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0. Introduction

The starting point for this note is a theorem of Hurewicz from [5], which characterizes the dimension of separable
metrizable spaces in terms of maps.

Theorem. Let X be a separable and metrizable space and let n be a natural number. Then dim X � n iff there are a zero-dimensional
separable metrizable space Y and a continuous and closed surjection f : Y → X such that | f −1(x)| � n + 1 for all x.

Our aim is to generalize this result to a wider class of spaces.
One half of Hurewicz’s theorem is a special case of the theorem on dimension raising maps. This special case can be

generalized to the class of normal spaces (the hint to Problem 1.7.F(c) in [3] provides a proof):

Theorem. Let f : Y → X be a closed continuous surjection between normal spaces and n a natural number. If Y is strongly zero-
dimensional and if f is such that | f −1(x)| � n + 1 for all x then Ind X � n.

Hurewicz’ proof of the other half was based on the interplay between the large inductive dimension and the covering
dimension, using finite collections of closed sets of order n + 1 to construct the preimage. Also Kuratowski’s quantitative
proof in [7] used covering dimension to show that in the case where X has no isolated points the set of surjections with at
most n + 1-point fibers is residual in the space of all surjections from the Cantor set onto X .
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This all suggests that we should look for classes of compact Hausdorff spaces where the covering dimension and the
large inductive dimension coincide. We shall show that the compact F -spaces of weight c form such a class, assuming the
Continuum Hypothesis. Under that assumption these spaces are one step up from compact metrizable spaces: the weight
is ℵ1 and the F -space property lets one do countably many things at a time, which is quite helpful in inductions and
recursions of length ω1.

In Section 1 we give a variation of Hurewicz’ proof of the second half his theorem; we do this with an eye to the
proof of our main result and to make Hurewicz’ argument better known. Next we establish, in Section 2, that the three
major dimension functions coincide on the class of compact F -spaces of weight c. In Sections 3 and 4 we show that every
n-dimensional compact F -space is an at most 2n-to-1 continuous image of a zero-dimensional compact space. This leaves
open an obvious question:

Question (CH). Is every n-dimensional compact F -space of weight c a continuous image of some zero-dimensional compact
space by a map whose fibers have size at most n + 1?

0.1. Some preliminaries

We follow Engelking’s book [3], regarding dimension theory except that by the order of a family T at a point x we
simply mean the cardinality of {T ∈ T : x ∈ T }. Thus a (normal) space has covering dimension at most n iff every finite open
cover has an open refinement of order at most n + 1.

A completely regular space X is an F -space if disjoint cozero sets are completely separated, i.e., if A and B are disjoint
cozero sets then there is a continuous real-valued function f on X such that f [A] = {0} and f [B] = {1}; for normal spaces
this is equivalent to: disjoint cozero sets have disjoint closures. Whenever X is a σ -compact, locally compact space that is
not compact then the remainder β X \ X in its Čech–Stone compactification is an F -space. Gillman and Jerison’s book [4], is
still a good source of basic information on F -spaces.

A set is regular open if it is the interior of its closure. The family RO(X) of regular open sets in the space X forms a
Boolean algebra under the following operations: U ∨ V = int cl(U ∪ V ), U ∧ V = U ∩ V and U ′ = X \ cl U . In the proof of our
main result we obtain our zero-dimensional preimage as the Stone space of a subalgebra of RO(X); we refer to Koppelberg’s
book [6], for a comprehensive treatment of this construction.

1. Making a zero-dimensional preimage

As announced we present in this section a variation of Hurewicz’ construction of a zero-dimensional preimage of an
n-dimensional compact metrizable space by a map whose fibers have cardinality at most n + 1.

The key notion is that of a tiling of a space, which we define to be a finite pairwise disjoint family of regular open sets
whose closures form a cover of the space. Given a tiling T and a point x we put Tx = {T ∈ T : x ∈ cl T }.

In the proof we will construct ever finer tilings of the space; the following lemma will help us keep the cardinalities of
the families Tx under control.

Lemma 1.1. Let {Bi: i < k} be a family of regular open sets in a space X and let T be a regular open set that is covered by this family.
For each i put Ci = T ∩ (Bi \ ⋃

j<i cl B j) and for x ∈ cl T put Fx = {i: x ∈ cl Ci}. Then x ∈ Fr Bi whenever i ∈ Fx is not maximal.

Proof. This is clear: if j < i then B j ∩ cl Ci = ∅. Furthermore, if j < i in Fx then x ∈ cl C j ∩ cl Ci ⊆ cl B j ∩ cl Ci ; so x ∈
cl B j \ B j = Fr B j . �

The previous lemma implies that {i: x ∈ cl Ci} has at most one element more than {i: x ∈ Fr Bi}. This behavior persists
when we refine tilings.

Lemma 1.2. Let T be a tiling of X that is a subset of the Boolean algebra generated by a finite family B of regular open sets and assume
that for every x the family {B ∈ B: x ∈ Fr B} has cardinality at least |Tx| − 1. Fix one T ∈ T and a finite family C = {Ci: i < k} of
regular open sets such that T ⊆ ⋃ C and B ∩ C = ∅; for i < k put Ri = T ∩ (Ci \ ⋃

j<i cl C j).
Then the tiling S = T \ {T } ∪ {Ri: i < k} has the same property as T : for every x the family {B ∈ B ∪ C: x ∈ Fr B} has cardinality

at least |Sx| − 1.

Proof. Let x ∈ X . If x /∈ cl T then Sx = Tx and we are done by the assumption.
Consider the case x ∈ cl T . Then Sx consists of Tx \ {T } and {Ri: i ∈ Gx}, where Gx = {i: x ∈ cl Ri}; this implies that

|Sx| = |Tx| − 1 + |Gx|.
We can apply Lemma 1.1 to see that x ∈ Fr Ci if x ∈ cl Ri and i = max Gx . This implies that {C ∈ C: x ∈ Fr C} has cardinality

at least |Gx| − 1. By assumption the family {B ∈ B: x ∈ Fr B} has cardinality at least |Tx| − 1.
Because B and B′ are disjoint the family {B ∈ B ∪ C: x ∈ Fr B} has cardinality at least (|Tx| − 1) + (|Gx| − 1), which is

equal to |Sx| − 1. �
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Now we are ready to reprove the second half of Hurewicz’ theorem.

Theorem 1.3. Let X be a metrizable compact space with dim X � n. Then there are a zero-dimensional compact metrizable space Y
and a continuous surjection f : Y → X such that | f −1(x)| � n + 1 for all x.

Proof. Let {Bi: i < ω} be a base for X consisting of regular open sets and such that
⋂

i∈F Fr Bi = ∅ whenever F ∈ [ω]n+1;
see, e.g., [1, Corollary 6.12]. For technical reasons we assume that for every isolated point x in X the set {i: Bi = {x}}
is infinite; because Fr{x} = ∅ whenever x is isolated this does not interfere with the intersection property of the family
{Fr Bi: i < ω}.

By recursion we construct a sequence 〈Tk: k < ω〉 of tilings such that for all k the family Tk+1 refines Tk , such that
ord{cl T : T ∈ Tk} � n + 1 for all k, and such that limk max{diam T : T ∈ Tk} = 0.

Each Tk is given the discrete topology and our compact zero-dimensional space Y is the subspace of the product
∏

k<ω Tk
defined by

〈Tk: k < ω〉 ∈ Y iff (∀k)(Tk+1 ⊆ Tk).

Clearly Y is closed in the product, hence compact, metrizable and zero-dimensional. If 〈Tk: k < ω〉 ∈ Y then
⋂

k<ω cl Tk
consists of exactly one point (by compactness and the diameter condition); this defines a map f from Y to X .

The map is (uniformly) continuous: if ε > 0 there is a k such that diam T < ε for all T ∈ Tk . If T = 〈Tk: k < ω〉 and
S = 〈Sk: k < ω〉 in Y are such that Tk = Sk then f (T ), f (S) ∈ cl Tk and hence d( f (T ), f (S)) < ε.

The map f is onto: if x ∈ X then it is easy to find T ∈ Y such that x ∈ Tk for all k; then x = f (T ).
The map f is at most n + 1-to-one. Indeed, let x ∈ X and for each k let Tk,x = {T ∈ Tk: x ∈ cl T }. Then |Tk,x| � |Tk+1,x| �

n + 1 for all k; this means that there is a k0 such that |Tk,x| = |Tk0,x| for k � k0. And this implies that T �→ Tk0 is a bijective
map from f −1(x) to Tk0,x and thus: | f −1(x)| � n + 1.

It remains to construct the Tk . We set T0 = {X}. We assume we have found Tk as a subset of the Boolean algebra
generated by {Bi: i < l} for some l and that the assumptions of Lemma 1.2 are satisfied: for every x ∈ X there are at least
|Tk,x| − 1 indices i < l such that x ∈ Fr Bi .

Because for each isolated point x the set {x} occurs as Bi infinitely often we know that for every m the family {Bi: i � m}
is a base for X . We can therefore find pairwise disjoint finite subsets F T of (l,ω) for T ∈ Tk such that cl T ⊆ ⋃

i∈F T
Bi

and diam Bi < 2−k for all i. We can use these, as in Lemma 1.2 to define tilings of each T ∈ Tk: for i ∈ F T put CT ,i =
T ∩ (Bi \⋃

j∈F T , j<i cl B j). Repeated application of Lemma 1.2 shows that Tk+1 = {CT ,i: i ∈ F T , T ∈ Tk} has the same property
as Tk: for each x there are at least |Tk+1,x| − 1 indices i in l ∪ ⋃

T ∈Tk
F T such that x ∈ Fr Bi .

To see that |Tk,x| � n + 1 for all k and all x we combine two inequalities: first, by construction we have |{i: x ∈ Fr Bi}| �
|Tk,x| − 1; second, by assumption on our base we have n � |{i: x ∈ Fr Bi}|. This implies |Tk,x| − 1 � n. �

As mentioned in the introduction, in [7] Kuratowski gave a quantitative version of this half of Hurewicz’ theorem: if X is
compact, metrizable, n-dimensional and without isolated points then the set of maps all of whose fibers have size n + 1 or
less is residual in the space of all surjections from the Cantor set to X . The covering dimension is invoked to show that,
given a natural number k, the set of maps with a fiber of size at least n + 2 in which the points are at least distance 2−k

apart is nowhere dense (it is also readily seen to be closed).

2. Equality of dimensions

It is well known that the three fundamental dimension functions take on the same values for all separable metrizable
spaces. We prove that this also holds in the class of compact F -spaces of weight c, provided the Continuum Hypothesis
holds.

In the proof we use Hemmingsen’s characterization of covering dimension [3, Theorem 1.6.9]: dim X � n iff every n + 2-
element open cover has an open shrinking with empty intersection.

Theorem 2.1 (CH). Let X be a compact F -space of weight c. Then dim X = ind X = Ind X.

Proof. The inequalities dim X � ind X � Ind X are well known. We show Ind X � dim X by showing that dim X � n implies
that between any two disjoint closed sets F and G one can find a partition L that satisfies dim L � n − 1. This is known to
be true in case n = 0, so we assume n � 1 from now on.

Fix a base B for X that consists of cozero sets, has cardinality ℵ1 (by the CH) and is closed under countable unions and
finite intersections.

Let 〈Bα: α < ω1〉 enumerate the family of all n + 1-element subfamilies of B with cofinal repetitions. We write Bα =
{Bα,i: i � n}.

We construct, by recursion, two sequences 〈Uα: α < ω1〉 and 〈Vα: α < ω1〉 in B such that

(1) F ⊆ U0 and G ⊆ V 0;
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(2) cl Uα ⊆ Uβ and cl Vα ⊆ Vβ whenever α < β;
(3) cl Uα ∩ cl Vα = ∅ for all α;
(4) if Uα ∪ Vα ∪⋃ Bα = X then there is a subfamily B′

α = {B ′
α,i: i � n} of B that refines Bα and is such that Uα+1 ∪ Vα+1 ∪⋃ B′

α = X and
⋂ B′

α ⊆ Uα+1 ∪ Vα+1.

Then L = X \⋃
α(Uα ∪ Vα) is a partition between F and G and dim L � n − 1. That L is a partition between F and G follows

from (1), (2) and (3). To see that dim L � n − 1 let O be an n + 1-element basic open cover of L. There is an α such that
O = {L ∩ Bα,i: i � n} and such that X \ (Uα ∪ Vα) ⊆ ⋃ Bα . By construction O′ = {L ∩ B ′

α,i: i � n} is a refinement of O such
that

⋂ O′ = ∅.
It remains to perform the construction. We obtain U0 and V 0 using compactness and the fact that B is closed under

finite unions. If α is a limit we let Uα = ⋃
β<α Uβ and Vα = ⋃

β<α Vβ . Then Uα, Vα ∈ B by the assumption that B is closed
under countable unions and cl Uα ∩ cl Vα = ∅ because X is an F -space.

To deal with the successor case we first take elements C and D of B such that cl Uα ⊆ C , cl Vα ⊆ D and cl C ∩ cl D = ∅.
If Uα ∪ Vα ∪ ⋃ Bα = X we put Ei = Bα,i \ (cl Uα ∪ cl Vα) for i � n. Then we apply the inequality dim X � n to find a

shrinking {B ′
α,i: i � n} ∪ {O } of {Ei: i � n} ∪ {C ∪ D} such that cl O ∩ ⋂

i cl B ′
α,i = ∅. Let O 1 = O ∩ C and O 2 = O ∩ D; also

let K = ⋂
i cl B ′

α,i . Note that cl Uα ⊆ O 1 and cl Vα ⊆ O 2 and that the family {K , cl O 1, cl O 2} is pairwise disjoint. We choose
Uα+1 and Vα+1 in B with disjoint closures such that K ∪ cl O 1 ⊆ Uα+1 and cl O 1 ⊆ Uα+1. Then the conclusion of (4) is
satisfied.

If Uα ∪ Vα ∪ ⋃ Bα = X we let Uα+1 = C and Vα+1 = D . �
Remark 2.2. This proof is similar to the one given in [3] of the analogous result for compact metrizable spaces. That proof
used a metric to guide the countably many steps toward a partition of covering dimension at most n − 1. Of course in an
infinite compact F -space there is no metric available; in our proof the role of the metric is taken over (in the background)
by the unique uniformity that generates the topology of the compact F -space.

Remark 2.3. The second-named author has constructed an example of a compact F -space of weight c+ with non-coinciding
dimensions [8].

3. Special bases

In Section 1 we used the fact that a metrizable compact space X with dim X � n has a base {Bi: i < ω} with the property
that

⋂
i∈F Fr Bi = ∅ whenever |F | = n + 1. This is a special case of a stronger structural statement: every metrizable compact

space has a base {Bi: i < ω} with the property that dim
⋂

i∈F Fr Bi � dim Fr Bi0 − |F | + 1, where i0 = min F .
Our goal is to prove a similar statement for compact F -spaces of weight c, assuming the Continuum Hypothesis.
In general, if X is a compact space of weight ℵ1 we shall assume it is embedded in the Tychonoff cube [0,1]ω1 and for

α < ω1 we write Xα = {x � α: x ∈ X}; this is the projection of X onto the first α coordinates. We denote this projection
map by pα , we reserve πα for the projection onto the αth coordinate.

Lemma 3.1. There is a closed and unbounded subset C of ω1 such that dim Xα = dim X for α ∈ C.

Proof. The cube [0,1]ω1 has a nice subbase, which consists of the strips π−1
α [[0,q)] and π−1

α [(q,1]], where α < ω1 and
q ∈ Q ∩ (0,1). We close this subbase under finite unions and intersections to obtain a base B for the cube.

First we assume dim X = n < ∞. In this case if B′ is a finite subfamily of B that covers X then there is another finite
subfamily B′′ of B that also covers X , refines B′ and is such that |{B ∈ B′′: x ∈ B}| � n + 1 for all x ∈ X .

Observe that each finite subfamily C of B is supported by a finite subset F C of ω1 (the coordinates of the strips used to
make its elements). Next note that, given α < ω1, there are only countably many finite subfamilies of B whose support lies
below α. Thus we obtain a function f : ω1 → ω1, defined by

f (α) is the first countable ordinal β such that whenever B′ is a finite subfamily of B that covers X and whose support
lies below α then it has a refinement of order at most n + 1 whose support lies below β .

The set C = {δ < ω1: (∀α)(α < δ → f (α) < δ)} is closed and unbounded and it should be clear that dim Xδ � n whenever
δ ∈ C . To get equality we note that there is also a finite cover C of X by members of B for which every open refinement
has order n + 1. Upon deleting an initial segment of C we can assume that C is supported below min C ; then C witnesses
that dim Xδ � n for all δ ∈ C .

In case X is infinite-dimensional we have for each n a finite cover Cn such that every open refinement has order at
least n. For any α above the supports of these covers we have dim Xα = ∞. �

The following proposition is instrumental in the construction of the type of base alluded to above. It also provides
another proof of Theorem 2.1. In it we use the notion of a P -set: a subset of a space is a P -set if whenever it is disjoint
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from an Fσ -subset it is also disjoint the closure of that Fσ -set; in terms of neighborhoods: the intersection of countably
many neighborhoods of the set is again a neighborhood of the set. The members of our base will have nowhere dense
closed P -sets for boundaries.

Proposition 3.2 (CH). Let X be a compact F -space of weight c. Let F and G be disjoint closed subsets of X and let Q be a family of no
more than ℵ1 many nowhere dense closed P -sets in X. There are disjoint regular open sets U and V such that

(1) F ⊆ U and G ⊆ V ,
(2) P = X \ (U ∪ V ) is a nowhere dense P -set,
(3) if dim X < ∞ then dim P � dim X − 1,
(4) if Q ∈ Q then P ∩ Q is nowhere dense in Q and if dim Q < ∞ then dim(P ∩ Q ) � dim Q − 1.

Proof. We may as well assume that dim X = n < ∞ and that Q has cardinality ℵ1. The proof is easily modified in case
either of these is not the case.

Choose a closed and unbounded set C such that dim Xδ = dim X for δ ∈ C and assume without loss of generality (and by
compactness) that pδ[F ] ∩ pδ[G] = ∅, where δ = min C .

Enumerate Q as {Q α: α < ω1} and choose for each α a closed and unbounded subset Cα of C such that dim pδ[Q α] =
dim Q α whenever δ ∈ Cα . Because the intersection of countably many closed and unbounded sets is again closed and
unbounded we may as well assume that Cβ ⊆ Cα whenever α < β .

In case δ ∈ Cα we can choose a zero-dimensional Fσ -set Zα,δ in Xδ such that Zα,δ is dense in Xδ , the intersection
Zα,δ ∩ pδ[Q α] is dense in pδ[Q α], and such that

dim(Xδ \ Zα,δ) � n − 1 and dim
(

pδ[Q α] \ Zα,δ

)
� dim Q α − 1. (3.1)

We start our recursive construction of P . Along the way we construct a sequence 〈δα: α < ω1〉 of ordinals.
Let δ0 = min C0 and choose a partition L in Xδ0 between pδ0 [F ] and pδ0 [G] that is disjoint from Z0,δ0 . Thus we obtain

automatically that

• dim L � n − 1,
• dim L ∩ pδ0 [Q 0] � dim Q 0 − 1, and
• L is nowhere dense in Xδ0 and L ∩ pδ0 [Q 0] is nowhere dense in pδ0 [Q 0].

Write Xδ0 \ L = U ∪ V , where U and V are open and disjoint sets around pδ0 [F ] and pδ0 [G] respectively. Let V 0 = Xδ \ cl U
and U0 = Xδ \ cl V 0; then

• U0 and V 0 are regular open,
• P0 = Xδ \ (U0 ∪ V 0) is a subset of L and a partition between pδ0 [F ] and pδ0 [G] with dim P0 � dim L � n − 1, and
• dim P0 ∩ pδ0 [Q 0] � dim L ∩ pδ0 [Q 0] � dim pδ0 [Q 0] − 1 = dim Q 0 − 1.

Observe that cl U0 = U0 ∪ P0 and cl V 0 = V 0 ∪ P0.
To find δ1 observe first that p−1

δ0
[U0] and p−1

δ0
[V 0] are disjoint open Fσ -sets of X and hence have disjoint closures as

X is an F -space. As with F and G we can find an ordinal η such that pη[cl p−1
δ0

[U0]] and pη[cl p−1
δ0

[V 0]] are disjoint. Pick
δ1 ∈ C1 above η.

In Xδ1 we can find a partition L between pδ1 [cl p−1
δ0

[U0]] and pδ1 [cl p−1
δ0

[V 0]] that is disjoint from Z0,δ1 ∪ Z1,δ1 — this is
possible because Z0,δ1 ∪ Z1,δ1 is zero-dimensional by the countable closed sum theorem. We now obtain, by (3.1):

• dim L � n − 1,
• dim L ∩ pδ1 [Q 0] � dim Q 0 − 1, and
• dim L ∩ pδ1 [Q 1] � dim Q 1 − 1.

Because of the density conditions on Z0,δ1 and Z1,δ1 we know that L is nowhere dense in Xδ1 , that L ∩ pδ1 [Q 0] is nowhere
dense in pδ1 [Q 0] and that L ∩ pδ1 [Q 1] is nowhere dense in pδ1 [Q 1].

As above we find disjoint regular open sets U1 and V 1 around pδ1 [cl p−1
δ0

[U0]] and pδ1 [cl p−1
δ0

[V 0]] respectively such that

P1 = Xδ1 \ (U1 ∪ V 1) ⊆ L. Note also that pδ1
δ0

[P1] ⊆ P0.

At stage α we consider the disjoint open Fσ -sets A = ⋃
β<α p−1

δβ
[Uβ ] and B = ⋃

β<α p−1
δβ

[Vβ ]. There is a δα ∈ Cα above
{δβ : β < α} such that pδα [cl A] and pδα [cl B] are disjoint.

The union Z = ⋃
β�α Zβ,δα is zero-dimensional by the countable closed sum theorem so we can find a partition L in Xδα

between pδα [cl A] and pδα [cl B] that is disjoint from Z . As before we find
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• dim L � n − 1,
• dim L ∩ pδα [Q β ] � dim Q β − 1 for β � α, and
• L and L ∩ pδα [Q β ] are nowhere dense in Xδα and pδα [Q β ] respectively.

As before we find disjoint regular open sets Uα and Vα around pδα [cl A] and pδα [cl B] respectively such that Pα = Xδα \
(Uα ∪ Vα) is a subset of L.

At the end let U = ⋃
α p−1

δα
[Uα] and V = ⋃

α p−1
δα

[Vα]. Then U and V are disjoint open sets around F and G respectively,
so that P = X \ (U ∪ V ) is a partition between F and G .

To see that P is a P -set observe that cl p−1
δβ

[Uβ ] ⊆ p−1
δα

[Uα] whenever β < α; by compactness this implies that cl K ⊆ U

whenever K is an Fσ -subset contained in U . The same applies for V , so that P ∩ cl K = ∅, whenever K is an Fσ -set that is
disjoint from P .

To see that dim P � n − 1 observe that pδα [P ] ⊆ Pα for all α. Any finite basic open cover of P is supported below δα for
some α; because dim Pα � n − 1 this cover has an open refinement of order at most n that is also supported below δα .

To see that P is nowhere dense let B be any basic open set in [0,1]ω1 that meets X and choose α such that B is
supported below δα . As Pα is nowhere dense there is a basic open set B ′ ⊆ B , also supported below δα , that meets Xδα but
is disjoint from Pα . Reinterpreted in X this means that B ′ ⊆ B , that B ′ meets X and that B ′ ∩ P = ∅.

To see that dim P ∩ Q α < dim Q α and P ∩ Q α is nowhere dense in Q α apply the previous two paragraphs inside the
space Q α , both times taking suitable δ’s inside Cα .

In case Q is countable one needs only one closed and unbounded set: the intersection of the countably many associated
to X and the members of Q.

In case dim X = ∞ one chooses the dense zero-dimensional subsets Zα,δ as above, this to make all intersections P ∩ Q α

nowhere dense, but one only worries about the value of dim(pδ[Q α] \ Zα,δ) in case dim Q α < ∞. �
In the following theorem we adopt the convention that ∞ − n = ∞ whenever n is a natural number — in this way the

statement will be valid both for finite- and infinite-dimensional spaces.

Theorem 3.3 (CH). Let X be a compact F -space of weight c. Then X has a base B = {Bα: α < ω1} such that dim Fr Bα � dim X − 1
for all α and dim

⋂
α∈F Fr Bα � dim Fr Bmin F − |F | + 1 whenever F is a finite subset of ω1 .

Proof. Let C be a base for X of cardinality ℵ1 and let {〈Cα, Dα〉: α < ω1} enumerate the set of pairs 〈C, D〉 ∈ C2 that satisfy
cl C ⊆ D .

Apply Proposition 3.2 repeatedly to find, for each α, disjoint regular open sets Uα and Vα around cl Cα and X \ Dα

respectively such that Pα = X \ (Uα ∪ Vα) is a nowhere dense P -set that satisfies

• Pα = Fr Uα ,
• dim Pα � dim X − 1,
• for every finite subset F of α one has dim(Pα ∩ ⋂

β∈F Pβ) � dim
⋂

β∈F Pβ − 1.

Then {Uα: α < ω1} is the base that we seek. �
A special case of this theorem is the one that we shall use in the next section.

Theorem 3.4 (CH). Let X be a compact F -space of weight c and of finite dimension n. Then X has a base B = {Bα: α < ω1}, consisting
of regular open sets, such that dim

⋂
α∈F Fr Bα = ∅ whenever F is an n + 1-element subset of ω1 .

Proof. Let {Bα: α < ω1} be a base as in Theorem 3.3. Then dim Fr Bα � n − 1 for all α, so if |F | = n + 1 then
dim

⋂
α∈F Fr Bα � n − 1 − (n + 1) + 1 = −1, which means that

⋂
α∈F Fr Bα = ∅. �

4. Finite-to-one maps

The purpose of this section is to show that, assuming the Continuum Hypothesis, every finite-dimensional compact
F -space of weight c is a finite-to-one continuous image of a compact zero-dimensional space of weight c.

Theorem 4.1 (CH). Let X be a compact F -space of weight c of finite dimension n. Then X is the at most 2n-to-1 continuous image of
a compact zero-dimensional space of weight c.

Proof. Let B = {Bα: α < ω1} be a base for X as in Theorem 3.4. Let B be the Boolean subalgebra of RO(X) generated by
this base and let Y be the Stone space of B. If y ∈ Y then

⋂{cl C : C ∈ y} consists of exactly one point, which we denote
by f (y). Let x ∈ X and put F = {α: x ∈ Fr Bα}. If f (y) = x then y determines a function p y : F → 2 by p y(α) = 1 iff Bα ∈ y;
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in addition if α /∈ F then x ∈ Bα or x /∈ cl Bα . It follows that if f (y) = f (z) = x then Bα ∈ y iff Bα ∈ z for α /∈ F , so if y = z
then p y = pz . This implies that | f −1(x)| � 2|F | � 2n . �
Corollary 4.2 (CH). If X is a one-dimensional compact F -space of weight c then X is an at most 2-to-1 continuous image of a compact
zero-dimensional space of weight c.

Thus, for compact one-dimensional F -spaces we have a direct generalization of Hurewicz’ theorem, as 1 + 1 = 2.
One can give a proof of Theorem 4.1 along the lines of the proof in Section 1. We take a base as in Theorem 3.4 but

enumerate it in such a way that every singleton open set is counted cofinally often.
Again one constructs tilings Tα of order n + 1 but one can only ensure that Tα+1 refines Tα for every α. The reason

becomes apparent at stage ω: the common refinement of the tilings Tm will be infinite and not usable as a factor in a
compact product. What one can do is start a fresh ω-sequence of tilings at each limit ordinal λ. The tilings Tλ+m will be
constructed from the family {Bα: α � δ} for some δ (depending on λ). The zero-dimensional space Y will consist of the
points 〈Tα: α < ω1〉 ∈ ∏

α Tα with the following properties:

• Tα+1 ⊆ Tα for all α;
• {Tα: α < ω1} has the finite intersection property.

For each x there will be at most n limit ordinals λ such that x is on the boundary of a tile in one of the Tλ+k (and hence
in Tλ+l for l � k). Let 〈λi: i < p〉 enumerate these limit ordinals and for each i let mi be the maximum of {|Tλi+k,x|: k ∈ ω}.
The fiber of x under the obvious map from Y onto X has cardinality

∏
i<p mi . For each i we get at least mi − 1 boundaries

that contain x, so that n �
∑

i<p(mi − 1). From this it easy to deduce that 2n �
∏

i<p mi , so that this map has fibers of size
at most 2n as well.

4.1. Universality

The proofs of Hurewicz and Kuratowski show that if a space is compact, metrizable, n-dimensional and without isolated
points then it is an at most n + 1-to-1 continuous image of the Cantor set. It is also well known that every compact and
metrizable space is a continuous image of the Cantor set, see for example [3, 1.3.D]. Thus the Cantor set is universal in
the class of compact metrizable spaces in the sense of continuous onto mappings and even in a parametrized fashion if
dimension is taken into account.

Parovičenko [9] proved that, under CH, every compact Hausdorff space of weight c is a continuous image of N∗ , the
remainder in the Čech–Stone compactification of N. This all suggests that, still under CH, the space N∗ should also have
this parametrized universality property.

The next result shows that this is not the case. The space E2ω , mentioned in the following proposition is the absolute or
projective cover of the Cantor set 2ω — this is the unique (up to homeomorphism) extremally disconnected compact space
that admits a perfect irreducible map onto 2ω , see [2, Problem 6.3.19].

Proposition 4.3. Let X be a compact F -space that admits a finite-to-one map onto E2ω . Then X has a nonempty clopen subset that is
homeomorphic to E2ω .

Proof. Let f : X → E2ω be a continuous surjection whose fibers are finite. Because E2ω is zero-dimensional it follows that
f is constant on every connected subset of X and this implies that these sets must be finite and hence consist of one point
only. This implies that X is zero-dimensional.

There is a closed subspace A of X such that the restriction f � A → E2ω is irreducible. Since E2ω is extremally dis-
connected, it follows that f � A is a homeomorphism [2, Problem 6.3.19(c)]. Hence we may as well assume that E2ω is a
subspace of X and that f is a retraction from X onto E2ω . We claim E2ω has nonempty interior in X , which clearly suffices.
Striving for a contradiction, assume that E2ω is nowhere dense in X . Let {En: n < ω} be a π -base for E2ω consisting of
clopen sets. For every n the preimage f −1[En] is a clopen subset of X such that f −1[En] ∩ E2ω = En . As we are assuming
that E2ω is nowhere dense in X we can find a pairwise disjoint family {Un,i: i,n < ω} of clopen sets such that for all n we
have,

⋃

i<ω

Un,i ⊆ f −1[En] \ E2ω. (4.1)

To see that this is possible let ≺ well-order ω2 in type ω and observe that at each stage f −1[En] \⋃
〈m, j〉≺〈n,i〉 Um, j is always

clopen and nonempty, and hence never a subset of E2ω .
For all i put V i = ⋃

n<ω Un,i . Since X is a compact F -space the closures cl V i form a pairwise disjoint family. By (4.1),
f [cl V i] = E2ω for all i, which contradicts f being finite-to-one. �

It is well known that N∗ is not separable and that every nonempty clopen subset of N∗ is homeomorphic to N∗ itself.
As the space E2ω is separable this implies that N∗ does not admit a finite-to-one continuous map onto E2ω .
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