Questions and Answers in General Topology **30** (2012), pp. 103–104

CAN A FREE ULTRAFILTER BE CONNECTEDLY GENERATED?

ISTVÁN JUHÁSZ AND JAN VAN MILL

(Communicated by Yasunao Hattori)

ABSTRACT. We prove that a free ultrafilter on a Tychonoff space can not be generated by connected sets. All free ultrafilters can be thought of as connectedly generated on a T_1 -space. The obvious questions for T_2 and T_3 spaces are open.

For all undefined notions, we refer to Engelking [1].

See Juhász and van Mill [2] for an example of a paper where set theory and connectivity meet. The aim of this note is to prove a theorem and raise a question that are in the same spirit. Call a free ultrafilter on a space X connectedly generated if it has a base consisting of connected subsets of X.

Theorem 1. If X is Tychonoff, then no free ultrafilter on X is connectedly generated.

Proof. Let p be a free ultrafilter on X. We may assume that $X \subseteq \mathbb{I}^{\kappa}$ for some cardinal κ . Let $\mathbf{0}$ be the point in \mathbb{I}^{κ} all whose coordinates are 0. Let us assume first that p converges to $\mathbf{0}$. For $x \in \mathbb{I}^{\kappa} \setminus \{\mathbf{0}\}$, put

$$\alpha_x = \min\{\alpha < \kappa : x(\alpha) \neq 0\}.$$

Then

$$\mathbb{I}^{\kappa} \setminus \{\mathbf{0}\} = A_0 \cup A_1,$$

where $A_0 = \{x \neq \mathbf{0} : x(\alpha_x) \text{ is rational}\}$ and $A_1 = \{x \neq \mathbf{0} : x(\alpha_x) \text{ is irrational}\}$. Since p is free, we may assume without loss of generality that $A_0 \cap X \in p$. Striving for a contradiction, assume that $C \in p$ is connected, and $C \subseteq A_0 \cap X$. Put

$$\beta = \min\{\alpha < \kappa : \pi_{\alpha}(C) \neq \{0\}\},\$$

here $\pi_{\alpha} \colon \mathbb{I}^{\kappa} \to \mathbb{I}$ is the projection onto the α -th factor. Pick $x \in C$ such that $x(\beta) \neq 0$. Observe that $\alpha_x = \beta$, hence $x(\beta)$ is rational. This means that $\pi_{\beta}(C)$

²⁰¹⁰ Mathematics Subject Classification. 54A25, 54D05.

Key words and phrases. Ultrafilter; Hausdorff space.

The first author was supported by OTKA grant no. 83726.

^{© 2012} Symposium of General Topology.

consists of rational points only. Since $\mathbf{0} \in \overline{C}$ we have $0 \in \overline{\pi_{\beta}(C)}$. Also, $\pi_{\beta}(C) \neq \{0\}$, and hence we reached a contradiction by connectivity of $\pi_{\beta}(C)$.

It is clear that this argument can be generalized with **0** replaced by any other point of \mathbb{I}^{κ} , hence we are done.

Corollary 2. Every base of a free ultrafilter on a Tychonoff space has a member with infinitely many connected components.

Let p be a free ultrafilter on a set X. Then $p \cup \{\emptyset\}$ is a T_1 -topology on X and since all nonempty open sets in this topology intersect, they are all connected. We were unable to answer the following natural problems:

Question 3. Does there exist a free ultrafilter on a T_2 -space or a T_3 -space which is connectedly generated?

The case of countable T_2 -spaces is in our opinion the most interesting.

References

- [1] R. Engelking, General topology, Heldermann Verlag, Berlin, second ed., 1989.
- [2] I. Juhász and J. van Mill, Almost disjoint families of connected sets, Topology Appl. 152 (2005), 209–218.

(István Juhász) Alfréd Rényi Institute of Mathematics H-1053 Budapest, Hungary *E-mail address*: juhasz@renyi.hu

(Jan van Mill) FACULTY OF SCIENCES, DEPARTMENT OF MATHEMATICS, VU UNIVERSITY AMSTERDAM, 1081 HV AMSTERDAM, THE NETHERLANDS *E-mail address*: j.van.mill@vu.nl

Received March 29, 2012 and revised April 24, 2012