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We show that countable unions of nowhere dense C-sets in complete Erdős space are
negligible. This improves on a theorem of Kawamura, Oversteegen, and Tymchatyn that
σ -compacta are negligible in that space. We also prove that σ -compacta are negligible in
Erdős space.
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1. Introduction

Every topological space in this article is assumed to be separable metric. Recall that Erdős space E consists of all se-
quences of rational numbers in �2, the Hilbert space of square summable real sequences. Complete Erdős space can be
represented as

Ec = {
(xi)i∈ω ∈ �2: xi = 0 or 1/xi ∈N for each i ∈ ω

}
.

Both spaces were introduced and shown to be one-dimensional but totally disconnected by Paul Erdős [9] in 1940. This
result together with the obvious fact that E and Ec are homeomorphic to their squares make these spaces important
examples in Dimension Theory. Both E and Ec are universal spaces for the class of almost zero-dimensional spaces; see
[7, Theorem 4.15]. A subset of a space is called a C-set if it is an intersection of clopen sets. A space is called almost zero-
dimensional if every point has a neighbourhood basis consisting of C-sets. The spaces E, Ec, and also Eω

c were characterized
by Dijkstra and van Mill [5,7,6] and Dijkstra [4]. Complete Erdős space plays a role in complex dynamics (Mayer [11], Aarts
and Oversteegen [1]) and it can be represented by, for instance, end-point sets in R-trees (Kawamura, Oversteegen, and
Tymchatyn [10]) or Polishable ideals (Dijkstra and van Mill [6]). The most important alternative representation of Erdős
space is as the group of homeomorphisms of a topological manifold of dimension at least 2 that leave a countable dense
set invariant (Dijkstra and van Mill [7, Theorem 10.2]).

A subset A of a space X is called negligible if X \ A is homeomorphic to X . Kawamura, Oversteegen, and Tymchatyn [10]
proved that σ -compacta and proper closed subsets are negligible in Ec. The authors proved in [7, Corollary 8.15] that proper
closed subsets are negligible in E. In this paper we show that σ -compacta are also negligible in E. Dijkstra [4] proved that
σ -compacta are negligible in Eω

c . It is not known whether proper closed subsets of Eω
c are negligible. The main result in

this paper improves on the negligibility of σ -compacta in Ec, as follows.

Theorem 1. If A is a countable collection of nowhere dense C-sets in Ec then
⋃

A is negligible in Ec .

This theorem also improves upon Proposition 4.5 in van Mill [12], which is used in the construction of a Polish space
that is strongly n-homogeneous for every n, but not countable dense homogeneous. According to Dijkstra, van Mill, and
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Steprāns [8] there exist dense Gδ-subsets of Ec that are not homeomorphic to Ec. Thus Theorem 1 is sharp in the sense
that we cannot replace the C-set condition by the slightly weaker requirement that elements of A be closed. Theorem 1 fits
nicely between two well-known results: the negligibility of countable unions of nowhere dense closed sets in the space of
irrational numbers (Alexandrov and Urysohn [2]) and the negligibility of σ Z-sets in Hilbert space (Anderson [3]).

2. Erdős spaces

Let X be a topological space. We say that a (separable metric) topology W on X witnesses the almost zero-dimensionality
of X if W is coarser than the given topology on X , (X,W) is zero-dimensional, and every point of X has a neighbourhood
basis in X consisting of sets that are closed in (X,W). A space is almost zero-dimensional if and only if there is a topology
W witnessing this fact; see [7, Remark 2.4]. The standard witness topology on E and Ec is the topology of coordinate-wise
convergence; see [7, Chapter 2].

A space X is called cohesive if every point has a neighbourhood that does not contain nonempty clopen subsets of the
space. Erdős [9] showed that E and Ec are not zero-dimensional by proving that they are cohesive.

We shall use the following characterization of Ec; due to the authors [6].

Theorem 2. A nonempty space E is homeomorphic to Ec if and only if there is a zero-dimensional topology W on E that is coarser
than the given topology on E such that for every x ∈ E and neighbourhood U of x in E there is a neighbourhood V of x in E with V
closed in (E,W), (V ,W) topologically complete, and V a nowhere dense subset of (U ,W).

In order to formulate the characterization of E that we shall use we need several definitions.

Definition 3. If A is a nonempty set then A<ω denotes the set of all finite strings of elements of A, including the null
string ∅. If s ∈ A<ω then |s| denotes its length. In this context the set A is called an alphabet. Let Aω denote the set of all
infinite strings of elements of A. If s ∈ A<ω and σ ∈ A<ω ∪ Aω , then we put s ≺ σ if s is an initial substring of σ , that
is, there is a τ ∈ A<ω ∪ Aω with s�τ = σ , where � denotes concatenation of strings. If σ ∈ A<ω ∪ Aω and k ∈ ω, then
σ � k ∈ A<ω is characterized by σ � k ≺ σ and |σ � k| = k.

Definition 4. A tree T on an alphabet A is a subset of A<ω that is closed under initial segments, i.e., if s ∈ T and t ≺ s then
t ∈ T . Elements of T are called nodes. An infinite branch of T is an element σ of Aω such that σ � k ∈ T for every k ∈ ω. The
body of T , written as [T ], is the set of all infinite branches of T . If s, t ∈ T are such that s ≺ t and |t| = |s| + 1, then we say
that t is an immediate successor of s and succ(s) denotes the set of immediate successors of s in T .

If S and T are trees over A respectively B , then we define the product tree S ∗ T as follows. If s = a1 . . .al ∈ S and
t = b1 . . .bl ∈ T are two strings of equal length, then we define the string s ∗ t over A × B by s ∗ t = (a1,b1) . . . (al,bl). We
define S ∗ T = {s ∗ t: s ∈ S, t ∈ T , |s| = |t|} and note that it is a tree over A × B .

Definition 5. Let T be a tree and let (Xs)s∈T be a system of subsets of a space X (called a scheme) such that Xt ⊂ Xs
whenever s ≺ t . A subset A of X is called an anchor for (Xs)s∈T in X if for every σ ∈ [T ] we have Xσ�k ∩ A = ∅ for some
k ∈ ω or the sequence Xσ�0, Xσ�1, . . . converges to a point in X .

The following characterization of Erdős space is due to the authors [7, Theorem 8.17].

Theorem 6. A nonempty space E is homeomorphic to E if and only if there exists a zero-dimensional topology W on E that is coarser
than the given topology on E and there exist a nonempty tree T over a countable alphabet and subspaces Es of E that are closed with
respect to W for each s ∈ T such that:

(1) E∅ = E and Es = ⋃{Et : t ∈ succ(s)} whenever s ∈ T ,
(2) for each s ∈ T and t ∈ succ(s) we have that Et is nowhere dense in Es, and
(3) if x is a point and U is a neighbourhood of x in E, then there is a neighbourhood V ⊂ U of x in E that is a closed anchor for (Es)s∈T

in (E,W) with the property that whenever an Es meets V then it also meets U \ V .

Remark 7. Let W and (Es)s∈T be a witness topology respectively a scheme for E as in Theorem 6. Consider a nonempty Es
and the tree T ′ = {t: s�t ∈ T }. Then it is easily verified that the witness topology that Es inherits from (Ec,W) together
with the scheme (Es�t)t∈T ′ also satisfy the conditions of Theorem 6. Thus we may conclude that every Es is homeomorphic
to E.

Remark 8. Every nonempty open subset of E contains a homeomorphic copy of E that is closed in E. This can be seen
as follows. Consider a nonempty open subset W of EN and note that by the product topology W contains sets of the
form {x1} × · · · × {xn} × E × {xn+2} × · · · . According to Dijkstra and van Mill [7, Corollary 9.4] E is homeomorphic to EN .
In contrast, every point in Ec has a neighbourhood that does not contain a closed copy of Ec; see Dijkstra, van Mill, and
Steprāns [8].



J.J. Dijkstra, J. van Mill / Topology and its Applications 159 (2012) 2947–2950 2949
3. Negligibility theorems

In order to prove Theorem 1 we need a lemma about strengthening witness topologies.

Lemma 9. Let W be a topology on X that witnesses the almost zero-dimensionality of X and let C be a countable collection of clopen
sets in X such that for each C ∈ C also X \ C ∈ C . Then the topology W ′ that is generated by the subbasis W ∪ C is also a witness to
the almost zero-dimensionality of X and has the property that for every topologically complete subspace A of (X,W) we have that A
is also topologically complete in (X,W ′).

Proof. It is evident that W ′ is zero-dimensional and separable metric by the Urysohn Metrization Theorem. Since W ′ sits
between W and the topology on X we have that it is a witness topology to the almost zero-dimensionality of X . Let A ⊂ X
be such that (A,W) is topologically complete. Write C = {Ci: i ∈ N} and let for i ∈ N, Ai be the set A equipped with the
topology that is generated by the basis {A ∩ O ∩ Ci, A ∩ O \ Ci: O ∈ W}. Note that Ai is homeomorphic to the topological
sum of A ∩ Ci and A \ Ci , both equipped with the weak topology W . Since Ci is clopen in X we have by [7, Remark 2.5]
that both Ci and X \ Ci are Gδ-sets in (X,W). We may conclude that every Ai is topologically complete and hence so is∏∞

i=1 Ai . It is evident that (A,W ′) is homeomorphic to the diagonal � = {(x, x, x, . . .): x ∈ A} of
∏∞

i=1 Ai . Since � is closed
in

∏∞
i=1(A,W) it is clearly also closed in

∏∞
i=1 Ai . Thus we have that � and (A,W ′) are topologically complete. �

Proof of Theorem 1. Let W be a witness topology for Ec as in Theorem 2. Write A = {Ai: i ∈ N} and A = ⋃
A. For each

i ∈ N select a countable collection Ci of clopen subsets of Ec such that Ai = ⋂
Ci . Put C = {C,Ec \ C : C ∈ Ci, i ∈ N} and let

W ′ be the topology generated by W ∪ C as in Lemma 9. Note that every Ai is closed in (X,W ′). To show with Theorem 2
that Y = Ec \ A is homeomorphic to Ec let x ∈ Y and let U be an open neighbourhood of x in Ec. Since Ec is cohesive we
may assume that U contains no clopen subsets of Ec other than the empty set. Select a neighbourhood V ⊂ U of x in Ec
with V closed in (Ec,W) and (V ,W) topologically complete. Then V \ A is closed in (Y ,W ′) and (V ,W ′) is topologically
complete by Lemma 9. Since A is an Fσ -set with respect to W ′ we have that (V \ A,W ′) is topologically complete.

To prove that V \ A has an empty interior in (U \ A,W ′) let P ∈ W ′ be such that P ∩ (V \ A) �= ∅. Since W ′ is zero-
dimensional we may assume that P is clopen in (Ec,W ′) and hence also in Ec. If P ∩ V = P ∩ U then P ∩ U is a clopen
nonempty set in Ec which violates the cohesion assumption on U so we may conclude that P ∩ (U \ V ) is not empty.
Since P ∩ (U \ V ) is an open subset of the complete space Ec it cannot be contained in the first category set A. Thus
P ∩ (U \ A) \ V �= ∅ and we have that V \ A has an empty interior in (U \ A,W ′). With Theorem 2 we may conclude that Y
is homeomorphic to Ec. �
Theorem 10. Let W be a witness topology for E as in Theorem 6. If A is a subspace of E that is an Fσ -set in (E,W) and that does not
contain a homeomorphic copy of E that is closed in E then A is negligible in E.

Proof. Let W and (Es)s∈T be a witness topology respectively a scheme for E as in Theorem 6. Let Y = E \ A and note that
Y �= ∅. Write A = ⋃∞

i=1 Ai with every Ai closed with respect to W . We can write E \ Ai = ⋃∞
j=1 Fij with each Fij clopen

in (E,W). If s ∗ t is a node of the tree T ∗N
<ω with t = j1 . . . jk , then we define E ′

s∗t = Y ∩ Es ∩ Ct , where Ct denotes the
clopen set

⋂k
i=1 Fiji . Let S be the subtree {r ∈ T ∗N<ω: E ′

r �= ∅}. We verify that (E ′
r)r∈S satisfies the conditions of Theorem 6

with witness topology W ′ = {Y ∩ O : O ∈W} for Y .
It is clear that every E ′

r is closed in (Y ,W ′) and that condition (1) is satisfied. For condition (2) Let s′ ∗ t′ be a successor
of an s ∗ t ∈ S and let O be open in E with E ′

s′∗t′ ∩ O �= ∅. Then Es′ ∩ Ct′ ∩ O �= ∅ and hence P = (Es \ Es′ ) ∩ O ∩ Ct′ �= ∅.
Note that P is an open subset of Es , which space is homeomorphic to E by Remark 7. Then P contains a copy of E that
is closed in Es and hence in E by Remark 8. Thus P is not contained in A and we have P ∩ Y �= ∅. Since Ct′ ⊂ Ct we now
have that (E ′

s∗t \ E ′
s′∗t′ ) ∩ O �= ∅ and hence that E ′

s′∗t′ is nowhere dense in E ′
s∗t .

For condition (3), let x ∈ Y and let U be an open neighbourhood of x in E. According to [7, Lemma 8.16] we may choose
a neighbourhood V ⊂ U of x in E that is a closed anchor for (Es)s∈T in (E,W) with the property that V contains no
nonempty clopen subsets of any Es . Consider an E ′

s∗t that meets V \ A. Then Es ∩ Ct is a clopen subset of Es that meets V .
If Es ∩ Ct ∩ V = Es ∩ Ct ∩ U then it is also a clopen nonempty subset of Es , which contradicts a property of V . Thus we have
Q = Es ∩ Ct ∩ (U \ V ) �= ∅. Note that Q is an open subset of Es and hence by Remarks 7 and 8, Q contains a copy of E that
is closed in Es and in E. So we have that Q ∩ Y = E ′

s∗t ∩ (U \ V ) �= ∅.
For the anchor property let σ ∗ τ ∈ [S] be such that Eσ�k ∩ Cτ�k ∩ Y ∩ V �= ∅ for each k ∈ ω. Then (Eσ�k)k∈ω converges

to an x in (E,W) and hence also (E ′
(σ∗τ )�k)k∈ω converges to x. Let τ = j1 j2 . . . and let i ∈ N. Then E ′

(σ∗τ )�k ⊂ Fiji for each
k � i. Since Fiji is closed with respect to W we have x ∈ Fiji and thus x /∈ Ai . Thus x ∈ Y and we have shown V \ A to be
an anchor for (E ′

r)r∈S in (Y ,W ′). �
A space is called σ -complete if it can be written as a countable union of topologically complete subspaces. Since E is not

σ -complete (see [7, p. 23]) we have:
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Corollary 11. Let W be a witness topology for E as in Theorem 6. If A is a σ -complete subspace of E that is an Fσ -set in (E,W) then
A is negligible in E.

An immediate consequence is:

Corollary 12. σ -Compacta are negligible in E.

Example 13. Consider E as a subset of �2. Then the topology of coordinate-wise convergence W is a witness topology that
satisfies the conditions of Theorem 6; see [7, Proposition 8.12]. Note that Ec is a subspace of E that is closed with respect
to W . If A is an arbitrary countable subset of E then A +Ec is a negligible subset of E by Corollary 11.
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[6] J.J. Dijkstra, J. van Mill, Characterizing complete Erdős space, Canad. J. Math. 61 (2009) 124–140.
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