ELSEVIED

Contents lists available at SciVerse ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Negligible sets in Erdős spaces

Jan J. Dijkstra*, Jan van Mill

Faculteit der Exacte Wetenschappen/Afdeling Wiskunde, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

ARTICLE INFO

ABSTRACT

We show that countable unions of nowhere dense C-sets in complete Erdős space are negligible. This improves on a theorem of Kawamura, Oversteegen, and Tymchatyn that σ -compacta are negligible in that space. We also prove that σ -compacta are negligible in Erdős space.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

MSC:

54F50

Keywords:

Negligible sets

Erdős space Complete Erdős space

Every topological space in this article is assumed to be separable metric. Recall that *Erdős space* \mathfrak{E} consists of all sequences of rational numbers in ℓ^2 , the Hilbert space of square summable real sequences. *Complete Erdős space* can be represented as

$$\mathfrak{E}_{\mathsf{c}} = \left\{ (x_i)_{i \in \omega} \in \ell^2 \colon x_i = 0 \text{ or } 1/x_i \in \mathbb{N} \text{ for each } i \in \omega \right\}.$$

Both spaces were introduced and shown to be one-dimensional but totally disconnected by Paul Erdős [9] in 1940. This result together with the obvious fact that \mathfrak{E} and \mathfrak{E}_c are homeomorphic to their squares make these spaces important examples in Dimension Theory. Both \mathfrak{E} and \mathfrak{E}_c are universal spaces for the class of almost zero-dimensional spaces; see [7, Theorem 4.15]. A subset of a space is called a *C-set* if it is an intersection of clopen sets. A space is called *almost zero-dimensional* if every point has a neighbourhood basis consisting of C-sets. The spaces \mathfrak{E} , \mathfrak{E}_c , and also \mathfrak{E}_c^{ω} were characterized by Dijkstra and van Mill [5,7,6] and Dijkstra [4]. Complete Erdős space plays a role in complex dynamics (Mayer [11], Aarts and Oversteegen [1]) and it can be represented by, for instance, end-point sets in \mathbb{R} -trees (Kawamura, Oversteegen, and Tymchatyn [10]) or Polishable ideals (Dijkstra and van Mill [6]). The most important alternative representation of Erdős space is as the group of homeomorphisms of a topological manifold of dimension at least 2 that leave a countable dense set invariant (Dijkstra and van Mill [7, Theorem 10.2]).

A subset *A* of a space *X* is called *negligible* if $X \setminus A$ is homeomorphic to *X*. Kawamura, Oversteegen, and Tymchatyn [10] proved that σ -compacta and proper closed subsets are negligible in \mathfrak{E}_c . The authors proved in [7, Corollary 8.15] that proper closed subsets are negligible in \mathfrak{E} . In this paper we show that σ -compacta are also negligible in \mathfrak{E} . Dijkstra [4] proved that σ -compacta are negligible in \mathfrak{E}_c . It is not known whether proper closed subsets of \mathfrak{E}_c^{ω} are negligible. The main result in this paper improves on the negligibility of σ -compacta in \mathfrak{E}_c , as follows.

Theorem 1. If \mathcal{A} is a countable collection of nowhere dense C-sets in \mathfrak{E}_c then $\bigcup \mathcal{A}$ is negligible in \mathfrak{E}_c .

This theorem also improves upon Proposition 4.5 in van Mill [12], which is used in the construction of a Polish space that is strongly n-homogeneous for every n, but not countable dense homogeneous. According to Dijkstra, van Mill, and

* Corresponding author.

E-mail addresses: j.j.dijkstra@vu.nl (J.J. Dijkstra), j.van.mill@vu.nl (J. van Mill).

^{0166-8641/\$ –} see front matter $\,\,\odot$ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.topol.2012.05.006

Steprāns [8] there exist dense G_{δ} -subsets of \mathfrak{E}_{c} that are not homeomorphic to \mathfrak{E}_{c} . Thus Theorem 1 is sharp in the sense that we cannot replace the C-set condition by the slightly weaker requirement that elements of \mathcal{A} be closed. Theorem 1 fits nicely between two well-known results: the negligibility of countable unions of nowhere dense closed sets in the space of irrational numbers (Alexandrov and Urysohn [2]) and the negligibility of σ Z-sets in Hilbert space (Anderson [3]).

2. Erdős spaces

Let *X* be a topological space. We say that a (separable metric) topology W on *X* witnesses the almost zero-dimensionality of *X* if W is coarser than the given topology on *X*, (*X*, W) is zero-dimensional, and every point of *X* has a neighbourhood basis in *X* consisting of sets that are closed in (*X*, W). A space is almost zero-dimensional if and only if there is a topology W witnessing this fact; see [7, Remark 2.4]. The standard witness topology on \mathfrak{E} and \mathfrak{E}_c is the topology of coordinate-wise convergence; see [7, Chapter 2].

A space X is called *cohesive* if every point has a neighbourhood that does not contain nonempty clopen subsets of the space. Erdős [9] showed that \mathfrak{E} and \mathfrak{E}_c are not zero-dimensional by proving that they are cohesive.

We shall use the following characterization of \mathfrak{E}_{c} ; due to the authors [6].

Theorem 2. A nonempty space *E* is homeomorphic to \mathfrak{E}_c if and only if there is a zero-dimensional topology \mathcal{W} on *E* that is coarser than the given topology on *E* such that for every $x \in E$ and neighbourhood *U* of *x* in *E* there is a neighbourhood *V* of *x* in *E* with *V* closed in (E, \mathcal{W}) , (V, \mathcal{W}) topologically complete, and *V* a nowhere dense subset of (U, \mathcal{W}) .

In order to formulate the characterization of $\mathfrak E$ that we shall use we need several definitions.

Definition 3. If *A* is a nonempty set then $A^{<\omega}$ denotes the set of all finite strings of elements of *A*, including the null string \emptyset . If $s \in A^{<\omega}$ then |s| denotes its *length*. In this context the set *A* is called an *alphabet*. Let A^{ω} denote the set of all infinite strings of elements of *A*. If $s \in A^{<\omega}$ and $\sigma \in A^{<\omega} \cup A^{\omega}$, then we put $s \prec \sigma$ if *s* is an initial substring of σ , that is, there is a $\tau \in A^{<\omega} \cup A^{\omega}$ with $s^{\uparrow}\tau = \sigma$, where \uparrow denotes concatenation of strings. If $\sigma \in A^{<\omega} \cup A^{\omega}$ and $k \in \omega$, then $\sigma \upharpoonright k \in A^{<\omega}$ is characterized by $\sigma \upharpoonright k \prec \sigma$ and $|\sigma \upharpoonright k| = k$.

Definition 4. A tree *T* on an alphabet *A* is a subset of $A^{<\omega}$ that is closed under initial segments, i.e., if $s \in T$ and t < s then $t \in T$. Elements of *T* are called *nodes*. An *infinite branch* of *T* is an element σ of A^{ω} such that $\sigma \upharpoonright k \in T$ for every $k \in \omega$. The body of *T*, written as [*T*], is the set of all infinite branches of *T*. If $s, t \in T$ are such that s < t and |t| = |s| + 1, then we say that *t* is an *immediate successor* of *s* and succ(*s*) denotes the set of immediate successors of *s* in *T*.

If *S* and *T* are trees over *A* respectively *B*, then we define the product tree S * T as follows. If $s = a_1 \dots a_l \in S$ and $t = b_1 \dots b_l \in T$ are two strings of equal length, then we define the string s * t over $A \times B$ by $s * t = (a_1, b_1) \dots (a_l, b_l)$. We define $S * T = \{s * t: s \in S, t \in T, |s| = |t|\}$ and note that it is a tree over $A \times B$.

Definition 5. Let *T* be a tree and let $(X_s)_{s \in T}$ be a system of subsets of a space *X* (called a *scheme*) such that $X_t \subset X_s$ whenever $s \prec t$. A subset *A* of *X* is called an *anchor* for $(X_s)_{s \in T}$ in *X* if for every $\sigma \in [T]$ we have $X_{\sigma \upharpoonright k} \cap A = \emptyset$ for some $k \in \omega$ or the sequence $X_{\sigma \upharpoonright 0}, X_{\sigma \upharpoonright 1}, \ldots$ converges to a point in *X*.

The following characterization of Erdős space is due to the authors [7, Theorem 8.17].

Theorem 6. A nonempty space *E* is homeomorphic to \mathfrak{E} if and only if there exists a zero-dimensional topology \mathcal{W} on *E* that is coarser than the given topology on *E* and there exist a nonempty tree *T* over a countable alphabet and subspaces E_s of *E* that are closed with respect to \mathcal{W} for each $s \in T$ such that:

- (1) $E_{\emptyset} = E$ and $E_s = \bigcup \{E_t : t \in \text{succ}(s)\}$ whenever $s \in T$,
- (2) for each $s \in T$ and $t \in \text{succ}(s)$ we have that E_t is nowhere dense in E_s , and
- (3) if x is a point and U is a neighbourhood of x in E, then there is a neighbourhood $V \subset U$ of x in E that is a closed anchor for $(E_s)_{s \in T}$ in (E, W) with the property that whenever an E_s meets V then it also meets $U \setminus V$.

Remark 7. Let W and $(E_s)_{s \in T}$ be a witness topology respectively a scheme for \mathfrak{E} as in Theorem 6. Consider a nonempty E_s and the tree $T' = \{t: s^{-}t \in T\}$. Then it is easily verified that the witness topology that E_s inherits from (\mathfrak{E}_c, W) together with the scheme $(E_{s^-t})_{t \in T'}$ also satisfy the conditions of Theorem 6. Thus we may conclude that every E_s is homeomorphic to \mathfrak{E} .

Remark 8. Every nonempty open subset of \mathfrak{E} contains a homeomorphic copy of \mathfrak{E} that is closed in \mathfrak{E} . This can be seen as follows. Consider a nonempty open subset W of $\mathfrak{E}^{\mathbb{N}}$ and note that by the product topology W contains sets of the form $\{x_1\} \times \cdots \times \{x_n\} \times \mathfrak{E} \times \{x_{n+2}\} \times \cdots$. According to Dijkstra and van Mill [7, Corollary 9.4] \mathfrak{E} is homeomorphic to $\mathfrak{E}^{\mathbb{N}}$. In contrast, every point in \mathfrak{E}_c has a neighbourhood that does not contain a closed copy of \mathfrak{E}_c ; see Dijkstra, van Mill, and Steprāns [8].

3. Negligibility theorems

In order to prove Theorem 1 we need a lemma about strengthening witness topologies.

Lemma 9. Let \mathcal{W} be a topology on X that witnesses the almost zero-dimensionality of X and let \mathcal{C} be a countable collection of clopen sets in X such that for each $C \in C$ also $X \setminus C \in C$. Then the topology \mathcal{W}' that is generated by the subbasis $\mathcal{W} \cup C$ is also a witness to the almost zero-dimensionality of X and has the property that for every topologically complete subspace A of (X, \mathcal{W}) we have that A is also topologically complete in (X, \mathcal{W}') .

Proof. It is evident that W' is zero-dimensional and separable metric by the Urysohn Metrization Theorem. Since W' sits between W and the topology on X we have that it is a witness topology to the almost zero-dimensionality of X. Let $A \subset X$ be such that (A, W) is topologically complete. Write $C = \{C_i: i \in \mathbb{N}\}$ and let for $i \in \mathbb{N}$, A_i be the set A equipped with the topology that is generated by the basis $\{A \cap O \cap C_i, A \cap O \setminus C_i: O \in W\}$. Note that A_i is homeomorphic to the topological sum of $A \cap C_i$ and $A \setminus C_i$, both equipped with the weak topology W. Since C_i is clopen in X we have by [7, Remark 2.5] that both C_i and $X \setminus C_i$ are G_{δ} -sets in (X, W). We may conclude that every A_i is topologically complete and hence so is $\prod_{i=1}^{\infty} A_i$. It is evident that (A, W') is homeomorphic to the diagonal $\Delta = \{(x, x, x, \ldots): x \in A\}$ of $\prod_{i=1}^{\infty} A_i$. Since Δ is closed in $\prod_{i=1}^{\infty} A_i$. Thus we have that Δ and (A, W') are topologically complete. \Box

Proof of Theorem 1. Let \mathcal{W} be a witness topology for \mathfrak{E}_c as in Theorem 2. Write $\mathcal{A} = \{A_i: i \in \mathbb{N}\}$ and $A = \bigcup \mathcal{A}$. For each $i \in \mathbb{N}$ select a countable collection \mathcal{C}_i of clopen subsets of \mathfrak{E}_c such that $A_i = \bigcap \mathcal{C}_i$. Put $\mathcal{C} = \{C, \mathfrak{E}_c \setminus C: C \in \mathcal{C}_i, i \in \mathbb{N}\}$ and let \mathcal{W}' be the topology generated by $\mathcal{W} \cup \mathcal{C}$ as in Lemma 9. Note that every A_i is closed in (X, \mathcal{W}') . To show with Theorem 2 that $Y = \mathfrak{E}_c \setminus A$ is homeomorphic to \mathfrak{E}_c let $x \in Y$ and let U be an open neighbourhood of x in \mathfrak{E}_c . Since \mathfrak{E}_c is cohesive we may assume that U contains no clopen subsets of \mathfrak{E}_c other than the empty set. Select a neighbourhood $V \subset U$ of x in \mathfrak{E}_c with V closed in $(\mathfrak{E}_c, \mathcal{W})$ and (V, \mathcal{W}) topologically complete. Then $V \setminus A$ is closed in (Y, \mathcal{W}') and (V, \mathcal{W}') is topologically complete.

To prove that $V \setminus A$ has an empty interior in $(U \setminus A, W')$ let $P \in W'$ be such that $P \cap (V \setminus A) \neq \emptyset$. Since W' is zerodimensional we may assume that P is clopen in (\mathfrak{E}_{c}, W') and hence also in \mathfrak{E}_{c} . If $P \cap V = P \cap U$ then $P \cap U$ is a clopen nonempty set in \mathfrak{E}_{c} which violates the cohesion assumption on U so we may conclude that $P \cap (U \setminus V)$ is not empty. Since $P \cap (U \setminus V)$ is an open subset of the complete space \mathfrak{E}_{c} it cannot be contained in the first category set A. Thus $P \cap (U \setminus A) \setminus V \neq \emptyset$ and we have that $V \setminus A$ has an empty interior in $(U \setminus A, W')$. With Theorem 2 we may conclude that Yis homeomorphic to \mathfrak{E}_{c} . \Box

Theorem 10. Let \mathcal{W} be a witness topology for \mathfrak{E} as in Theorem 6. If A is a subspace of \mathfrak{E} that is an F_{σ} -set in $(\mathfrak{E}, \mathcal{W})$ and that does not contain a homeomorphic copy of \mathfrak{E} that is closed in \mathfrak{E} then A is negligible in \mathfrak{E} .

Proof. Let \mathcal{W} and $(E_s)_{s\in T}$ be a witness topology respectively a scheme for \mathfrak{E} as in Theorem 6. Let $Y = \mathfrak{E} \setminus A$ and note that $Y \neq \emptyset$. Write $A = \bigcup_{i=1}^{\infty} A_i$ with every A_i closed with respect to \mathcal{W} . We can write $\mathfrak{E} \setminus A_i = \bigcup_{j=1}^{\infty} F_{ij}$ with each F_{ij} clopen in $(\mathfrak{E}, \mathcal{W})$. If s * t is a node of the tree $T * \mathbb{N}^{<\omega}$ with $t = j_1 \dots j_k$, then we define $E'_{s*t} = Y \cap E_s \cap C_t$, where C_t denotes the clopen set $\bigcap_{i=1}^k F_{ij}$. Let S be the subtree $\{r \in T * \mathbb{N}^{<\omega}: E'_r \neq \emptyset\}$. We verify that $(E'_r)_{r\in S}$ satisfies the conditions of Theorem 6 with witness topology $\mathcal{W}' = \{Y \cap O: O \in \mathcal{W}\}$ for Y.

It is clear that every E'_r is closed in (Y, W') and that condition (1) is satisfied. For condition (2) Let s' * t' be a successor of an $s * t \in S$ and let O be open in \mathfrak{E} with $E'_{s'*t'} \cap O \neq \emptyset$. Then $E_{s'} \cap C_{t'} \cap O \neq \emptyset$ and hence $P = (E_s \setminus E_{s'}) \cap O \cap C_{t'} \neq \emptyset$. Note that P is an open subset of E_s , which space is homeomorphic to \mathfrak{E} by Remark 7. Then P contains a copy of \mathfrak{E} that is closed in E_s and hence in \mathfrak{E} by Remark 8. Thus P is not contained in A and we have $P \cap Y \neq \emptyset$. Since $C_{t'} \subset C_t$ we now have that $(E'_{s*t} \setminus E'_{s'*t'}) \cap O \neq \emptyset$ and hence that $E'_{s'*t'}$ is nowhere dense in E'_{s*t} .

For condition (3), let $x \in Y$ and let U be an open neighbourhood of x in \mathfrak{E} . According to [7, Lemma 8.16] we may choose a neighbourhood $V \subset U$ of x in \mathfrak{E} that is a closed anchor for $(E_s)_{s \in T}$ in $(\mathfrak{E}, \mathcal{W})$ with the property that V contains no nonempty clopen subsets of any E_s . Consider an E'_{s*t} that meets $V \setminus A$. Then $E_s \cap C_t$ is a clopen subset of E_s that meets V. If $E_s \cap C_t \cap V = E_s \cap C_t \cap U$ then it is also a clopen nonempty subset of E_s , which contradicts a property of V. Thus we have $Q = E_s \cap C_t \cap (U \setminus V) \neq \emptyset$. Note that Q is an open subset of E_s and hence by Remarks 7 and 8, Q contains a copy of \mathfrak{E} that is closed in E_s and in \mathfrak{E} . So we have that $Q \cap Y = E'_{s*t} \cap (U \setminus V) \neq \emptyset$.

For the anchor property let $\sigma * \tau \in [S]$ be such that $E_{\sigma \upharpoonright k} \cap C_{\tau \upharpoonright k} \cap Y \cap V \neq \emptyset$ for each $k \in \omega$. Then $(E_{\sigma \upharpoonright k})_{k \in \omega}$ converges to an x in (\mathfrak{E}, W) and hence also $(E'_{(\sigma * \tau) \upharpoonright k})_{k \in \omega}$ converges to x. Let $\tau = j_1 j_2 \dots$ and let $i \in \mathbb{N}$. Then $E'_{(\sigma * \tau) \upharpoonright k} \subset F_{ij_i}$ for each $k \ge i$. Since F_{ij_i} is closed with respect to W we have $x \in F_{ij_i}$ and thus $x \notin A_i$. Thus $x \in Y$ and we have shown $V \setminus A$ to be an anchor for $(E'_r)_{r \in S}$ in (Y, W'). \Box

A space is called σ -complete if it can be written as a countable union of topologically complete subspaces. Since \mathfrak{E} is not σ -complete (see [7, p. 23]) we have:

Corollary 11. Let \mathcal{W} be a witness topology for \mathfrak{E} as in Theorem 6. If A is a σ -complete subspace of \mathfrak{E} that is an F_{σ} -set in $(\mathfrak{E}, \mathcal{W})$ then A is negligible in \mathfrak{E} .

An immediate consequence is:

Corollary 12. σ -Compacta are negligible in \mathfrak{E} .

Example 13. Consider \mathfrak{E} as a subset of ℓ^2 . Then the topology of coordinate-wise convergence \mathcal{W} is a witness topology that satisfies the conditions of Theorem 6; see [7, Proposition 8.12]. Note that \mathfrak{E}_c is a subspace of \mathfrak{E} that is closed with respect to \mathcal{W} . If A is an arbitrary countable subset of \mathfrak{E} then $A + \mathfrak{E}_c$ is a negligible subset of \mathfrak{E} by Corollary 11.

References

- [1] J.M. Aarts, L.G. Oversteegen, The geometry of Julia sets, Trans. Amer. Math. Soc. 338 (1993) 897-918.
- [2] P. Alexandroff, P. Urysohn, Über nulldimensionale Punktmengen, Math. Ann. 98 (1928) 89-106.
- [3] R.D. Anderson, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 125 (1967) 200–216. [4] J.J. Dijkstra, Characterizing stable complete Erdős space, Israel J. Math. 186 (2011) 477–507.
- [5] J.J. Dijkstra, J. van Mill, Homeomorphism groups of manifolds and Erdős space, Electron. Res. Announc. Amer. Math. Soc. 10 (2004) 29-38.
- [6] J.J. Dijkstra, J. van Mill, Characterizing complete Erdős space, Canad. J. Math. 61 (2009) 124–140.
- [7] J.J. Dijkstra, J. van Mill, Erdős space and homeomorphism groups of manifolds, Mem. Amer. Math. Soc. 208 (979) (2010), vi+62 pp.
- [8] J.J. Dijkstra, J. van Mill, J. Steprans, Complete Erdős space is unstable, Math. Proc. Cambridge Philos. Soc. 137 (2004) 465-473.
- [9] P. Erdős, The dimension of the rational points in Hilbert space, Ann. of Math. 41 (1940) 734-736.
- [10] K. Kawamura, L.G. Oversteegen, E.D. Tymchatyn, On homogeneous totally disconnected 1-dimensional spaces, Fund. Math. 150 (1996) 97-112.
- [11] J.C. Mayer, An explosion point for the set of endpoints of the Julia set of $\lambda \exp(z)$, Ergodic Theory Dynam. Systems 10 (1990) 177–183.
- [12] J. van Mill, On countable dense and strong n-homogeneity, Fund. Math. 214 (2011) 215-239.