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Abstract. We prove that a manifold M is metrisable if and only if its group

of homeomorphisms H (M) endowed with the compact-open topology is a q-

space. We also discuss pseudo-character and tightness.

All spaces under discussion are Tychonoff.

1. Introduction

In this note we continue the search for topological properties that in general
are weaker than metrisability but for manifolds are equivalent to metrisability. See
Gauld [7] and Gauld and Mynard [8] for details and references. By a manifold we
mean a connected space which is locally homeomorphic to Euclidean space. Our
focus here is on the homeomorphism group H (M) of a manifold M . That is,
we identify topological properties P such that H (M) has P if and only if M is
metrisable. Here H (M) is endowed with the compact-open topology. Our main
result is that a manifold M is metrisable if and only if H (M) is a q-space. We also
discuss pseudo-character and tightness.

2. Preliminaries

For a space X we let H (X) denote the group of homeomorphisms of X endowed
with the compact-open topology. The neutral element of H (X), that is, the iden-
tity function on X, will be denoted by e. For subsets A and B of X we define
[A,B] = {f ∈ H (X) : f(A) ⊆ B}, and we recall that the topology on H (X) is
generated by the subbase

SX = {[K,O] : K,O ⊆ X,K compact, O open}.
The space H (X) is homogeneous, i.e., all points of it are topologically identical.
To prove this, first consider for a given f ∈ H (X) the translation λ defined by
λf (g) = f ◦g. Then λf is continuous, since λ−1

f ([K,O]) = {g ∈H (X) : f
(
g(K)

)
⊆

O} = {g ∈ H (X) : g(K) ⊆ f−1(O)} = [K, f−1(O)], for all K,O ⊆ X. Hence λf
is a homeomorphism of H (X) since its inverse is the translation λf−1 . This easily
implies that H (X) is homogeneous. Our argument is well-known of course.

Observe that for a locally compact space X, the weight of H (X) does not exceed
the weight of X. Hence if X is a locally compact separable metrisable space, then
H (X) is separable and metrisable as well.
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If X is compact, then H (X) is easily seen to be a topological group and the
natural action

H (X)×X : (g, x) 7→ g(x)

is continuous. It is a classical result of Arens [1] that H (X) endowed with the
compact-open topology is a topological group if X is an arbitrary locally compact
and locally connected space. Even if X is locally compact and of countable weight,
then the continuity of the inverse may fail. Dijkstra [4] generalized the Arens result
for spaces X that have the property that every x ∈ X has a neighbourhood that is
a continuum. Observe that such spaces are locally compact.

For x ∈ X we let γx : H (X) → X be the evaluation at the point x, that is,
γx(f) = f(x) for every f ∈ H (X). Observe that the functions γx are continuous.
Simply observe that for every open subset O of X, we have that γ−1

x (O) is nothing
but the subbasic open set [{x}, O].

We say that X is strongly locally homogeneous (abbreviated SLH) if it has a base
B such that for all B ∈ B and x, y ∈ B there is an element f ∈ H (X) that is
supported on B (that is, f is the identity outside B) and moves x to y. Clearly,
every manifold is SLH.

A sequence V0,V1, . . . of open covers of a space X is called normal if each Vn is
a star-refinement of Vn−1.

A space X is a q-space if for every point x ∈ X there exists a sequence {Un :
n < ω} of open neighbourhoods of x in X such that for every choice xn ∈ Un, the
sequence {xn : n < ω} has a cluster point.

3. Lemmas

Lemma 3.1. Let X be SLH and homogeneous. Then for every x ∈ X we have that
the function γx : H (X)→ X is a continuous, open surjection.

Proof. It is clear that γx : H (X)→ X is a continuous surjection, due to the fact
that X is homogeneous. So the only thing to be proved is that every γx is open.

To begin with, let U be an arbitrary open neighbourhood of the neutral element
e of H (X).

Claim 1. For every x ∈ X, x is in the interior of γx(U).

There are compact sets K1, . . . ,Km and open sets O1, . . . , Om in X such that

e ∈
m⋂
i=1

[Ki, Oi] ⊆ U.

Let V be an open neighbourhood containing x such that for every i ≤ m, V ⊆ Oi
if x ∈ Ki and V ∩ Ki = ∅ if x 6∈ Ki. Since X is SLH, we may assume that V
has the property that for every y ∈ V there is a homeomorphism f of X which
sends x onto y and is supported on V . Fix an arbitrary y ∈ V and let f be such
a homeomorphism for y. Then f sends every Ki into Oi, hence f ∈ U . But this
means that y ∈ γx(U), i.e., V ⊆ γx(U).

Now let V be an arbitrary open subset of H (X).

Claim 2. For every x ∈ X, γx(V ) is open.
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Pick an arbitrary point y ∈ γx(V ). Let f ∈ V be such that f(x) = y. There exists
an open neighbourhood U of the neutral element e of H (X) such that fU ⊆ V . By
Claim 1, there is an open subset W of X containing x which is contained in γx(U).
Now consider the open neighbourhood Z = f(W ) of y. For z ∈ Z, pick w ∈ W
such that f(w) = z. There exists g ∈ U such that g(x) = w. Hence f ◦ g(x) = z,
and f ◦ g ∈ fU ⊆ V . We conclude that z ∈ γx(V ), i.e., y ∈ Z ⊆ γx(V ). �

Lemma 3.2. Let X be SLH and homogeneous, and let (Un)n be a sequence of
symmetric open neighbourhoods of the neutral element e of H (M) such that U3

n+1 ⊆
Un, for every n. For every n let Vn = {γx(Un) : x ∈ X}. Then the sequence of open
covers V0,V1, . . . is normal.

Proof. That every Vn is an open cover of X follows from Lemma 3.1. Let P =
γx(Un) for some x ∈ X. Take an arbitrary p ∈ X such that γp(Un) ∩ P 6= ∅,
say z ∈ γp(Un) ∩ γx(Un). Let w be an arbitrary element of γp(Un). There are
α, β, γ ∈ Un such that α(p) = w, β(p) = z and γ(x) = z. Then

α ◦ β−1 ◦ γ(x) = w

and α ◦ β−1 ◦ γ ∈ Un−1 since Un is symmetric and U3
n ⊆ Un−1. Hence we conclude

that w ∈ γx(Un−1). Hence St(P,Vn−1) ⊆ γx(Un−1) ∈ Vn−1, as required. �

Lemma 3.3. Let M be a manifold, and let (Un)n be a sequence of neighbourhoods
of the neutral element e in H (M). Then there exists a closed and separable subset
K of M such that if f ∈ H (M) and f restricts to the identity on K, then f ∈⋂
n<ω Un.

Proof. For a fixed n we may choose a basic neighbourhood of e of the form

[K1, O1] ∩ · · · ∩ [Ki, Oi]

that is contained in Un. Hence any homeomorphism of M that is supported on a set

that misses the compact set
⋃i
j=1Kj belongs to Un. We conclude that there exists a

σ-compact set A in M such that any homeomorphism that fixes A pointwise belongs
to
⋂
n<ω Un. Observing that A is separable we see that K = A is as required. �

4. Main Results

We are looking for conditions on H (M) for a manifold M that ensure that M
is metrisable.

Here is our first ‘duality’ theorem.

Theorem 4.1. Let M be a manifold. Then the following statements are equivalent:
(1) M is separable,
(2) H (M) has countable pseudo-character.

Proof. Let us first assume that M is separable, and fix a countable dense subset
D of M . For every d ∈ D let Ud be a countable local base at d. It is easily seen
that the collection

{[{d}, U ] : d ∈ D,U ∈ Ud}
is a countable pseudo-base at the neutral element e of H (M). Since H (M) is
homogeneous, it consequently has countable pseudo-character. (Since H (X) is
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homogeneous for every space X, the proof shows that we actually proved the fol-
lowing more general statement: if X has a countable dense set D such that X is
first countable at every point of D, then H (X) has countable pseudo-character.)

Now assume that H (M) has countable pseudo-character, and let (Un)n be a
countable pseudo-base at the neutral element e of H (M). Let K be the separable
closed set we get from Lemma 3.3. We claim that K = M . Suppose not, and pick a
nonempty euclidean open ball B that misses K. There clearly is a homeomorphism
f of M which is supported on B and moves a point of B. Hence f is not the
identity, yet f ∈

⋂
n<ω Un = {e}. This is a contradiction. �

By Nyikos [11, Example 3.7] there is a separable nonmetrisable Moore manifold
M . Hence H (M) has countable pseudo-character by Theorem 4.1, yet M is not
metrisable. See also Rudin and Zenor [12] for another example. This shows that
countable character in Theorem 4.2 below cannot be replaced by pseudo-character.

It is not true that M has a Gδ-diagonal if and only if H (M) has one. To see
this, consider the Prüfer manifold, [11, Example 3.7]. It is a Moore space so it has
a Gδ-diagonal. But it also has cellularity c, hence it is not separable. Hence H (M)
does not have a Gδ-diagonal since it is not even of countable pseudo-character by
Theorem 4.1.

We now come to our main ‘duality’ result. The equivalence of (1) and (5) answers
a question posed by Alexandre Gabard.

Theorem 4.2. For a manifold M, the following statements are equivalent:
(1) M is metrisable,
(2) M is separable and metrisable,
(3) H (M) is first countable,
(4) H (M) is a q-space,
(5) H (M) is metrisable,
(6) H (M) is separable and metrisable.

Proof. Some of the implications are trivial. That a first countable topological
group is metrisable is well-known, see e.g., [10, Theorem 8.3]. We already observed
that H (M) has countable weight if M is metrisable. It consequently suffices to
prove that (3) implies (1) and (4) implies (3).

For (3)⇒ (1), assume that H (M) is first countable. By the Arens result quoted
above, H (M) is a topological group. Hence there is a sequence of symmetric
neighbourhoods (Un)n of the neutral element e of H (M) such that
(1) {Un : n < ω} is a local base at e in H (M),
(2) U3

n+1 ⊆ Un, for every n.
Let V0,V1, . . . be the sequence of open covers we get from (Un)n as in Lemma 3.2.
We claim that this sequence is a strong development for M which suffices by the
Moore Metrisation Theorem, see [5, 5.4.2]. For that it suffices to prove that V =⋃
n<ω Vn is a base. But this is trivial. To see this, let x ∈ M , and let O be an

arbitrary open neighbourhood of x. Then γ−1
x (O) is an open neighbourhood of e in

H (M), hence there exists n such that Un ⊆ γ−1
x (O). But then x ∈ γx(Un) ⊆ O.1

1Added in proof: We are indebted to Konstantin Kozlov for pointing out to us that implication

3) to 1) in Theorem 4 could also be proved using Corollary 4 in [2]. In this case one needs also to

appeal to our Lemma 3.1.
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For (4)⇒ (3), assume that H (M) is a q-space. We claim that M is separable.
Assume the contrary, and let (Ui)i be any sequence of neighbourhoods of the neutral
element e of H (M) which makes e a q-point of H (M). Let K be the separable
closed subset of M that we get from Lemma 3.3. Let U be a nonempty euclidean
open subset of M that misses K. Let B be a nonempty open ball whose compact
closure B is contained in U . The group of homeomorphisms of B that fix the
boundary ∂B of B pointwise is not compact (see e.g., Geoghegan [9]). Hence
there is a sequence (fn)n of homeomorphisms of B each element of which fixes ∂B
pointwise and which has no limit point. Extend each of these homeomorphisms to
a homeomorphism of M by requiring it to be the identity outside B. The sequence
of homeomorphisms thus obtained is contained in

⋂
i<ω Ui but has no limit point

in H (M). This is a contradiction.
Hence M is separable, which implies by Theorem 4.1 that H (M) has countable

pseudo-character. But a q-space of countable pseudo-character is first countable.
This is implicit in Chiba [3]. For completeness sake, we will present the easy proof.
Let (Ui)i be a sequence of open neighbourhoods of the neutral element e of H (M)
that makes e a q-point of H (M). Since H (M) has countable pseudo-character,
we may additionally assume that U i+1 ⊆ Ui for every i and

⋂
i<ω Ui = {e}. We

claim that (Ui)i is a neighbourhood base at e in H (M). To see this, let O be any
open neighbourhood of e in H (M). If Ui 6⊆ O for every i, then pick an element
fi ∈ Ui \ O. For a limit point f of the sequence (fi)i we have f ∈

⋂
i<ω U i = {e}.

Hence infinitely many terms of the sequence (fi)i belong to O, a contradiction. �

5. Tightness

Recall that a space X has countable tightness if for every x ∈ X and subset A
of X such that x ∈ A there is a countable subset B of A such that x ∈ B. It is
an interesting question whether countable tightness of H (M) implies that M is
metrisable.

See Nyikos [11] for the definition of the open long ray L+.

Example 5.1. The homeomorphism group of the open long ray L+ does not have
countable tightness.

There is clearly a homeomorphism h of L+ such that h�ω1 = e and h�[α, α+1] 6= e
for every α ∈ ω1 \ {0}. Now let hα : L+ → L+ for every α ∈ ω1 \ {0} be defined as
follows:

hα(β) =

{
β (0 < β ≤ α),

h(β) (α < β < ω1).

Then for S = {hα : α ∈ ω1 \ {0}} we have e ∈ S but e 6∈ T for every countable
T ⊆ S.

Theorem 5.2. Let M be an ω-bounded manifold containing two disjoint closed
subsets A and B such that for every compact subset K of M , some component of
M \K meets both A and B. Then H (M) does not have countable tightness.

Proof. Since M is ω-bounded, we can write it as
⋃
α<ω1

Kα, where Kα is compact
for every α < ω and Kα ⊆ Kβ if α < β. For every α < ω1, let Uα be a component of
M \Kα meeting both A and B, say in the points aα and bα, respectively. By using
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simple chains of connected Euclidean open sets connecting aα and bα, it is easy to
construct for every α < ω1 a connected Euclidean open subset Vα of M containing
both aα and bα while moreover Vα ⊆ Uα. Now for every α < ω1 let, hα ∈ H (M)
be supported on Vα while moreover hα(aα) = bα. Put S = {hα : α < ω1}.

Claim 1. e ∈ S.

Indeed, let K be an arbitrary finite family of compact subsets of M , and put
K =

⋃
K . Since K is separable, there is an α < ω1 such that K ⊆ Kα. Hence

hβ for β ≥ α restricts to the identity on every member of K . This is clearly as
required.

Claim 2. For every α < ω1, e 6∈ {hβ : β < α}.

Let Aα be the closure of the set {aβ : β < α}. Then Aα is compact, and
e ∈ [Aα,M \B]. But hβ 6∈ [Aα,M \B] for every β < α. �

There are of course many manifolds to which the theorem applies, for example,
the square of the open long ray as well as many long pipes. We do not know whether
the homeomorphism groups of the Prüfer manifolds have countable tightness; for a
nice description of these manifolds we refer to Gabard [6, Section 3].
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