,∞) such that ϕ◦g = α·(ϕ�A) and M(log◦α) <
2−n−1. Note that Gϕ�A

0 is nowhere dense in G
ϕ�fn(Xτ(νl−1))∩U

0 = G
ϕ�Yτ(κl−1)∩U

0 by

condition (4) in Definition 7.2. Also G
ϕ�Yτ(κi)

∩U

0 is nowhere dense in G
ϕ�Yτ(κi−1)∩U

0

for 0 < i < l and | log(M(ϕ�U)/M(ϕ�A))| < 2−n−1 by the construction of Un+1.
Since Yτ(κ0) = Y∅ = C we can now use the Homeomorphism Extension Theorem
for Lelek functions (Theorem 6.4) recursively to find a homeomorphism g̃ : U → U
and a continuous α̃ : U → (0,∞) such that g̃�A = g, α̃�A = α, ϕ ◦ g̃ = α̃·(ϕ�U),
M(log ◦ α̃) < 2−n−1, and g̃(Yτ(κi) ∩ U) = Yτ(κi) ∩ U for 0 ≤ i < l. We put
hn+1�U = g̃ and we note that hypotheses (3), (6), and (7) for n + 1 and U are
trivially satisfied.

We define for each x ∈ f−1
n (U),

(7.14) βn+1(x) = α̃(fn(x))βn(x)

and we note that hypothesis (8) is satisfied for n + 1. Concerning hypothesis (9)
for n+ 1 and U we have the following straightforward computation:

(7.15)

(βn+1·ϕ) ◦ f−1
n+1�U = (βn+1·ϕ) ◦ f−1

n ◦ g̃−1

= ((α̃ ◦ fn)·βn·ϕ) ◦ f−1
n ◦ g̃−1

= (α̃·((βn·ϕ) ◦ f−1
n )) ◦ g̃−1

= (α̃·ϕ) ◦ g̃−1

= ϕ�U,

where we used hypothesis (9) for n.
Still for Case II we now consider hypothesis (4). Letm ∈ E(n+1) and note that

by hypothesis fn(Xτ(m))∩W = fm(Xτ(m))∩W . We may assume that fn(Xτ(m))∩
U = fm(Xτ(m))∩U 
= ∅. Because of the way Un+1 was constructed from V we have
fn(Xτ(n+1) ∩Xτ(m)) ∩ U 
= ∅. In view of the Remark and the monotonicity of τE
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we have m = νi for some i < l. Consequently,

(7.16) fn+1(Xτ(m)) ∩ U = hn+1(fn(Xτ(νi)) ∩ U) = hn+1(Yτ(κi) ∩ U)

= Yτ(κi) ∩ U = fn(Xτ(m)) ∩ U = fm(Xτ(m)) ∩ U.

Finally, we verify hypothesis (5) for Case II. Let k ∈ F (n+1) and note that by
hypothesis f−1

n (Yτ(k) ∩W ) = f−1
k (Yτ(k) ∩W ). We may assume that Yτ(k) ∩U 
= ∅.

Because of the way Un+1 was constructed from V we have fn(Xτ(n+1))∩Yτ(k)∩U 
= ∅
and hence Yτ(κl−1) ∩ Yτ(k) ∩ U 
= ∅. We first consider the case |τ (k)| ≤ l − 1 =
|τ (κl−1)|. In view of the Remark we have k = κi for some i < l. Consequently,

(7.17)

f−1
n+1(Yτ(k) ∩ U) = f−1

n (h−1
n+1(Yτ(κi) ∩ U))

= f−1
n (Yτ(k) ∩ U)

= f−1
k (Yτ(k) ∩ U).

Now, let |τ (k)| ≥ l. There exists a j ∈ F (k+1) ⊂ F (n+1) such that τ (k)�l = τ (j).
By hypothesis (7) there is an m ∈ E such that Yτ(j) ∩ U = fn(Xτ(m)) ∩ U and
|τ (j)| = |τ (m)| = l. Since

(7.18)

∅ 
= fn(Xτ(n+1)) ∩ Yτ(k) ∩ U

⊂ fn(Xτ(n+1)) ∩ Yτ(j) ∩ U

= fn(Xτ(n+1) ∩Xτ(m)) ∩ U

and |τ (n+1)| = l = |τ (m)| we have by Remark 7.4 that τ (n+1) = τ (m) and hence
this situation is covered by Case I. The proof is complete. �

Remark 7.7. Note that in Theorem 7.5 if t > | log(M(ψ)/M(ϕ))| then we can
as in Theorems 6.2 and 6.4 arrange that M(log ◦ β) < t.

Definition 7.8. SL is the class of all bounded USC functions ϕ : X → R
+ such

that X is a zero-dimensional space for which there exists a Sierpiński stratification
(Xs)s∈T with the following properties:

(a) if s ∈ T and t ∈ succ(s), then Gϕ�Xt

0 is nowhere dense in Gϕ�Xs

0 and
(b) if s ∈ T then ϕ�Xs is a Lelek function.

We require that the elements of SL are bounded because that condition simpli-
fies the following result.

Lemma 7.9. If ϕ ∈ SL then there is a compactification C of the domain X of
ϕ such that (extC ϕ,X) ∈ SLC.

Proof. Let ϕ ∈ SL and let (Xs)s∈T be a system as in Definition 7.8. Let
C be a zero-dimensional compactification of X such that for every Xs we have
(extC ϕ)�Xs = extXs

(ϕ�Xs) as in Lemma 4.8.c. Let ψ = extC ϕ and let Ys = Xs

for s ∈ T . Since ϕ is bounded we have that ψ(X) ⊂ R
+. Note that conditions (1)–

(3) of Definition 7.2 are trivially satisfied. Let s ∈ T . We have that
⋃
{Gϕ�Xt

0 : t ∈
succ(s)} = Gϕ�Xs

0 is a subset of
⋃
{Gψ�Yt

0 : t ∈ succ(s)} that is dense in Lψ�Ys

0 by
Lemma 4.8.b. So (Ys)s∈T satisfies condition (5). For condition (4) note that if

t ∈ succ(s) then since ϕ�Xt is Lelek we have that Gϕ�Xt

0 is dense in Gψ�Yt

0 , again

by Lemma 4.8.b. Now Gψ�Yt

0 is nowhere dense in Gψ�Ys

0 because Gϕ�Xt

0 is nowhere

dense in Gϕ�Xs

0 . �
Lemma 7.9 combines with Theorem 7.5 to:
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Theorem 7.10. Any two elements ϕ and ψ of SL are m-equivalent (and hence

Gϕ
0 is homeomorphic to Gψ

0 ).

Proposition 7.11. The function η (formula (2.4)) is an element of SL.

Proof. If we define T = Q
<ω and Xq0...qk−1

= {q0}×· · ·×{qk−1}×Q×Q×· · · ,
then it is a straightforward exercise to show that η : Qω → R

+ is an element of
SL. �

Noting that Gη
0 is homeomorphic to E we find that Proposition 7.11 combines

with Theorems 7.5, 7.10, and Lemma 7.9 to prove the following characterization
theorem.

Theorem 7.12. The following statements about a space E are equivalent:

(1) E is homeomorphic to E,

(2) there is a pair (ϕ,X) ∈ SLC such that Gϕ�X
0 is homeomorphic to E,

(3) there is a function ϕ ∈ SL such that Gϕ
0 is homeomorphic to E,





CHAPTER 8

Intrinsic characterizations of Erdős space

It is easily verified that it follows from condition (b) in Definition 7.8 that
{x ∈ X : ϕ(x) = 0} is a dense Gδ-set in X, alternatively, consider the prototype
η ∈ SL. This means that in order to fit a space into the characterization theorems
of Chapter 7 we have to extend the space. Moreover, to use Theorem 7.12 we have
to start with a very particular imbedding of the Erdős space candidate into C× R

respectively Q
ω × R, where C is the Cantor set. These facts limit the power of

the theorems in Chapter 7. We will now present a number of characterizations of
Erdős space in terms of internal topological properties of the space. These intrinsic
characterizations will turn out to be more powerful and easier to use than the results
of the preceding chapter.

Definition 8.1. Let T be a tree and let (Xs)s∈T be a system of subsets of a
space X such that Xt ⊂ Xs whenever s ≺ t. A subset A of X is called an anchor
for (Xs)s∈T in X if for every σ ∈ [T ] we have Xσ�k ∩ A = ∅ for some k ∈ ω or the
sequence Xσ�0, Xσ�1, . . . converges to a point in X.

Thus the anchor A has the property that for every sequence that is generated
by an element of [T ] if it is attached to A then it must converge and cannot be free
to drift out of the space. Note that if (Xs)s∈T is a Sierpiński stratification, then
the whole space is an anchor.

Remark 8.2. Let Y be an Fσδ-space that is a witness to the almost zero-
dimensionality of a space X. Thus X is a subset but not necessarily a subspace
of Y and we let Z be the set X with the topology that is inherited from Y . Let
(Ys)s∈T be a Sierpiński stratification of Y and put Zs = Ys∩Z for s ∈ T . Let x ∈ X
and choose a neighbourhood B of x in X such that B is closed in Y . If σ ∈ [T ]
is such that Yσ�k ∩ B 
= ∅ for each k ∈ ω we have that Yσ�0, Yσ�1, . . . converges in
Y to a point that must lie in B. Hence Zσ�0, Zσ�1, . . . converges in Z and we have
that B is an anchor for (Zs)s∈T in Z.

Consider now the special case that Y is an Fσδ-subset of Rω with dimY = 0.
Let p > 0 and let X = �p ∩ Y with the norm topology. Since the norm is LSC on
R

ω we have that every set of the form {x ∈ X : ‖x‖ ≤ N} is closed in Y . This
means that every bounded set in X is an anchor for (Zs)s∈T in Z.

Definition 8.3. E is the class of all nonempty spaces E such that there exists
a topology T on E that witnesses the almost zero-dimensionality of E and there
exist a nonempty tree T over a countable set and subspaces Es of E that are closed
with respect to T for each s ∈ T such that:

(1) E∅ = E and Es =
⋃
{Et : t ∈ succ(s)} whenever s ∈ T ,

(2) each x ∈ E has a neighbourhood U that is an anchor for (Es)s∈T in (E,T),

39
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(3) for each s ∈ T and t ∈ succ(s) we have that Et is nowhere dense in Es,
and

(4) E is {Es : s ∈ T}-cohesive.

In view of Corollary 4.20 condition (4) is equivalent to:

(4̂) each x ∈ E has a neighbourhood U such that for every s ∈ T and every
clopen set C in E if C ∩Es ⊂ U then C ∩Es = ∅.

This condition may be slightly easier to verify than (4) since we only have to
consider sets that are clopen in the whole space.

We will show that E is simply the class of all spaces that are homeomorphic to
Erdős space.

Remark 8.4. The anchor concept in Definition 8.3 is essential. This is because
condition (4) excludes the possibility that the whole E is an anchor for (Es)s∈T ,
that is, we cannot have a Sierpiński stratification.

Aiming for a contradiction, let T be a topology that witnesses the almost zero-
dimensionality of a space E and let (Es)s∈T be a Sierpiński stratification of (E,T)
such that E is {Es : s ∈ T}-cohesive. We can then find a countable collection
B = {Bi : i ∈ ω} such that

(1) for every x ∈ X and every neighbourhood U of x there is a B ∈ B such
that x ∈ intB ⊂ B ⊂ U ,

(2) every B ∈ B is closed with respect to T, and
(3) every B ∈ B fails to contain nonempty clopen subsets of any Es.

We may put B0 = ∅. We now construct inductively a sequence s0 ≺ s1 ≺ · · ·
of nodes of T such that Esn 
= ∅, Bn ∩ Esn = ∅ and |sn| ≥ n for each n ∈ ω.
Put s0 = ∅. Assume now that sn has been found and consider Bn+1. Property
(3) obviously implies that there is an x ∈ Esn \ Bn+1. Since we have a Sierpiński
stratification there is a τ ∈ [T ] such that sn ≺ τ and Eτ�0, Eτ�1, . . . converges to
x in (E,T). Since Bn+1 is closed in (E,T) we have that there is k > |sn| with
Bn+1 ∩ Eτ�k = ∅. If we put sn+1 = τ�k then the induction is finished. There
obviously is a σ ∈ [T ] such that sn ≺ σ for every n. Consequently, there is a
point y ∈

⋂∞
k=0Eσ�k =

⋂∞
n=0 Esn . Since there is an n with y ∈ Bn we have a

contradiction with the property Bn ∩ Esn = ∅.

Lemma 8.5. If E ∈ E then there is an χ ∈ SL such that E is homeomorphic to
Gχ

0 .

Proof. Let E ∈ E and let T and (Es)s∈T be as in Definition 8.3. We first
sketch the outline of the proof. We begin by taking the stratification (Es)s∈T

through a ‘refining’ process such that Z = (E,T) admits a zero-dimensional exten-
sion X that also witnesses the almost zero-dimensionality of E and with the prop-
erty that the closures (Xr)r∈T ′ of the sets in the refined system form a Sierpiński
stratification of X, that is, the whole space becomes an anchor. With Lemma 4.11
we can find a USC function ϕ : X → I such that Gϕ

0 ≈ E. Condition (4) of Defini-

tion 8.3 allows us to replace ϕ by a function χ such that Gϕ
0 ≈ Gχ

0 and χ�Xr is a
Lelek function for each r ∈ T ′, see Lemma 5.9. We then have that χ ∈ SL.

First note that since Z is zero-dimensional we can arrange as in Lemma 7.3
that the system (Es)s∈T satisfies the disjointness condition

(5) for all s, t ∈ T if |s| = |t| then s = t or Es ∩ Et = ∅.
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By the fact that T is a witness topology and condition (2) we can find a countable
collection B of subsets of E such that

(a) for every x ∈ E and every neighbourhood U of x there is a B ∈ B such
that x ∈ intB ⊂ B ⊂ U ,

(b) every B ∈ B is closed with respect to T,
(c) every B ∈ B is an anchor for (Es)s∈T in Z.

We now construct by induction a sequence C0 ⊂ C1 ⊂ . . . of countable boolean
algebras consisting of clopen subsets of the zero-dimensional space Z. Let C0 be a
such a countable boolean algebra that is also a basis for the topology T. Assume
that Cn has been constructed. Let A1, A2 be two elements of the collection A =
B ∪ {Es : s ∈ T} and let C1, C2 ∈ Cn. If (A1 ∩ C1) ∩ (A2 ∩ C2) = ∅ select a clopen
set D = D(A1, C1, A2, C2) in Z such that A1 ∩ C1 ⊂ D and D ∩ A2 ∩ C2 = ∅.
Otherwise, put D(A1, C1, A2, C2) = Z. We define Cn+1 as the boolean algebra that
is generated by

(8.1) Cn ∪ {D(A1, C1, A2, C2) : A1, A2 ∈ A and C1, C2 ∈ Cn}.
Note that C =

⋃∞
n=0 Cn is a countable boolean algebra consisting of clopen subsets

of Z such that C is a basis for T and for every A1, A2 ∈ A and C1, C2 ∈ C with
(A1∩C1)∩(A2∩C2) = ∅ there is aD ∈ C such that A1∩C1 ⊂ D andD∩A2∩C2 = ∅.

Let {Ci : i ∈ N} be an enumeration of C. We consider the tree S = {0, 1}<ω

and we put

(8.2) Ds =
⋂

{Ci : i ≤ l, si = 1} ∩
⋂

{E \ Ci : i ≤ l, si = 0},

where s = s1 . . . sl ∈ S and
⋂
∅ = E. Note that (Ds)s∈S satisfies conditions (1)

and (5) and that every Ds is an element of C. Consider now the product tree T ∗S
and define E′

t∗s = Et ∩Ds for each t ∗ s ∈ T ∗ S. Let T ′ = {r ∈ T ∗ S : E′
r 
= ∅}.

Since every E′
t∗s is the intersection of Et with a set that is clopen in the topology

T it follows easily that the system (E′
r)r∈T ′ satisfies the conditions of Definition 8.3.

In fact, (E′
r)r∈T ′ satisfies condition (c). Also the system satisfies the disjointness

condition (5) because the two contributing systems do. Moreover, we have that if
A1, A2 ∈ B∪{E′

r : r ∈ T ′} with A1 ∩A2 = ∅, then A1 = A′
1 ∩C ′

1 and A2 = A′
2 ∩C ′

2

for some A′
1, A

′
2 ∈ A and C ′

1, C
′
2 ∈ C. Thus there is a D ∈ C that separates A1

from A2. Observe also that if k ∈ N and r ∈ T ′ with |r| ≥ k, then E′
r ⊂ Ck or

Ck ∩E′
r = ∅.

Let K be the Stone space that corresponds to the algebra C. Thus K is a
zero-dimensional compactification of Z. We let A denote the closure of A in K.
Let Yr be the closure of E′

r (seen as a subset of Z) in K. Note that if σ ∈ [T ′]
then Yσ�k 
= ∅ for every k and hence there is an xσ ∈

⋂∞
k=0 Yσ�k. Since basic

neighbourhoods of xσ are of the form Ck where Ck ∈ C and since Yσ�k ⊂ Ck we
have that the sequence Yσ�0, Yσ�1, . . . converges to xσ.

We put X = {xσ : σ ∈ [T ′]} and note that because of condition (1) we have Z ⊂
X. Let Xr = Yr ∩X for every r ∈ T ′ and note that every Xr is nonempty because
E′

r ⊂ Xr. We now verify that X is a witness to the almost zero-dimensionality of
E. It suffices to prove that every B ∈ B is closed in X. Let xσ ∈ X and B ∈ B. If
there is a k ∈ ω such that B ∩E′

σ�k = ∅, then we can find a D ∈ C with B ⊂ D and

D∩E′
σ�k = ∅. Thus the clopen set D separates B from Yσ�k in K and hence xσ /∈ B.

If E′
σ�k ∩ B 
= ∅ for every k then E′

σ�0, E
′
σ�1, . . . converges in the topology T to a

point of E which has to lie in B because B is closed in the witness topology. This
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point has to be equal to xσ (which is the limit of the closures of E′
σ�0, E

′
σ�1, . . . ) so

we have xσ ∈ B.
Let s, t ∈ T ′ such that |s| = |t| and s 
= t. Then E′

s ∩ E′
t = ∅ and hence there

is a D ∈ C that separates the two sets. Thus Ys and Yt must also be disjoint. So
we have that (Yr)r∈T ′ satisfies the disjointness condition (5). We now verify that
(Xr)r∈T ′ is a Sierpiński stratification for X. It is obvious that the system satisfies
condition (ii), that X∅ = X, and that Xt ⊂ Xs whenever s ≺ t. Let s ∈ T ′ and
let xσ ∈ Xs. Put k = |s| and note that xσ ∈ Ys and xσ ∈ Yσ�k. By disjointness
we have that σ�k = s. Put t = σ�(k + 1) and note that xσ ∈ Yt ∩ X = Xt with
t ∈ succ(s). So (Xr)r∈T ′ also satisfies condition (i) and is a Sierpiński stratification
of X.

By Lemma 4.11 there exists a USC function ϕ : X → I such that h(x) =

(x, ϕ(x)) defines a homeomorphism from E to Gϕ
0 . Note that h(E′

r) = Gϕ�Xr

0 and
that {x ∈ Xr : ϕ(x) > 0} = E′

r is dense in Xr for each r ∈ T ′. With condition (4)
for the system (E′

r)r∈T ′ and Lemma 5.9 we find a USC function χ : X → R
+ such

that {x ∈ X : χ(x) > 0} = Z, such that g(x, ϕ(x)) = (x, χ(x)) for x ∈ Z defines
a homeomorphism from Gϕ

0 to Gχ
0 , and such that every χ�Xs is a Lelek function,

which corresponds to condition (b) of Definition 7.8. Let s, t ∈ T ′ be such that

t ∈ succ(s). Note that g(h(E′
r)) = Gχ�Xr

0 for each r ∈ T ′ and hence condition (3)
of Definition 8.3 produces condition (a) of Definition 7.8. This completes the proof
that χ ∈ SL and we have Gχ

0 ≈ Gϕ
0 ≈ E. �

Lemma 8.5 combines with Theorem 7.10 to:

Theorem 8.6. Any two elements of E are homeomorphic.

Definition 8.7. E′ is the class of all nonempty spaces E such that there exists
an Fσδ-topology T on E that witnesses the almost zero-dimensionality of E and
there exist a nonempty tree T over a countable set and subspaces Es of E that are
closed with respect to T for each s ∈ T \ {∅} such that:

(1′) E∅ is dense in E and Es =
⋃
{Et : t ∈ succ(s)} whenever s ∈ T ,

(2′) each x ∈ E has a neighbourhood U that is an anchor for (Es)s∈T in (E,T),
(3′) for each s ∈ T \ {∅} and t ∈ succ(s) we have that Et is nowhere dense in

Es,
(4′) E is {Es : s ∈ T}-cohesive, and
(5′) E can be written as a countable union of nowhere dense subsets that are

closed with respect to T.

Theorem 8.8. E = E′.

Proof. Comparing Definition 8.3 with Definition 8.7 we immediately see that
(1) ⇒ (1′), (2) ⇒ (2′), (3) ⇒ (3′), (4) ⇒ (4′), and (1)&(3) ⇒ (5′). In addition, it
follows from condition (2) and the fact that T is a witness topology that every point
has a neighbourhood U in E that is T-closed such that U seen as a subspace of
(E,T) has a Sierpiński stratification. Consequently, (E,T) is a countable union of
closed sets that are absolute Fσδ and hence (E,T) is an absolute Fσδ-space. Thus
E ⊂ E′.

We now prove that E′ ⊂ E. Let E ∈ E′ with associated topology T and system
(Es)s∈T . Let ρ and d be metrics for E respectively Z = (E,T) such that ρ ≥ d.
Let diamρ, diamd, U

ρ
ε , and Ud

ε denote diameters and open ε-neighbourhoods. We
choose a Sierpiński stratification (Zs)s∈S of the space Z such that every Zs is
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nonempty. Assume that S is a tree over a countable set A such that A ∩ T = ∅.
With condition (5′) we may also assume that Za is nowhere dense in E for every
a ∈ A′ = {s ∈ S : |s| = 1}. Our proof now consists in carefully ‘grafting’ the
stratification (Et)t∈T onto (Zs)s∈S so that the combined stratification (Xr)r∈T

satisfies Definition 8.3.
Let a ∈ A′ be fixed. Select for every s ∈ S with a ≺ s a countable dense

subset of Zs (with respect to ρ). Let Da be the union of these dense sets so Da is
a countable set with the property that Da ∩ Zs is ρ-dense in Zs whenever a ≺ s.
Let {pai : i ∈ N} be an enumeration of Da such that {j : paj = pai } is infinite for each
i ∈ N. With condition (1′) we can select for every x ∈ E∅ a τ (x) ∈ [T ] such that
x ∈

⋂∞
k=0Eτ(x)�k. Condition (2′) implies that Eτ(x)�0, Eτ(x)�1, . . . converges to x in

Z. We now select recursively a sequence of points qa1 , q
a
2 , . . . from E∅ and numbers

ka1 , k
a
2 , . . . in N \ {1} so that for every n ∈ N we have, using the abbreviation

θan = τ (qan)�kan,
(a) ρ(pan, q

a
n) < 1/n,

(b) diamd Eθa
n
< 1/n,

(c) Eθa
n
∩ Za = ∅, and

(d) Eθa
n
∩ Eθa

i
= ∅ for each i < n.

Assume that n ∈ N and that qai and kai have been found for 1 ≤ i < n. Since

F = Za ∪
⋃n−1

i=1 Eθa
i
is nowhere dense in E and since E∅ is dense in E we can

find a qan ∈ E∅ \ F with ρ(pan, q
a
n) < 1/n. Since F is closed in Z we can find a

kan ∈ N\{1} such that Eτ(qan)�ka
n
∩F = ∅ and diamd Eτ(qan)�ka

n
< 1/n. This completes

the induction. Note that since qan ∈ Eθa
n
and d ≤ ρ we have that Eθa

n
⊂ Ud

2/n(p
a
n).

We will construct a stratification (Xr)r∈T that satisfies the conditions of Defi-
nition 8.3. T will be a tree over A ∪ T that contains S. Begin by putting X∅ = E.
Let s ∈ S \ {∅} and a = s�1. We define

(8.3) Ns = {n ∈ N : n ≥ |s| and pan ∈ Zs}
and

(8.4) Xs = Zs ∪
⋃

{Eτ(qan)�(ka
n+|s|) : n ∈ Ns}.

Since Zs and every Et is closed in Z and since Eτ(qan)�(ka
n+|s|) ⊂ Eθa

n
⊂ Ud

2/n(p
a
n) we

have that Xs is closed in Z and that Xs ⊂ Ud
2/|s|(Zs). We now define the following

tree over A ∪ T :

(8.5) T = S ∪ {s�t1 . . . tl : s ∈ S \ {∅}, a = s�1, l ∈ N, n ∈ Ns,

t0 = τ (qan)�(kan + |s|), and ti ∈ succ(ti−1) in T for 1 ≤ i ≤ l}.

If r = s�t1 . . . tl ∈ T \ S then we define

(8.6) Xr = Etl .

It is left to verify that (Xr)r∈T satisfies conditions (1)–(4) of Definition 8.3.
Condition (1). X∅ = E by definition. Note that E =

⋃
a∈A′ Za ⊂

⋃
{Xr : r ∈

T, |r| = 1} ⊂ E. Let r, r′ ∈ T with |r| ≥ 1 and r′ ∈ succ(r). Put a = r�1 = r′�1. If
r′ ∈ S then r ∈ S and Zr′ ⊂ Zr. If n ∈ Nr′ then n ≥ |r′| > |r| and n ∈ Nr. Thus
we have that Eτ(qan)�(ka

n+|r′|) ⊂ Eτ(qan)�(ka
n+|r|) and hence Xr′ ⊂ Xr. If r′ ∈ T \ S

then r′ = s�t1 . . . tl and Xr′ = Etl with t1 ∈ succ(τ (qan)�(kan+ |s|)) for some n ∈ Ns

and a = s�1. If l > 1 then r = s�t1 . . . tl−1 and Etl ⊂ Etl−1
= Xr because
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tl ∈ succ(tl−1). If l = 1 then r = s and Xr′ = Et1 ⊂ Eτ(qan)�(ka
n+|r|) ⊂ Xr. Thus we

have
⋃
{Xr′ : r

′ ∈ succ(r)} ⊂ Xr.
For the converse inclusion, let r ∈ T \ {∅} with a = r�1. First, let r ∈ S and

Xr = Zr ∪
⋃
{Eτ(qan)�(ka

n+|s|) : n ∈ Nr}. We have Zr =
⋃
{Zs : s ∈ S ∩ succ(r)} ⊂⋃

{Xs : s ∈ S ∩ succ(r)}. Consider now an x ∈ Eτ(qan)�(ka
n+|s|) with n ∈ Nr. Then

there exists a t ∈ succ(τ (qan)�(kan + |s|)) with x ∈ Et. Note that r′ = r�t ∈
succ(r) ⊂ T and that Xr′ = Et. Secondly, let r ∈ T \ S and x ∈ Xr. Then by the
same reasoning there is an r′ = r�t with x ∈ Xr′ .

Condition (2). Let x ∈ E and let U be a neighbourhood of x that is an anchor
for (Xt)t∈T in Z. Let ξ ∈ [T] such that U ∩ Xξ�i 
= ∅ for all i ∈ ω. If ξ ∈ [S]
then Zξ�0, Zξ�1, . . . converges to a point z in Z. Since Zξ�i ⊂ Xξ�i ⊂ Ud

2/i(Zξ�i) for
each i we have that also Xξ�0, Xξ�1, . . . converges to z with respect to d. Consider
now the case ξ ∈ [T] \ [S]. Then ξ must have the form s�t1t2 . . . with s ∈ S \ {∅}
and ti+1 ∈ succ(ti) ⊂ T for every i ∈ N. Let χ ∈ [T ] be such that ti ≺ χ for
each i ∈ N. Put l = |s| and note that Xξ�(l+i) = Eti for each i ∈ N which
implies that U ∩ Eχ�j 
= ∅ for all j ∈ ω. Since U is an anchor we have that
Eχ�0, Eχ�1, . . . converges to a point y in Z. Since a tail of this sequence is identical
to Xξ�(l+1), Xξ�(l+2), . . . we have that Xξ�0, Xξ�1, . . . converges also to y in Z.

Condition (3). Consider r, r′ ∈ T with r′ ∈ succ(r). We first assume that r′ ∈ S
(and hence also r ∈ S). Let x ∈ Xr′ and let ε > 0. Since Xr′ is closed in Z and
hence in E it suffices to prove that there is a z ∈ Xr \Xr′ with ρ(x, z) < ε. Since
r′ ∈ S we have Xr′ = Zr′ ∪

⋃
{Eτ(qan)�(ka

n+|r′|) : n ∈ Nr′} with a = r′�1. We may
assume that there is an n ∈ Nr′ and a y ∈ Eτ(qan)�(ka

n+|r′|) such that ρ(x, y) < ε/2 as

follows. If x ∈ Zr′ then we select an n ≥ max{|r′|, 4/ε} such that pan ∈ Zr′∩Uρ
ε/4(x).

Putting y = qan we find that y ∈ Eτ(qan)�(ka
n+|r′|) and ρ(x, y) < ε/2 using property

(a). The same argument that showed that Xr′ is closed also proves that

(8.7) F = Zr′ ∪
⋃

{Eτ(qai )�(ka
i +|r′|) : i ∈ Nr′ \ {n}}

is a closed subset of Z that does not contain y by properties (c) and (d). Since
Eτ(qan)�(ka

n+|r′|) is by condition (3′) nowhere dense in Eτ(qan)�(ka
n+|r′|−1) we have that

there exists a z ∈ Eτ(qan)�(ka
n+|r′|−1) \ Eτ(qan)�(ka

n+|r′|) with ρ(y, z) < ε/2 and z /∈ F .
So z /∈ Xr′ and ρ(x, z) < ε. If r = ∅ then z ∈ E = Xr and we are finished. Let
r 
= ∅ and hence a = r�1. We have |r| < |r′| ≤ n and Zr′ ⊂ Zr thus n ∈ Nr.
Consequently,

(8.8) z ∈ Eτ(qan)�(ka
n+|r′|−1) = Eτ(qan)�(ka

n+|r|) ⊂ Xr.

If r′ ∈ T \S then r′ = s�t1 . . . tl and Xr′ = Etl with t1 an immediate successor
of t0 = τ (qan)�(kan + |s|) for some n ∈ Ns and a = s�1. Note that Xr′ = Etl

is nowhere dense in Etl−1
because tl ∈ succ(tl−1) and tl−1 
= ∅. If l > 1 then

r = s�t1 . . . tl−1 and Xr = Etl−1
. If l = 1 then r = s and Et0 ⊂ Xr.

Condition (4). Let x ∈ E and let U be a neighbourhood of x such that U
contains no nonempty clopen subsets of any Et with the ρ-topology. Let C be
a nonempty clopen subset of some Xr with the ρ-topology that is contained in
U . If r ∈ T \ S then Xr = Et for some t ∈ T so we have that r ∈ S. Since
X∅ =

⋃
{Xs : |s| = 1} we may assume that r 
= ∅ and we may put a = r�1.

If C 
⊂ Zr then C meets some Eτ(qan)�(ka
n+|r|) that is contained in Xr so we may

conclude that C ⊂ Zr. SinceD
a∩Zr is dense in Zr and C is clopen inXr, both with

respect to the ρ-topology, we may select a pai ∈ C ∩Zr. Because of the way Da was
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enumerated we may choose a j ∈ N with paj = pai , j ≥ |r|, and Xr ∩ Uρ
1/j(p

a
j ) ⊂ C.

Then j ∈ Nr and qaj ∈ Uρ
1/j(p

a
j ). Since qaj ∈ Eτ(qaj )�(ka

j +|r|) ⊂ Xr we have that

qaj ∈ C ∩ Eτ(qaj )�(ka
j +|r|), a contradiction. �

Definition 8.9. For the next three results consider a fixed sequence E0, E1, E2,
. . . of subsets of R and let

E = {z ∈ �p : zn ∈ En for every n ∈ ω}
be a corresponding subspace of some fixed �p.

The following two results were proved in Dijkstra [16].

Theorem 8.10. If E is not empty and every En is zero-dimensional, then the
following statements are equivalent:

(1) there exists an x ∈
∏∞

n=0 En with ‖x‖ = ∞ and limn→∞ xn = 0,
(2) every nonempty clopen subset of E is unbounded,
(3) E is cohesive, and
(4) dimE > 0.

Recall that if A0, A1, . . . is a sequence of subsets of a space X, then

lim supn→∞ An =
⋂∞

n=0

⋃∞
k=nAk.

Corollary 8.11. If 0 is a cluster point of lim supn→∞ En, then every non-
empty clopen subset of E is unbounded (and hence dimE 
= 0).

We now show that Theorems 8.6 and 8.8 are not void.

Proposition 8.12. Let dimE > 0 and let every En be an Fσδ-subset of R

that is zero-dimensional. If infinitely many of the En’s are of the first category in
themselves, then E ∈ E and E is homeomorphic to E.

Proof. We begin by re-ordering the En’s such that En is of the first category
in itself for every even n. Recall that the p-norm ‖ · ‖ is an LSC function from R

ω

to [0,∞]. We let X be the (zero-dimensional) product space
∏∞

n=0 En ⊂ R
ω and

we note that since the norm is LSC on X we have that X witnesses the almost
zero-dimensionality of E. Let T be the witness topology on E that is inherited from
X. Since En is an Fσδ-space we may choose a Sierpiński stratification (Zn

s )s∈Tn

for En such that every Zn
s 
= ∅. Since E2n is of the first category in itself we may

assume that for every t ∈ T2n with |t| = 1 we have that Z2n
t is nowhere dense in

Z2n
∅ = E2n. We now construct a tree T as follows:

(8.9) T = {(s0, . . . , sk, s′0, . . . , s′k) : si ∈ T2i, s
′
i ∈ T2i+1,

and |si| = |s′i| = k − i for 0 ≤ i ≤ k where k ∈ ω},
where if s = (s0, . . . , sk, s

′
0, . . . , s

′
k) ∈ T and t = (t0, . . . , tl, t

′
0, . . . , t

′
l) ∈ T, then

s ≺ t means that k ≤ l, si ≺ ti and s′i ≺ t′i for every i ≤ k. Observe that although
T does not formally satisfy Definition 3.4 it is obviously isomorphic to a countable
tree. Note also that in this interpretation we have |(s0, . . . , sk, s′0, . . . , s′k)| = k. Let
s = (s0, . . . , sk, s

′
0 . . . , s

′
k) ∈ T and define the following closed subset of X:

(8.10) Xs = {x ∈ X : x2i ∈ Z2i
si and x2i+1 ∈ Z2i+1

s′i
for i ≤ k}.

Let Es stand for �p ∩ Xs with the norm topology. Since dimE > 0 we have that
statement (1) of Theorem 8.10 is valid for E. Note that (1) remains valid if we
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replace a finite number of the En’s by other nonempty sets thus it follows that
every nonempty, clopen subset of Es is unbounded which means that we find that
E is {Es : s ∈ T}-cohesive just by choosing bounded neighbourhoods for the points
of E.

It is easily verified that (Xs)s∈T is a Sierpiński stratification of X because it is
a product of Sierpiński stratifications. This means that also (Es)s∈T satisfies condi-
tion (1) of Definition 8.3 and that since X is a witness condition (2) is easily seen to
be satisfied as well, see Remark 8.2. We now verify condition (3) of Definition 8.3.
Let s = (s0, . . . , sk, s

′
0, . . . , s

′
k) ∈ T and let t = (t0, . . . , tk+1, t

′
0, . . . , t

′
k+1) ∈ succ(s).

Let ε > 0 and let x ∈ Et. Then x2k ∈ Z2k
tk
. Since |tk| = (k + 1) − k = 1 we have

that Z2k
tk

is nowhere dense in E2k. Select a q ∈ E2k \ Z2k
tk

with |q − x2k| < ε and
define y ∈ �p \ Et by

(8.11) yi =

{
q, if i = 2k;

xi, if i 
= 2k.

We have ‖y−x‖ = |q−x2k| < ε. Since x2i ∈ Z2i
ti ⊂ Z2i

si for i < k, q ∈ E2k = Z2k
∅ =

Z2k
sk
, and x2i+1 ∈ Z2i+1

t′i
⊂ Z2i+1

s′i
for i ≤ k we have that y ∈ Es. This completes the

proof that E ∈ E. Note that if we define ϕ(x) = 1/(1 + ‖x‖) on X then it is easily
seen that ϕ ∈ SL. In particular, η (formula (2.4)) is in SL.

It is obvious that E is one of the spaces that satisfies the conditions so the
homeomorphy of E and E follows from Theorem 8.6. �

Proposition 8.12 combines with Theorems 8.6 and 8.8 to prove the following
characterization theorem.

Theorem 8.13. The following statements about a space E are equivalent:

(1) E is homeomorphic to E,
(2) E ∈ E, and
(3) E ∈ E′.

Remark 8.14. At first glance there does not appear to be much difference
between Definitions 8.3 and 8.7. This, however, is a false impression. To use Defi-
nition 8.3 to prove that a given space E is homeomorphic to E we have to construct
a stratification of the entire space whereas condition (1′) of Definition 8.7 requires
only a stratification of a dense subset of E. Let us examine the consequences if
the Erdős space candidate E is for instance a topological group. Then we need
only three things to satisfy Definition 8.7: an Fσδ witness topology that has the
property that group translations are homeomorphisms, the first category property
(5′), and a suitable closed imbedding of Erdős space in E. Because if we have a
copy E of E in E of the right type which means in particular that it is also a closed
imbedding on the level of the respective witness topologies, then we can obtain the
dense stratified set E∅ by simply multiplying E with a countable dense subset of
the group E. In effect, the condition E ∈ E′ can be proved by using universality
type argument similar to those used in zero-dimensional and infinite-dimensional
topology.

This is the method that we will use to classify homeomorphism groups in Chap-
ter 10. The particular imbeddings of Erdős space that we will use come from Dijk-
stra and van Mill [21] and Dijkstra [15] where we constructed them for the purpose
of showing that the homeomorphism groups in question are one-dimensional.
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Corollary 8.15. If O ⊂ E is nonempty and open, then O is homeomorphic
to E.

Proof. Let T and (Es)s∈T be a witness topology respectively a stratification
for E as in Definition 8.3. If O is a nonempty open subset of E, then we define
T′ = {A ∩O : A ∈ T}, E′

s = Es ∩O for s ∈ T , and T ′ = {s ∈ T : E′
s 
= ∅}. Clearly,

T′ is a witness topology for O, every E′
s is closed in (O,T′), and T ′ is tree. It

is obvious that (E′
s)s∈T ′ satisfies conditions (1) and (3) of Definition 8.3 and that

condition (4) follows from Remark 5.2. For condition (2) choose for each point in O
a neighbourhood U ⊂ O that is closed with respect to T and that satisfies condition
(2) for the system (Es)s∈T . If σ ∈ [T ] is such that U ∩ E′

σ�k = U ∩ Eσ�k 
= ∅ for

each k ∈ ω, then Eσ�0, Eσ�1, . . . converges in (E,T) to a point x that must lie in
U (and hence in O) because U is closed with respect to T. Then E′

σ�0, E
′
σ�1, . . .

converges also to x in (O,T′). Thus O ∈ E. �
Kawamura, Oversteegen, and Tymchatyn [31] proved that Corollary 8.15 is

also valid for complete Erdős space.

Lemma 8.16. We may replace condition (4) in Definition 8.3 and condition
(4′) in Definition 8.7 by the following weaker condition:

(4∗) If x is a point and U is a neighbourhood of x in E, then there is a neigh-
bourhood V of x in E such that whenever an Es meets V then it also
meets U \ V .

Proof. (4) ⇒ (4∗). Assume that E satisfies (4) and let U be an open neigh-
bourhood of some point x in E. Select a neighbourhood W of x in E such that W
contains no non-empty clopen subsets of any Es. Select a neighbourhood V of x in
E such that V ⊂ U ∩W and V is closed in (E,T). Suppose that Es ∩ V 
= ∅ and
Es ∩ U \ V = ∅. Note that C = V ∩Es is T-closed and therefore also closed in Es.
On the other hand, C = U ∩ Es is T-open in Es. Thus we have that V and hence
W contain a nonempty clopen subset C of Es. Since this contradicts the cohesion
assumption we have proved property (4∗).

(1)&(2)&(4∗) ⇒ (4). Assume (1), (2), and (4∗) and let x be a point in E. Let
U be a neighbourhood of x in E that is an anchor for (Es)s∈T in (E,T). Suppose
that C is a nonempty clopen subset of some Es that is contained in U . With
property (4∗) choose for each x ∈ C a neighbourhood V (x) of x in E such that
V (x) ⊂ C ∪ (E \ Es), V (x) is closed in (E,T), and Et ∩ (C ∪ (E \ Es)) \ V (x) 
= ∅
whenever Et ∩ V (x) 
= ∅. In particular, we have that Et ∩ V (x) 
= ∅ implies
Et ∩ C \ V (x) 
= ∅ whenever s ≺ t. Since E is separable metric we can find a
countable set {ai : i ∈ N} ⊂ C with C = Es ∩

⋃
{V (ai) : i ∈ N}. Since Es \ C

is open in Es we can use Remark 2.5 to write Es \ C =
⋃∞

i=1 Fi where every Fi is
closed in (E,T). We now construct recursively a sequence t0 � t1 � · · · in T such
that for every i ∈ ω,

(a) Eti ∩ C 
= ∅ and

(b) Eti ∩
⋃i

j=1(V (aj) ∪ Fj) = ∅.
We put t0 = s and note that the induction hypotheses are trivially satisfied. Assume
that ti has been found. If Eti ∩V (ai+1) 
= ∅ then we have Eti ∩C \V (ai+1) 
= ∅ and
if Eti ∩ V (ai+1) = ∅ then we also have Eti ∩C \ V (ai+1) 
= ∅ because Eti ∩C 
= ∅.
Let x ∈ Eti ∩C \V (ai+1) and select a σ ∈ [T ] such that ti ≺ σ and x ∈

⋂∞
k=1Eσ�k.

Note that x is outside of the T-closed set V (ai+1) ∪ Fi+1. Since x is an element
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of the anchor U the sequence Eσ�0, Eσ�1, . . . converges to x in (E,T) and we may
select a k > |ti| such that Eσ�k ∩ (V (ai+1) ∪ Fi+1) = ∅. Put ti+1 = σ�k and note
that x ∈ Eti+1

∩ C. Also observe that ti � ti+1 and Eti+1
⊂ Eti thus hypothesis

(b) is satisfied for i+ 1. The induction is complete.
Since t0 � t1 � · · · we can find a τ ∈ [T ] with τ�|ti| = ti for every i ∈ ω. By

property (a) and the fact that C is contained in the anchor U there is a y ∈ E such
that y ∈

⋂∞
k=0 Eτ�k =

⋂∞
i=0 Eti . By property (b) we have that y is no element of⋃∞

j=1(V (aj)∪Fj), which is a set that contains Es. Since y ∈ Et0 = Es we have the

contradiction that proves condition (4).
Note that condition (4∗) is strictly weaker than (4): it is easily seen that for

instance the space Q admits a T and (Es)s∈T that satisfy (1), (3), and (4∗), but
obviously not (4). �

Using condition (4∗) we can now formulate the following characterization the-
orems that correspond to E respectively E′.

Theorem 8.17. A nonempty space E is homeomorphic to E if and only if there
exists a zero-dimensional topology T on E that is coarser than the given topology
on E and there exist a nonempty tree T over a countable set and subspaces Es of
E that are closed with respect to T for each s ∈ T such that:

(1) E∅ = E and Es =
⋃
{Et : t ∈ succ(s)} whenever s ∈ T ,

(2) for each s ∈ T and t ∈ succ(s) we have that Et is nowhere dense in Es,
and

(3) if x is a point and U is a neighbourhood of x in E, then there is a neigh-
bourhood V ⊂ U of x in E that is a closed anchor for (Es)s∈T in (E,T)
with the property that whenever an Es meets V then it also meets U \ V .

Theorem 8.18. A nonempty space E is homeomorphic to E if and only if
there exists a zero-dimensional Fσδ-topology T on E that is coarser than the given
topology on E and there exist a nonempty tree T over a countable set and subspaces
Es of E that are closed with respect to T for each s ∈ T \ {∅} such that:

(1) E∅ is dense in E and Es =
⋃
{Et : t ∈ succ(s)} whenever s ∈ T ,

(2) for each s ∈ T \ {∅} and t ∈ succ(s) we have that Et is nowhere dense in
Es,

(3) E can be written as a countable union of nowhere dense subsets that are
closed with respect to T, and

(4) if x is a point and U is a neighbourhood of x in E, then there is a neigh-
bourhood V ⊂ U of x in E that is a closed anchor for (Es)s∈T in (E,T)
with the property that whenever an Es meets V then it also meets U \ V .

Proposition 8.26 and Theorem 8.27 of the preprint version are now Proposi-
tion 8.12 and Theorem 8.13.



CHAPTER 9

Factoring Erdős space

We begin by noting an interesting connection between Erdős space and com-
plete Erdős space.

Proposition 9.1. Ec ×Q
ω is homeomorphic to E.

Proof. Consider the sequence E0, E1, . . . of subsets of R that is defined by
E2n = Q ∩ (−2−n, 2−n) and E2n+1 = {0} ∪ {1/m : m ∈ N} for n ∈ ω. Let E be
defined as in Definition 8.9 with p = 2. It is easily seen that Corollary 8.11 and
Proposition 8.12 apply so E is homeomorphic to E. We obviously have that E is
homeomorphic to the product of Ec and

(9.1) Z = {x ∈ �2 : xn ∈ Q ∩ (−2−n, 2−n) for each n ∈ ω}.
Since it is well-known that the norm topology on Z coincides with the topology of
coordinate-wise convergence we have that Z is homeomorphic to Q

ω. �
This proposition implies that the product of every zero-dimensional Fσδ-space

with E is homeomorphic to E, see van Engelen [28, Theorem 4.5.2]. We improve
on this result as follows. We call a space X an Erdős space factor if there is a space
Y such that X × Y is homeomorphic to E.

Theorem 9.2 (Stability). For a nonempty space E the following statements
are equivalent:

(1) E × E is homeomorphic to E,
(2) E is an Erdős space factor,
(3) E is homeomorphic to a retract of E,
(4) E admits an imbedding as a C-set in E,
(5) E admits a closed imbedding into E,
(6) E is homeomorphic to a Gδ-subset of E, and
(7) E is almost zero-dimensional as witnessed by an Fσδ-topology.

Proof. (1) ⇒ (2), (2) ⇒ (3), (4) ⇒ (5), and (5) ⇒ (6) are trivial and
(3) ⇒ (4) by (the easy half of) Theorem 4.19.

(6) ⇒ (7). Assume that E is a Gδ-subset of E. Consider the product topology
on E that is inherited from Q

ω and recall that this topology witnesses the almost
zero-dimensionality of E. Since the Hilbert norm is LSC with respect to the product
topology we have that E is an Fσ-subset of the Fσδ-space Q

ω. So the product
topology on E is an Fσδ-topology. Since this topology is a witness to almost zero-
dimensionality and E is Gδ in E we have that E is an Fσδ-set with respect to the
product topology, see Remark 2.5. So the product topology is a witness to the
almost zero-dimensionality of E and it is absolute Fσδ.

(7) ⇒ (1). Assume now that (7) is valid. Let Z be the space E equipped
with the Fσδ-topology. Choose a Sierpiński stratification (Zt)t∈T for Z. Choose a
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witness topology and a system (Ys)s∈S for the space E that satisfies the conditions
in Definition 8.3. Let Y be E equipped with that witness topology. Consider the
product tree S ∗T and put X = Y ×Z and Xs∗t = Ys×Zt for s∗ t ∈ S ∗T . Clearly,
X witnesses the almost zero-dimensionality of E×E. By Remark 5.2 we have that
the system (Xr)r∈S∗T satisfies condition (4) of Definition 8.3. The other conditions
are trivially satisfied so E× E ∈ E. Thus E× E ≈ E by Theorem 8.13. �

Since E is a universal space for the class of almost zero-dimensional spaces,
Theorem 4.15, we have:

Corollary 9.3. Every complete, almost zero-dimensional, nonempty space X
is an Erdős space factor.

If p is a point in a space X then the weak product W (X, p) is defined by

(9.2) W (X, p) = {x ∈ Xω : xi = p for all but finitely many i ∈ ω}.
Corollary 9.4. Eω and W (E,0) are homeomorphic to E.

Proof. Let Z stand for the set E equipped with an Fσδ-topology that witnesses
the almost zero-dimensionality of E. Then the topologies on Zω and W (Z,0)
are witnesses to the almost zero-dimensionality of Eω respectively W (E,0). The
product Zω is trivially an Fσδ-space and W (Z,0) is a countable union of closed Fσδ-
spaces so also absolutely Fσδ. Thus we have by Theorem 9.2 that E ≈ E×Eω ≈ Eω

and E ≈ E×W (E,0) ≈ W (E,0). �
Corollary 9.5. (Ec ×Q)ω is homeomorphic to E.

Proof. By Proposition 9.1 and Corollary 9.4 we have (Ec × Q)ω ≈ (Ec ×
Q

ω)ω ≈ Eω ≈ E. �
Remark 9.6. Interestingly, we now have that Ec and Eω

c , which are nonhome-
omorphic according to Dijkstra, van Mill, and Steprāns [23], stabilize to the same
space E when multiplied by the zero-dimensional space Q

ω. Stability theorems
(and characterizations) for the spaces Ec and Eω

c can be found in Dijkstra and van
Mill [22] and Dijkstra [19], respectively.

Let T be a witness topology on an almost zero-dimensional space X. According
to Remark 4.12 X is an Fσδ-space whenever (X,T) is an Fσδ-space and (X,T) is
a Gδσδ-space whenever X is an Fσδ-space. In view of Theorem 9.2 the following
question is a natural one.

Question 9.7. Are the Erdős space factors precisely the nonempty almost
zero-dimensional Fσδ-spaces or, equivalently, does every almost zero-dimensional
Fσδ-space admit an Fσδ witness topology?



CHAPTER 10

Groups of homeomorphisms

If X is a topological space then H(X) denotes the group of autohomeomor-
phisms of X and if A ⊂ X then H(X,A) stands for the subgroup {h ∈ H(X) :
h(A) = A}. We denote the identity element of H(X) by eX . If O is an open
subset of X then HO(X) = {h ∈ H(X) : h�(X \ O) = eX\O} and HO(X,A) =
HO(X) ∩H(X,A).

If X is compact then the choice of a topology for H(X) is straightforward: the
compact-open topology coincides with the topology of uniform convergence with
respect to any compatible metric for X and makes H(X) into a topological group
that is a Polish space. If A,B ⊂ X then we define [A,B] = {h ∈ H(X) : h(A) ⊂ B}.
Thus a subbasis for the topology on H(X) consists of the sets [K,O], where K is
compact and O is open in X. Note that the topology of point-wise convergence is
in general neither metrizable nor compatible with the group structure.

For noncompact spaces the situation is more complex. In that case, the topol-
ogy of uniform convergence depends on the metric that one chooses for X and it
is usually much stronger than the compact-open topology. However, for locally
compact X a natural choice for a separable metric topology is available: the topol-
ogy that H(X) inherits from H(αX), where αX is the one-point compactification.
Since H(X) = HX(αX) it is also a topological group and a Polish space. Note that
the compact-open topology may, even for locally compact spaces, not be compatible
with the group structure, in particular with the inverse operation. However, if ev-
ery point in X has a neighbourhood that is a continuum, then the topology that is
inherited from H(αX) coincides with the compact-open topology, see Dijkstra [17]
and Arens [6]. The case that H(X) is equipped with the compact-open topology
for noncompact X is discussed separately in Remark 10.7.

If X is locally compact and A ⊂ X, then we think of H(X,A) as a subspace of
H(X). So H(X,A) is a topological group and hence a homogeneous space. If D is
a zero-dimensional dense subset of X, then according to Dijkstra and van Mill [21]
the space H(X,D) is almost zero-dimensional. We are here interested in the case
that D is a countable dense subset of X. Then the topology on H(X,D) that is
generated by the subbasis {[{d}, O] : d ∈ D and O open in X} is called the topology
of pointwise convergence on D. This topology T coincides with the topology that
H(X,D) inherits from the zero-dimensional product space DD via the injection
h 	→ h�D of H(X,D) into DD. The topology T is in general not compatible with
the group structure but if f ∈ H(X,D), then the map h 	→ h◦f is a homeomorphism
of (H(X,D),T).

Theorem 10.1. Let M be a compact space, let O an open subset of M , and let
D1 be a countable dense subset of O. If D2 is a countable dense subset of M\O, then
the topology of pointwise convergence on D1 ∪D2 is an Fσδ-topology that witnesses
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the almost zero-dimensionality of HO(M,D1) and hence HO(M,D1) is an Erdős
space factor.

Proof. Put D = D1 ∪D2 and let T be the (zero-dimensional) topology that
HO(M,D1) = HO(M,D) inherits from DD. Note that in order to prove that T

witnesses the almost zero-dimensionality of HO(M,D) it suffices to construct a
neighbourhood subbasis for the identity e = eM consisting of sets that are closed
with respect to T because multiplication with an f ∈ HO(M,D) is a homeomor-
phism with respect to T. Let S consist of all sets [K,F ]∩HO(M,D) where K and
F are closed subsets of M such that K = intK and K ⊂ intF . It is easily verified
that S is a neighbourhood subbasis at e in HO(M,D). Let [K,F ] ∩HO(M,D) be
an arbitrary element of S and let h ∈ HO(M,D)\ [K,F ]. Then {x ∈ K : h(x) /∈ F}
is an open nonempty subset of K. Since K = intK and D is dense we have that
D∩K is dense in K and hence there is an a ∈ D ∩K such that h(a) /∈ F . Observe
that [{a},M \ F ] ∩HO(M,D) is an element of T that is disjoint from [K,F ].

We now verify that T is an absolute Fσδ-topology and hence that HO(M,D)
is an Erdős space factor by the Stability Theorem 9.2. Let {(Ai, Bi) : i ∈ N} be a
countable collection of pairs of open subsets of M with disjoint closures such that
for every pair (A,B) of disjoint closed subsets of M there exists an i ∈ N with
A ⊂ Ai and B ⊂ Bi. Let ρ be a metric on M . Since D is countable the product
DD is an Fσδ-space. We define the following Fσδ-subsets of D

D:

S =
⋂

a∈D1

⋃

b∈D1

{h ∈ DD : h(b) = a} ∩
⋂

c∈D2

{h ∈ DD : h(c) = c},(10.1)

F =

∞⋂

i=1

∞⋃

n=1

⋂

a∈Ai∩D

⋂

b∈Bi∩D

{h ∈ DD : ρ(h(a), h(b)) ≥ 1/n},(10.2)

C =
∞⋂

i=1

∞⋃

n=1

⋂

a,b∈D
ρ(a,b)<1/n

{h ∈ DD : h(a) /∈ Ai or h(b) /∈ Bi}.(10.3)

Note that S consists of all surjective elements of DD that restrict to the identity
on D2. It suffices to show that the set H = {h�D : h ∈ HO(M,D)} coincides with
S ∩ F ∩ C. It is easily verified that H ⊂ S ∩ F ∩ C.

Let h ∈ S ∩ F ∩ C. Let A and B be disjoint closed subsets of M and select
an i ∈ N such that A ⊂ Ai and B ⊂ Bi. Since h ∈ C there is an n ∈ N such that
ρ(h−1(Ai), h

−1(Bi)) ≥ 1/n. Consequently, we have ρ(h−1(A), h−1(B)) ≥ 1/n and

hence h−1(A)∩h−1(B) = ∅. According to [37, Lemma A.8.3] this means that h can
be extended to a continuous h : M → M . Since h ∈ S we have h(D) = h(D) = D
and h�D2 = idD2

. Since D and D2 are dense in M respectively M \ O we have
that h is a surjection that is supported on O. Let x and y be distinct points of
M . Select an i such that x ∈ Ai and y ∈ Bi. Since h ∈ F there is an n such that
ρ(h(Ai∩D), h(Bi∩D)) ≥ 1/n and hence ρ(h(Ai ∩D), h(Bi ∩D)) ≥ 1/n. Since Ai

and Bi are open, D is dense, and h is continuous we have ρ(h(x), h(y)) ≥ 1/n. So
we may conclude that h is injective and hence h ∈ HO(M,D) and h ∈ H. �

A space X is called strongly locally homogeneous if the space has a basis B

such that for every B ∈ B and x, y ∈ B there is an autohomeomorphism h of X
that is supported on B and that maps x to y. The spaces Rn and the Hilbert cube
are well-known examples of such spaces. If a complete space X is strongly locally
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homogeneous, then for every open O in X and countable dense subsets D1 and D2

of O there is an autohomeomorphism h of X that is supported on O and that maps
D1 precisely onto D2, see Bennett [7].

Theorem 10.2. Let M be a locally compact space, let O be an open subset of
M , and let D be a countable dense subset of O. If O contains an open set that is
a topological n-manifold with n ≥ 2 or a Hilbert cube manifold, then HO(M,D) is
homeomorphic to Erdős space.

Proof. We use the method outlined in Remark 8.14. IfM is not compact then
HO(M,D) = HO(αM,D) so we may assume that M is compact. Let ρ be a metric
on M and let ρ̂ be the induced metric on H(M): ρ̂(f, g) = maxx∈M ρ(f(x), g(x))
for f, g ∈ H(M). Note that ρ̂ is right invariant: ρ̂(f ◦ h, g ◦ h) = ρ̂(f, g). We prove
the theorem by showing that HO(M,D) ∈ E′. Let D′ be the union of D with
a countable dense subset of M \ O and let T be the topology that HO(M,D) =

HO(M,D′) inherits from D′D′
. Thus according to Theorem 10.1 T is an Fσδ-

topology that witnesses the almost zero-dimensionality of HO(M,D). We let R̂

stand for the compactification [−∞,∞] of R. We shall use the convention ±∞+t =

±∞ when t ∈ R, thereby extending addition to a continuous operation from R̂×R

to R̂. Let J stand for the interval [−1, 1].
Consider first the case that O contains an open copy of Rn for some n ≥ 2. We

may then assume that O contains the n-cell R̂× Jn−1 such that R× (−1, 1)n−1 is

the interior of R̂ × Jn−1 in M . By strong local homogeneity we may also assume
that D ∩ (R× (−1, 1)n−1) equals the set Q×Q, where Q = (Q ∩ (−1, 1))n−1 \ {θ}
and θ = (0, . . . , 0) ∈ (−1, 1)n−1.

We define the Erdős space

(10.4) E = {z ∈ �1 : zi ∈ Q
+ for every i ∈ ω},

where Q
+ = Q ∩ [0,∞). Note that for z = (z0, z1, . . . ) ∈ E we have ‖z‖ =

∑∞
i=0 zi.

We will imbed E in HO(M,D). For every z ∈ E we define the function αz : I → R

by

(10.5) αz(r) =

{
zi2

i+1(2−i − r) +
∑i−1

k=0 zk, if 2−i−1 ≤ r ≤ 2−i for i ∈ ω;

‖z‖, if r = 0.

Note that αz(2
−i) =

∑i−1
k=0 zk for z ∈ E and i ∈ ω and that αz simply connects

these points with linear segments. It is clear that αz is well-defined and continuous
and that

(10.6) |αz(r)− αz′(r)| ≤ ‖z − z′‖
for every z, z′ ∈ E and r ∈ I. Furthermore, we have that αz(r) ∈ Q whenever
r ∈ Q ∩ (0, 1].

If y = (y1, . . . , yn−1) ∈ Jn−1 then we put |y| = max{|y1|, . . . , |yn−1|}. Note
that if y ∈ Q then |y| ∈ Q∩ (0, 1] and αz(|y|) ∈ Q for any z ∈ E. For each z ∈ E we

define the map Hz : R̂× Jn−1 → R̂× Jn−1 by

(10.7) Hz(x, y) = (x+ αz(|y|), y).
Since αz is continuous and bounded (by ‖z‖) it is clear that Hz is well-defined and

an element of H(R̂× Jn−1). Since αz(1) = 0 and ±∞+ αz(r) = ±∞ we have that
every Hz is supported on R× (−1, 1)n−1 and hence we may assume that every Hz
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has been extended with the identity to an element of HO(M). Observe that for
(x, y) ∈ R× Jn−1,

(10.8) d(Hz(x, y), Hz′(x, y)) = |αz(|y|)− αz′(|y|)| ≤ ‖z − z′‖,

where d is the standard euclidean metric that R × Jn−1 inherits from R
n. This

means that Hz�(R × Jn−1) depends continuously on z if we use the topology of
uniform convergence on H(R× Jn−1) with respect to d. So we certainly have that
H : E → HO(M) is continuous. For i ∈ ω let pi = (2−i, 0, . . . , 0). Observe that for
each z ∈ E, i ∈ ω, and r ∈ R,

(10.9) Hz(r, θ) = (r + ‖z‖, θ) and Hz(r, pi) =

(

r +
i−1∑

k=0

zk, pi

)

and hence π(Hz(0, θ)) = ‖z‖ and π(Hz(0, pi+1))− π(Hz(0, pi)) = zi, where π : R×
Jn−1 → R is the projection. This means that H is a one-to-one map. Since the
norm topology is the weakest topology on �1 that makes the coordinate projections
and the norm function continuous it follows that if we use H to pull the topology
of point-wise convergence on H(M) back to E, then we get a topology that is at
least as strong as the norm topology. Since we already know that H is continuous
and since the topology of uniform convergence is stronger than the topology of
point-wise convergence we have that H is an imbedding. If (x, y) ∈ Q × Q and
z ∈ E, then αz(|y|) ∈ Q so Hz(x, y) = (x + αz(|y|), y) ∈ Q × Q. If, on the other
hand, Hz(x, y) ∈ Q × Q then y ∈ Q and thus x ∈ Q − αz(|y|) = Q. So H is an
imbedding of E in HO(M,D).

Consider the point (0, p1) ∈ Q×Q ⊂ D. For every a ∈ D we define Ya = {h ∈
HO(M,D) : h(0, p1) = a} and we note that every Ya is closed with respect to T

and that
⋃

a∈D Ya = HO(M,D). Let for i ∈ N, zi = (1/i, 0, 0, . . . ) ∈ E and note

that limi→∞ zi = 0 thus limi→∞ Hzi = H0 = eM in HO(M,D). If h ∈ Ya then
limi→∞ h◦Hzi = h but h◦Hzi /∈ Ya because h(Hzi(0, p1)) = h(1/i, p1) 
= h(0, p1) =
a. Thus Ya is nowhere dense in HO(M,D) and condition (5′) of Definition 8.7 is
satisfied.

Let Z denote E equipped with the witness topology that is inherited from
(Q+)ω. We now verify that H : Z → (HO(M,D),T) is a closed imbedding. First
we investigate continuity: if (x, y) is a fixed element of Q × Q then there is an
i ∈ ω such that 2−i−1 ≤ |y| ≤ 2−i. Note that αz(|y|) is a linear function of
z0, . . . , zi so also Hz(x, y) depends continuously on only finitely many coordinates
zj . If a ∈ D′ \ (Q × Q) then Hz(a) = a for all z ∈ E. Thus Hz(a) depends
continuously on z for each a ∈ D′ which means that H : Z → (HO(M,D),T) is
continuous. Now let h ∈ HO(M,D) be such that there is a sequence z1, z2, . . . in Z
with limj→∞ Hzj (a) = h(a) for every a ∈ D′. Since R× (−1, 1)n−1 is the interior of

R̂× Jn−1 in M the set A = D′ \ (R× (−1, 1)n−1) is dense in M \ (R× (−1, 1)n−1).
Since every Hz is supported on R× (−1, 1)n−1 the same is true for h. Thus h(Q×
Q) = Q×Q, h(0, p0) = (0, p0), and

(10.10)

zi = π(h(0, pi+1))− π(h(0, pi))

= lim
j→∞

(π(Hzj (0, pi+1))− π(Hzj (0, pi)))

= lim
j→∞

zji
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is well-defined and an element of Q+ for each i ∈ ω. By the definition of the zk’s

we have π(h(0, pi)) =
∑i−1

k=0 zk. Since h is supported on R × (−1, 1)n−1 we have
π(h(0, θ)) < ∞ and hence

(10.11) ‖z‖ = lim
i→∞

π(h(0, pi)) = π(h( lim
i→∞

(0, pi))) = π(h(0, θ)) < ∞.

So z = (z0, z1, . . . ) ∈ Z and limj→∞ zj = z in Z. Thus h = Hz and we have that
H : Z → (HO(M,D),T) is a closed imbedding.

Let ±Ω = (±∞, θ) ∈ R̂×Jn−1. We now make an observation which will be the
key to satisfying conditions (2′) and (4′) of the definition of E′: if A is an unbounded
subset of E then

(10.12) diamρ̂{Hz : z ∈ A} ≥ ρ(−Ω,Ω).

Let z ∈ A and let n ∈ N be arbitrary. Select a zn in A such that ‖zn‖ > ‖z‖+2n and
let r = −‖z‖ − n. We have Hz(r, θ) = (−n, θ) and Hzn(r, θ) = (‖zn‖ − ‖z‖ − n, θ).
Hence,

(10.13)

diamρ̂{Hz : z ∈ A} ≥ lim sup
n→∞

ρ̂(Hz, Hzn)

≥ lim
n→∞

ρ((−n, θ), (‖zn‖ − ‖z‖ − n, θ))

= ρ(−Ω,Ω).

We now consider the natural stratification of E that satisfies Definition 8.3, cf.
Proposition 8.12. Let T = (Q+)<ω and for each s = q1 . . . qk ∈ T we put

(10.14) Es = {z ∈ E : zi−1 = qi for 1 ≤ i ≤ k}.
Note that according to Remark 8.2 every bounded subset of E is an anchor for
(Es)s∈T in Z and that according to Corollary 8.11 every nonempty clopen subset
of any Es is unbounded. Let F = {fq : q ∈ Q

+} be a countable dense subset of
HO(M,D). Since H : Z → (HO(M,D),T) is a closed map we have that Xs =
{Hz : z ∈ Es} is closed with respect to T for each s ∈ T . We define (Es)s∈T as
follows:

(10.15) E∅ = X∅ ◦ F
and if s = q0 . . . qk ∈ T \ {∅} then

(10.16) Es = Xq1...qk ◦ fq0 .
Note that if f ∈ HO(M,D) then the map h 	→ h ◦ f is a homeomorphism of
(HO(M,D),T) as well as of HO(M,D). So every Es is closed with respect to T

provided s 
= ∅.
All that remains is to show that (Es)s∈T satisfies conditions (1′)–(4′) of Def-

inition 8.7. Since H0 = eM we have that E∅ contains F and is dense. The other
part of condition (1′) is equally trivial. Since H : E → HO(M,D) is an imbed-
ding we have that condition (3′) is satisfied. Now let U be an arbitrary set in
HO(M,D) such that diamρ̂ U < ρ(−Ω,Ω). We shall see that U works for condition
(2′) as well as (4′). Let σ = q0q1 . . . ∈ [T ] be such that Eσ�k ∩ U 
= ∅ for each
k ∈ ω. Putting τ = q1q2 . . . ∈ [T ] we have that Xτ�k ∩ (U ◦ f−1

q0 ) 
= ∅ for each

k ∈ ω. Since ρ̂ is right invariant we have diamρ̂(U ◦ f−1
q0 ) < ρ(−Ω,Ω) and hence

V = {z ∈ E : Hz ∈ U ◦ f−1
q0 } is bounded. Thus V is an anchor for (Es)s∈T in Z and

obviously Eτ�k∩V 
= ∅ for each k ∈ ω. Thus Eτ�0,Eτ�1, . . . converges to an element z
in Z. ThenXτ�0, Xτ�1, . . . converges toHz and Eσ�0, Eσ�1, . . . converges toHz◦fq0 ,
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both with respect to T. Thus condition (2′) is satisfied. Now let C be a nonempty
clopen subset of some Es such that C ⊂ U . We may assume that |s| ≥ 1 and we
put q = s�1 and q�t = s. So diamρ̂(C ◦f−1

q ) < ρ(−Ω,Ω) and C ◦f−1
q is a nonempty

clopen subset of Xt. This means that {z ∈ E : Hz ∈ C ◦f−1
q } is a nonempty, clopen,

bounded subset of Et. As mentioned above, this contradicts Corollary 8.11 so we
may conclude that condition (4′) is satisfied and HO(M,D) ∈ E′.

Consider now the case that O contains an open subset that is a Q-manifold,

where Q = I
ω. Then we may assume that O contains the Hilbert cube R̂×Jn−1×Q

such that R× (−1, 1)n−1×Q is an open subset of R̂×Jn−1×Q in M , where n ≥ 2.
We may also assume that D∩ (R× (−1, 1)n−1×Q) equals the set Q×Q×C, where
C is some countable dense subset of Q. If we then replace Hz as defined above by
Hz× idQ, then the proof for the Hilbert cube case is completely analogous the proof
given above. �

For n ∈ N let μn denote the universal Menger continuum of dimension n, see
Engelking [27, §1.11] or Bestvina [9]. A nonempty space M is called a Menger
manifold if there is an n ∈ N such that M has an open cover consisting of sets that
are homeomorphic to open subsets of μn. According to [9, Theorem 3.2.2] every
Menger manifold is strongly locally homogeneous.

Lemma 10.3. Let f : X → Y and g : Y → Z be continuous. If g ◦ f is a closed
imbedding then so is f .

Proof. Since g ◦ f is one-to-one so is f . Let F be a closed subset of X. Since
g ◦ f is closed and g is continuous we have that A = g−1((g ◦ f)(F )) is closed in Y .
Note that f ◦ (g ◦ f)−1 ◦ g�A is a retraction from A onto f(F ). Thus f(F ) is closed
in A and Y . �

Theorem 10.4. Let M be a locally compact space, let O be an open subset of
M , and let D be a countable dense subset of O. If O contains an open set that is
a Menger manifold, then HO(M,D) is homeomorphic to Erdős space.

Proof. The beginning is identical to the first paragraph of the proof of The-
orem 10.2. Let n ∈ N be such that O contains an nonempty open subset U that
is homeomorphic to an open subset of μn. Select a null sequence V0, V1, . . . of
nonempty, open sets such that their closures in M are disjoint subsets of U . Put
V =

⋃∞
k=0 Vk. Consider the following complete Erdős space:

(10.17) E3 = {z ∈ �1 : 3izi ∈ ω for i ∈ ω}
and let Z3 stand for E3 equipped with the witness topology that is inherited from
the product Rω. (The fact that E3 is homeomorphic to Ec follows from Dijkstra [16,
Theorem 3] but is not used here.) If i ∈ ω then we let ξi : E3 → E3 denote the
projection that is given by the rule ξi(z) = (z0, z1, . . . , zi, 0, 0, . . . ). We let P be the
countable dense subset

⋃∞
i=0 ξi(E3) of E3. Let k ∈ ω. According to Dijkstra [15,

Remarks 7 and 8] there exist a closed imbedding Gk : E3 � z 	→ Gk
z ∈ HVk

(M), a

copy R̂k of R̂ in Vk, and a sequence pk1 , p
k
2 , . . . ∈ Vk \ R̂k such that

(a) limi→∞ pki = 0k ∈ Rk, where Rk = R̂k \ {±∞k},
(b) for each r ∈ R̂k and z ∈ E3 we have Gk

z(r) = r + ‖z‖ ∈ R̂k,
(c) for each x ∈ M \ Rk there is an i ∈ ω such that Gk

z(x) = Gk
ξi(z)

(x) for

each z ∈ E3, and
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(d) βk ◦Gk : Z3 → βk(H(M)) is a closed imbedding, where Ak = {∞k, p
k
1 , p

k
2 ,

. . . } and βk : H(M) → MAk is given by the rule βk(h) = h�Ak.

Consider the Cantor set

(10.18) C ′ = {z ∈ E3 : zi ∈ {0, 3−i} for i ∈ ω}
and note that since

∑∞
i=0 3

−i < ∞ we have that on C ′ the norm topology coincides
with the product topology. Let δ : C ′ → R

+ be the imbedding that is given by the
rule δ(z) = ‖z‖. We define C = δ(C ′), γ = δ−1�C, and Q = δ(C ′ ∩ P ). Thus C is
a Cantor set with Q as a countable dense subset and ‖γ(r)‖ = r for each r ∈ C.
We define a complete Erdős space

(10.19) Ec = {z ∈ �1 : zi ∈ C for i ∈ ω}
and an Erdős space

(10.20) E = {z ∈ �1 : zi ∈ Q for i ∈ ω}.
We let Zc and Z stand for Ec respectively E with the witness topologies that these
spaces inherit from R

ω. Let ν : ω × ω → ω be a bijection such that ν(i, j) ≥ j for
all i, j ∈ ω. We define an imbedding ζ : Ec → E3 by the rule (ζ(z))ν(i,j) = (γ(zi))j
for z ∈ Ec and i, j ∈ ω. It is clear from the definition and the fact that the norm
and product topology coincide on the compactum C ′ that ζ : Zc → Z3 is a closed
imbedding. Note that ‖ζ(z)‖ = ‖z‖ for each z ∈ Ec and hence ζ is also a closed
imbedding with respect to the norm topologies (recall that the norm topology is
generated by the product topology together with the norm function). We now
define an H : Ec → HV (M) by

(10.21) Hz(x) =

⎧
⎪⎨

⎪⎩

G0
ζ(z)(x), if x ∈ V0;

Gk
γ(zk−1)

(x), if x ∈ Vk for some k ∈ N;

x, if x ∈ M \ V .

for z ∈ Ec. Since the Vk’s form a null sequence it is clear that every Hz is a home-
omorphism of M and that Hz depends continuously on z ∈ Ec. Let Π: HV (M) →
HV0

(M) be the continuous map that is defined by Π(h) = (h�V0) ∪ idM\V0
. Since

ζ and G0 are closed imbeddings and Π ◦H = G0 ◦ ζ we have by Lemma 10.3 that
H : Ec → HO(M) is also a closed imbedding.

Let k ∈ ω and let Dk be a countable dense subset of Vk with Dk ∩Rk = ∅ and
Ak ⊂ Dk. Since P is countable we may assume that Gk

z(Dk) = Dk for each z ∈ P .
Let Q3 be the additive group {i3j : i, j ∈ Z} and note that C ∩ Q3 = Q. Let Q

k
3

be the copy of Q3 that lies in Rk. With strong local homogeneity of μn we may
assume that the set D has the properties

(10.22)
D ∩ V0 = D0,

D ∩ Vk = Dk ∪Q
k
3 for k ∈ N.

We verify that

(10.23) E = {z ∈ Ec : Hz(D) = D}
and hence that H�E is a closed imbedding of E into HO(M,D). If Hz ∈ H(M,D)
and k ∈ N, then Hz(0k) = ‖γ(zk−1)‖ = zk−1 ∈ Q3. Since z ∈ Ec we also have
zk−1 ∈ C and hence zk−1 ∈ Q. Thus z ∈ E. Consider now a z ∈ E. If x ∈ Vk \ Rk

for some k ∈ ω, then by property (c) there is a z′ ∈ P such that Hz(x) = Gk
z′(x).

Since Gk
z′(Dk) = Dk we have that x ∈ Dk = D∩Vk \Rk if and only if Hz(x) ∈ Dk.
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Note that Hz(R0) = R0 and that this set is disjoint from D. Consider finally
the case x ∈ Rk for k ∈ N. Then zk−1 ∈ Q ⊂ Q3 and Hz(x) = Gk

γ(zk−1)
(x) =

x+ ‖γ(zk−1)‖ = x+ zk−1 which is in Q3 if and only if x ∈ Q3.

Consider now the topology T that HO(M,D) inherits from D′D′
. Let T′ be the

topology that H(M) inherits from the product space MD′
and note that T′ restricts

to T on HO(M,D). We first verify that H : Zc → (H(M),T′) is continuous. Let
x ∈ D′. If x /∈ V or if x ∈ Vk for some k ∈ N, then Hz(x) depends on at most a
single coordinate of z so continuity with respect to the product topology is obvious.
Let x ∈ V0 and thus x ∈ D0 ⊂ V0 \ R0. Then by property (c), G0

z′(x) depends
on only finitely many coordinates of z′ ∈ Z3 and hence Hz(x) = G0

ζ(z)(x) depends

also on only finitely many coordinates of z ∈ Zc. This shows that H is continuous
with respect to the product topologies. With property (d) we find that β0 ◦H =
β0 ◦G0 ◦ ζ is a closed imbedding of Zc into β0(H(M)). Since A0 ⊂ D′ we have that
β0 : (H(M),T′) → MA0 is continuous. Thus with Lemma 10.3 we may conclude
that H : Zc → (H(M),T′) is a closed imbedding. Since Z = H−1(HO(M,D)) we
also have that H�Z is a closed imbedding of Z in (HO(M,D),T).

Consider the point 01 ∈ Q
1
3. For every a ∈ D we define Ya = {h ∈ HO(M,D) :

h(01) = a} and we note that every Ya is closed with respect to T and that⋃
a∈D Ya = HO(M,D). Let for i ∈ N, zi = (3−i, 0, 0, . . . ) ∈ E and let h ∈ Ya.

Note that limi→∞ h ◦H−1
0 ◦Hzi = h in HO(M,D) but h ◦H−1

0 ◦Hzi /∈ Ya because
h(H−1

0 (Hzi(01))) = h((3−i)1) 
= h(01) = a. Thus Ya is nowhere dense in HO(M,D)
and condition (5′) of Definition 8.7 is satisfied.

Let ±Ω = ±∞0 ∈ R̂0. By the same argument as we used in the proof of
Theorem 10.2 we have for every unbounded A ⊂ E that

(10.24) diamρ̂{Hz : z ∈ A} ≥ ρ(−Ω,Ω).

Finally, we consider the natural stratification of E that satisfies Definition 8.3. Let
T = Q<ω and for each s = q1 . . . qk ∈ T we put

(10.25) Es = {z ∈ E : zi−1 = qi for 1 ≤ i ≤ k}.
The remainder of the proof is analogous to latter part of the proof of Theorem 10.2.

�

Remark 10.5. The ‘zero-dimensional Menger space’ is of course the Cantor set
C and we showed in [21] that if D is a countable dense subset of C, then H(C, D)
is homeomorphic to Q

ω.

Let n ∈ N. A nowhere dense compact subset X of the (n + 1)-sphere Sn+1 is
called an n-dimensional Sierpiński carpet if the collection of components {Ui : i ∈
N} of Sn+1\X forms a null sequence such that the closures of the Ui’s are a pairwise
disjoint collection and every Sn+1\Ui is an (n+1)-cell. According to Whyburn [45]
(for n = 1) and Cannon [13] (for n ≥ 2) this space is topologically unique if n 
= 3
and we will denote this space by Mn+1

n .
It is shown in Dijkstra [15, Remarks 3 and 4] that there exist imbeddings of

complete Erdős space in H(Mn+1
n ) that are similar to the ones used in the proof

of Theorem 10.4 and one can construct for Mn+1
n an argument that is analogous

to that proof. A difference is that we have to be careful with the selection of the
countable dense set D. This is because Mn+1

n is not homogeneous. The result is
the following theorem, the proof of which will appear in Dijkstra and Visser [24].
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Theorem 10.6. Let n ∈ N\{3}, let {Ui : i ∈ N} be the collection of components
of Sn+1\Mn+1

n , and let D be a countable dense subset of Mn+1
n . If O is a nonempty

open subset of Mn+1
n such that either D∩∂Ui = ∅ for every i with ∂Ui ⊂ O or D∩

∂Ui is dense in ∂Ui for every i with ∂Ui ⊂ O, then H(Mn+1
n , D) is homeomorphic

to Erdős space.

Remark 10.7. If X is locally compact but not compact, then we gave H(X)
the topology that is inherited from H(αX) because the compact-open topology on
H(X) is in general not a group topology. We will now verify that the theorems in
this section remain valid if we equip H(X) with the compact-open topology. Let us
denote this space by H(X)co. Note that multiplication is a continuous operation
on H(X)co, see Arens [6], and that in the proofs in this section we did not use the
continuity of the inverse.

Let us first consider Theorem 10.1. This theorem remains valid if M is lo-
cally compact and we replace HO(M,D1) by HO(M,D1)co (seen as a subspace of
H(M)co). In the first part of the proof where T is shown to be a witness topology
it is enough to add the condition that K is compact when defining the subbasis S.
To adapt the proof that T is Fσδ it suffices to let {(Ai, Bi) : i ∈ N} be a collection
of pairs of open subsets of M with disjoint closures such that M \ Bi is compact
for every i ∈ N and for every pair (A,B) of disjoint closed subsets of M such that
A is compact there exists an i ∈ N with A ⊂ Ai and B ⊂ Bi.

We now discuss the adaptation of the proofs of Theorems 10.2 and 10.4. We
concentrate on the R

n case – the cases for Q and μn are completely analogous. We
define the open set

(10.26) Y =
⋃

{U : U is a locally connected open subset of M}.

Since Y is locally compact and locally connected we have according to Arens [6] that
H(Y )co = H(Y ). Let ρ be a compatible metric on αY and define the pseudo-metric
ρ̂ on H(M)co by

(10.27) ρ̂(f, g) = sup
x∈Y

ρ(f(x), g(x)),

where we noted thatH(M) = H(M,Y ). Since h 	→ h�Y defines a clearly continuous
map from H(M)co to H(Y )co we have that ρ̂ generates a topology on H(M) that
is coarser than the compact-open topology. We may assume that the compactum
R̂× Jn−1 is contained in Y . Consequently, ρ̂ is a compatible metric on HW (M)co,
where W = R×(−1, 1)n−1. As a consequence we have that in order to establish the
properties of H : E → HW (M)co we may use ρ̂ as a metric on the codomain. Note
that formula (10.12) remains valid. In verifying that the system (Es)s∈T satisfies
Definition 8.7 we note that ρ̂ is right invariant which means that conditions (2′)
and (4′) still follow from (10.12) by precisely the same argument.
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Composition operators on Hardy-Orlicz space, 2010

973 Peter O’Sullivan, The generalised Jacobson-Morosov theorem, 2010

972 Patrick Iglesias-Zemmour, The moment maps in diffeology, 2010

971 Mark D. Hamilton, Locally toric manifolds and singular Bohr-Sommerfeld leaves, 2010

970 Klaus Thomsen, C∗-algebras of homoclinic and heteroclinic structure in expansive
dynamics, 2010

969 Makoto Sakai, Small modifications of quadrature domains, 2010
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