A compact F-space with noncoinciding dimensions

Jan van Mill
Faculty of Sciences, Department of Mathematics, VU University Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

A R T I C L E I N F O

MSC:

54G05
54F45
54D35

Keywords:

Compact F-space
Zero-dimensional compact space
Two-to-one image
Dimension
Continuum Hypothesis

A B S TRACT
We prove that there exists a compact F-space of weight \mathfrak{c}^{+}with noncoinciding dimensions.
(C) 2012 Elsevier B.V. All rights reserved.

1. Introduction

All spaces under discussion here are Tychonoff.
It is well known that the three fundamental dimension functions take on the same values for all separable metrizable spaces. This does not hold for various other classes of spaces with very nice properties, see e.g., Fedorchuk [10], Kozlov [15] and Charalambous [2] for results and references. The first examples of compact spaces with noncoinciding dimensions were constructed by Lunc and Lokucievskiī [16] in 1949. Lokucievskii's now classical example is a compact space X of weight ω_{1} such that $\operatorname{dim} X=$ ind $X=1$ but Ind $X=2$. In Hart and van Mill [14, Theorem 2.1] it was proved under the Continuum Hypothesis that for every compact F-space X of weight \mathfrak{c} we have ind $X=\operatorname{Ind} X=\operatorname{dim} X$. It is not known whether this is a theorem of ZFC. The aim of this paper is to show that this cannot be generalized to compact F-spaces of larger weight. We will use the example by Lokucievskiĭ [16] for the construction of the following example:

Example 1.1. There is a compact F-space \mathbb{X} of weight \mathfrak{c}^{+}with Ind $\mathbb{X}=2$ and closed subspaces X_{0} and X_{1} such that $\mathbb{X}=$ $X_{0} \cup X_{1}$ and Ind $X_{0}=\operatorname{Ind} X_{1}=1$.

This implies that $\operatorname{dim} \mathbb{X}=1$. From the construction it will be clear that ind $\mathbb{X}=2$.

2. Preliminaries

2.1. Notation and terminology

For a subset A of a space X its boundary $\operatorname{Fr} A$ is the set $\bar{A} \backslash \operatorname{Int} A$. Hence if U is open, then $\operatorname{Fr} U=\bar{U} \backslash U$. A subset of a space X is clopen if it is both open and closed. A continuous surjection $f: X \rightarrow Y$ is called irreducible provided that there does not exist a proper closed subset A of X such that $f(A)=Y$. It is not difficult to show that if $f: X \rightarrow Y$ is a continuous

[^0]surjection with compact fibers, then there is a closed subspace A of X such that $f \upharpoonright A: A \rightarrow Y$ is irreducible (and hence, onto) [8, Exercise 3.1.C].

Let A and B be disjoint closed subsets of a space X. We say that a closed subset K of X is a partition between A and B provided that $X \backslash K$ can be written as $U \cup V$, where U and V are disjoint open subsets of X such that $A \subseteq U$ and $B \subseteq V$.

A subset A of a space X is called a P-set provided that the intersection of countably many neighborhoods of A is again a neighborhood of A.

If X is a space then βX denotes its Čech-Stone compactification, and $X^{*}=\beta X \backslash X$. If X is normal, and A is closed in X, then we can and will identify βA and the closure of A in $\beta X[8,3.6 .8]$. Observe that if A and B are closed subsets of the metrizable space X, and $A^{*}=B^{*}$, then the symmetric difference $A \Delta B$ of A and B has compact closure in X. To prove this, assume that e.g., $A \backslash B$ does not have compact closure in X. By [8, 4.1.17], there is a countably infinite discrete set D in $A \backslash B$ which is closed in X. Since $D \cap B=\emptyset$, we have $\bar{D} \cap \bar{B}=\emptyset$ (here 'closure' means closure in βX). Since D is infinite, there is a point $p \in D^{*}$. Then $p \in A^{*} \backslash B^{*}$, which is a contradiction.

If Y is compact and $f: X \rightarrow Y$ is continuous, then f can be extended to a continuous function $\beta f: \beta X \rightarrow Y$. This (unique) function is called the Stone extension of f. We put $\bar{f}=\beta f \upharpoonright X^{*}: X^{*} \rightarrow Y$.

Let $\left\{x_{n}: n<\omega\right\}$ be a sequence of points in the compact space X. Then for every ultrafilter ξ on ω, let $\lim _{\xi}\left\{x_{n}: n<\omega\right\}$ be the unique point in the intersection $\bigcap_{P \in \xi} \overline{\left\{x_{n}: n \in P\right\}}$. This point is called the ξ-limit of the sequence $\left\{x_{n}: n \in \omega\right\}$. Let f denote the obvious function $\omega \rightarrow\left\{x_{n}: n<\omega\right\}$. It is easy to see that $\lim _{\xi}\left\{x_{n}: n<\omega\right\}$ is equal to $\beta f(\xi)$.

If $U \subseteq X$ is open, then $\operatorname{Ex} U=\beta X \backslash(\overline{X \backslash U})$ is open in βX. Clearly, Ex U is the largest open subset of βX whose intersection with X equals U. Let X be normal. If $F \subseteq X$ is closed, and $U \subseteq X$ is open, and $F \subseteq U$, then $\bar{F} \subseteq \operatorname{Ex}(U)$. Simply observe that $F \cap(X \backslash U)=\emptyset$ and hence $\bar{F} \cap \overline{X \backslash U}=\emptyset$. This fact will be used frequently in the forthcoming, and without explicit reference.

Cardinals are initial (von Neumann) ordinals, and get the discrete topology; \mathfrak{c} is the cardinality of the continuum. If X is a set and κ is a cardinal number, then $[X]^{\kappa},[X]^{<\kappa}$ and $[X]^{\leqslant \kappa}$ denote $\{A \subseteq X:|A|=\kappa\},\{A \subseteq X:|A|<\kappa\}$ and $\{A \subseteq X:|A| \leqslant \kappa\}$, respectively.

2.2. Dimension theory

A space is called zero-dimensional if it has a base consisting entirely of clopen sets. In this paper we are only interested in the dimension theory of compact spaces. Our basic dimension function is the covering dimension $\operatorname{dim} X$ of a space X. So if we say that a compact space X is n-dimensional, this always refers to the covering dimension. Besides the covering dimension, there are the so-called small and large inductive dimension functions ind and Ind, respectively. For more information on dimension theory and definitions, see [9]. For us, the following well-known results will be important:

Theorem 2.1. If X is a compact space, then $\operatorname{dim} X \leqslant \operatorname{ind} X \leqslant \operatorname{Ind} X$. Moreover,

$$
\operatorname{dim} X=0 \Leftrightarrow \quad \text { ind } X=0 \quad \Leftrightarrow \quad \text { Ind } X=0
$$

Proof. The inequality ind $X \leqslant$ Ind X holds for all normal spaces X [9, 1.6.3]. Moreover, the inequality $\operatorname{dim} X \leqslant$ ind X holds for all strongly paracompact spaces X [9, 3.1.29]. The second part of the theorem is a direct consequence of [9, 3.1.30].

So for a compact space there is only one notion of zero-dimensionality. In fact, a compact space is zero-dimensional if and only if it does not contain any nontrivial continuum [9, 1.4.5].

None of these inequalities is sharp, even for spaces with very nice properties, see e.g., Fedorchuk [10], Kozlov [15] and Charalambous [2] for results and references.

Proposition 2.2. Let X and Y be compact spaces and $f: X \rightarrow Y$ a continuous surjection. Put $A=\overline{\bigcup\left\{f^{-1}(y):(y \in Y) \&\left(\left|f^{-1}(y)\right|>1\right)\right\}}$ and $B=f(A)$, respectively. Assume moreover that Ind $X \leqslant 1$. Then the following hold:
(1) If Ind $B \leqslant 0$, then Ind $Y \leqslant 1$.
(2) If Ind $A \leqslant 0$, and f is $(\leqslant) 2$-to-one, then Ind $Y \leqslant 1$.

Proof. For (1), let E and F be arbitrary disjoint closed subsets of Y. There are relatively clopen disjoint sets C and D in B such that $C \cup D=B$, and $(E \cup C) \cap(F \cup D)=\emptyset$. Let R be a partition between $f^{-1}(E \cup C)$ and $f^{-1}(F \cup D)$ in X such that Ind $R \leqslant 0$. Write $X \backslash R$ as $U \cup V$, where U and V are disjoint open subsets of X such that $f^{-1}(E \cup C) \subseteq U$ and $f^{-1}(F \cup D) \subseteq V$. Let $p \in U \cup R$ and $q \in V \cup R$ be distinct points such that $f(p)=f(q)$. We may assume without loss of generality that $f(p)=f(q) \in C$. But then $q \in U$, which is a contradiction. Hence such points p and q do not exist, from which it follows that $f(U \cup R) \cap f(V \cup R)=f(R)$. Hence $f(R)$ is by compactness a partition between E and F in X and is homeomorphic to R, which is as desired.

For (2), let E and F be disjoint closed subsets of Y, and let C be a clopen subset of A such that $f^{-1}(E) \cap A \subseteq C \subseteq$ $A \backslash\left(f^{-1}(F) \cap A\right)=A \backslash f^{-1}(F)$. Let D be a partition between $f^{-1}(E) \cup C$ and $f^{-1}(F) \cup(A \backslash C)$ in X such that Ind $D \leqslant 0$.

Write $X \backslash D$ as $U \cup V$, where U and V are nonempty open subsets of X such that $f^{-1}(E) \cup C \subseteq U$ and $f^{-1}(F) \cup(A \backslash C) \subseteq V$. Let $\hat{U}=U \cup D$ and $\hat{V}=V \cup D$, respectively. Observe that both \hat{U} and \hat{V} are closed, that $\hat{U} \cup \hat{V}=X$, and that $\hat{U} \cap \hat{V}=D$ misses A. Moreover, $\hat{U} \cap f^{-1}(F)=\emptyset$ and $\hat{V} \cap f^{-1}(E)=\emptyset$. From this it clearly follows that

$$
\hat{D}=f(\hat{U}) \cap f(\hat{V})
$$

is a partition between E and F. We claim that $\operatorname{dim} \hat{D} \leqslant 0$ (and hence Ind $\hat{D} \leqslant 0$ by Theorem 2.1). To prove this, pick an arbitrary $y \in \hat{D}$. There are $u \in \hat{U}$ and $v \in \hat{V}$ such that $f(u)=f(v)=y$.

Case 1. $u \notin A$ and $v \in A$.
Then $f^{-1}(y)$ contains two distinct points and hence must be contained in A. Since $u \notin A$, this is impossible.
Case 2. $u \notin A$ and $v \notin A$.

Observe that $f \upharpoonright(X \backslash A)$ is one-to-one. Hence $u=v \in D$.

Case 3. $u \in A$ and $v \in A$.

Then $u \in C$ and $v \in C \backslash A$.
The conclusion is that \hat{D} is contained in the disjoint union of the compact sets $f(D)$ and $f\left(C^{\prime}\right)$, where $C^{\prime}=\{u \in C:(\exists v \in$ $C \backslash A)(f(u)=f(v))\}$, and that f is one-to-one on both D and C^{\prime} (here we use that f is (\leqslant)2-to-one). Observe that by compactness, both $f \upharpoonright D$ and $f \upharpoonright C^{\prime}$ are homeomorphisms. Since Ind $A \leqslant 0$ and Ind $D \leqslant 0$, this means that the compact space \hat{D} is contained in the union of two zero-dimensional compact spaces and hence is zero-dimensional itself [9, 3.1.8].

2.3. F-spaces

An F-space is a space in which every cozero-set is C^{*}-embedded, see [12]. It is easy to see that a compact space X is an F-space if the following holds: if F and G are F_{σ}-subsets of X with $\bar{F} \cap G=\emptyset=F \cap \bar{G}$, then $\bar{F} \cap \bar{G}=\emptyset$ (van Douwen [4, p. 239]).

Let X be a compact F-space, and let D in X be F_{σ} (for example, D is countable). We claim that D is C^{*}-embedded in X. For this it suffices to prove that $\bar{D}=\beta D$. Indeed, if A and B are relatively closed disjoint subsets of D, then A and B are F_{σ}-subsets of X such that $\bar{A} \cap B=\emptyset=A \cap \bar{B}$, and so by van Douwen's result, $\bar{A} \cap \bar{B}=\emptyset$. Since every infinite space contains an infinite discrete space, this shows that every infinite compact F-space contains a copy of $\beta \omega$ and hence has weight at least c. See Comfort, Hindman and Negrepontis [3] and Woods [18] for stronger results about C^{*}-embedded subspaces of compact F-spaces.

It is clear that in a compact space X van Douwen's condition is equivalent to the following statement: every two disjoint open F_{σ}-subsets of X have disjoint closures.

A closed subspace of a compact F-space is again a compact F-space, as well as the topological sum of finitely many compact F-spaces. These facts follow easily from van Douwen's criterion and will be used without explicit reference in the forthcoming.

The basic examples of compact F-spaces are the spaces of the form X^{*}, where X is any locally compact, σ-compact space [12, 14.27]. Such a remainder also has the property that every nonempty G_{δ} of it has nonempty interior, see Fine and Gillman [11, p. 377].

2.4. Continua in βX

For each n, let X_{n} be a nontrivial continuum. We assume that the sequence $\left\{X_{n}: n<\omega\right\}$ is pairwise disjoint. We let X denote the topological sum of the X_{n} 's. Finally, let $\pi: X \rightarrow \omega$ be the 'projection' defined by $f(x)=n$ iff $x \in X_{n}$.

The collection of components of X^{*} coincides with the collection

$$
\left\{\bar{\pi}^{-1}(p): p \in \omega^{*}\right\}
$$

A moment's reflection consequently shows that a closed subset C of X^{*} is a component of X^{*} if and only if there exists $p \in \omega^{*}$ such that

$$
C=\bigcap_{P \in P} \overline{\bigcup_{n \in P} X_{n}} .
$$

Observe that all these components are nontrivial. For details, see e.g. Hart [13].

2.5. Adjunction spaces

Let X and Y be two disjoint compact spaces, let $A \subseteq X$ be closed, and let $f: A \rightarrow Y$ be continuous. The decomposition

$$
\mathscr{Q}=\left\{f^{-1}(y) \cup\{y\}: y \in f(A)\right\} \cup\{\{x\}: x \in(X \backslash A) \cup(Y \backslash f(A))\}
$$

of the topological sum $X+Y$ of X and Y is upper semi-continuous, and the quotient space $(X+Y) / \mathscr{Q}$ is denoted by $X \cup_{f} Y$. It is called the adjunction space obtained from X and Y by f. Let $p_{f}: X+Y \rightarrow X \cup_{f} Y$ be the natural quotient map.

That X and Y are disjoint is not essential of course. A similar construction can also be performed when X and Y intersect. We simply replace X by $X \times\{0\}$ and Y by $Y \times\{1\}$, and proceed as before. So when we talk about adjunction spaces in the sequel, we will always implicitly assume that the spaces under consideration are disjoint.

Observe that we can think of $X \cup_{f} Y$ as created in two steps. In the first step we replace A in X by $f(A)$ thus obtaining the space X^{\prime}. In X^{\prime} and the space Y there are two copies of $f(A)$ that are being identified in the second step. That brings us to $X \cup_{f} Y$. We concentrate on compact spaces here. For noncompact spaces one can perform similar constructions, see [7, p. 127] for details.

In case $f: A \rightarrow Y$ is surjective, there is no need to consider the topological sum $X+Y$ for the construction of $X \cup_{f} Y$. For then, $X \cup_{f} Y$ is simply X / \mathscr{Q}, where \mathscr{Q} is the upper semi-continuous decomposition

$$
\mathscr{Q}=\left\{f^{-1}(y): y \in Y\right\} \cup\{\{x\}: x \in X \backslash A\}
$$

of X.
The following result is implicit in Balcar, Frankiewicz and Mills [1] (see also [17, 1.4.1]). For completeness sake, we will include the simple proof.

Lemma 2.3. Let X and Y be two compact F-spaces. If A is a closed P-set in X and $f: A \rightarrow Y$ is continuous, then $X \cup_{f} Y$ is a compact F-space.

Proof. Compactness is clear. To prove that $X \cup_{f} Y$ is an F-space, let U and V be disjoint open F_{σ}-subsets of $X \cup_{f} Y$. We have to show that $\bar{U} \cap \bar{V}=\emptyset$, Section 2.3. It will be convenient to identify Y and $p_{f}(Y)$, and, similarly, $X \backslash A$ and $p_{f}(X \backslash A)$. Since Y is a compact F-space, $\overline{U \cap Y} \cap \overline{V \cap Y}=\emptyset$. Let E and F be disjoint closed G_{δ}-subsets of $X \cup_{f} Y$ that are neighborhoods of $\overline{U \cap Y}$ respectively $\overline{V \cap Y}$. Then $U \backslash E$ and $V \backslash F$ are disjoint open F_{σ}-subsets of $X \cup_{f} Y$ which both do not meet A.

Claim 1. $\overline{U \backslash E} \cap \bar{V}=\emptyset$ and $\overline{V \backslash F} \cap \bar{U}=\emptyset$.
Striving for a contradiction, assume that there exists e.g. an element $p \in \overline{U \backslash E} \cap \bar{V}$. Observe that $U \backslash E$ is an open F_{σ}-subset of X that misses A. Hence $\overline{U \backslash E} \cap A=\emptyset$ since A is a P-set. Let K be an open F_{σ}-subset of X such that $\overline{U \backslash E} \subseteq K \subseteq \bar{K} \subseteq X \backslash A$. Then, clearly, $p \in K \cap \bar{V} \subseteq \overline{K \cap V}$. Hence $U \backslash E$ and $K \cap V$ are disjoint open F_{σ} 's of X such that $p \in \overline{U \backslash E} \cap \overline{K \cap \bar{V}}$, which contradicts X being an \bar{F}-space.

Since $\bar{U}=\overline{U \backslash E} \cup \overline{U \cap E}, \bar{V}=\overline{V \backslash F} \cup \overline{V \cap F}$, and, clearly, $\overline{U \cap E} \cap \overline{V \cap F}=\emptyset$, we get by Claim 1 that $\bar{U} \cap \bar{V}=\emptyset$, as required.

3. Reflections on $\beta[0,1)$

Let D denote an arbitrary countable dense subset of $(0,1)$. In \mathbb{I} we split each point $d \in D$ in two points, d^{-}and d^{+}. The points in $\mathbb{I} \backslash D$ will not be split. Order the set

$$
\Delta=(\mathbb{I} \backslash D) \cup\left\{d^{-}, d^{+}: d \in D\right\}
$$

in the natural way, where d^{-}always precedes d^{+}. Endow Δ with the order topology derived from this order. It is clear that topologically, Δ is nothing but the ordinary Cantor middle-third set in \mathbb{I}. Let $f: \Delta \rightarrow \mathbb{I}$ be the unique order preserving function that maps for each $d \in D$ the points d^{-}and d^{+}to d. Clearly, f is a continuous surjection, and for $y \in \mathbb{I},\left|f^{-1}(y)\right|=2$ if $y \in D$ and $\left|f^{-1}(y)\right|=1$ otherwise. That such a map exists is well known of course and goes back to Alexandroff and Hausdorff (see [9, 1.3.D]). Observe that f is irreducible.

A set of the form [d_{0}^{+}, d_{1}^{-}], where $d_{0}, d_{1} \in D$ and $d_{0}<d_{1}$, is called a clopen segment of Δ.
Let $\varepsilon: \mathbb{I} \rightarrow \mathbb{I}$ be a homeomorphism such that $\varepsilon(0)=0, \varepsilon(1)=1$ and $\varepsilon(D) \cap D=\emptyset$. It will be convenient to denote $\varepsilon(D)$ by E.

Put $\mathbb{K}=\Delta \backslash\{1\}$, and let $g_{0}=f \upharpoonright \mathbb{K}: \mathbb{K} \rightarrow[0,1)$ and $g_{1}=\left(\varepsilon \circ g_{0}\right) \upharpoonright \mathbb{K}: \mathbb{K} \rightarrow[0,1)$, respectively. Then g_{0} and g_{1} are both perfect since $f^{-1}(1)=\{1\}$ and $\varepsilon^{-1}(1)=\{1\}$. Observe that both g_{0} and g_{1} are irreducible.

Observe that \mathbb{K} is a σ-compact zero-dimensional space. It consequently follows that Ind $\beta \mathbb{K}=\operatorname{Ind} \mathbb{K}^{*}=0$ [9, 2.2.10]. Moreover, \mathbb{K} has weight ω, hence the weight of $\beta \mathbb{K}$ is easily seen to be \mathfrak{c} (prove that \mathbb{K} has \mathfrak{c} many clopen subsets).

Consider for $i=0,1$ the Stone extensions

$$
\beta g_{i}: \beta \mathbb{K} \rightarrow \beta[0,1)
$$

and let

$$
\bar{g}_{i}=\beta g_{i} \upharpoonright \mathbb{K}^{*}: \mathbb{K}^{*} \rightarrow[0,1)^{*}
$$

We claim that the \bar{g}_{i} are $(\leqslant) 2$-to-one continuous surjections. For this, first observe that the \bar{g}_{i} are continuous surjections since the g_{i} are perfect surjections. That they are $(\leqslant) 2$-to-one is a consequence of van Douwen [5, Lemma 4.3].

Lemma 3.1. Both \bar{g}_{0} and \bar{g}_{1} are irreducible.
Proof. It is clear that it suffices to prove this for \bar{g}_{0}. So let A be a proper closed subset of \mathbb{K}^{*}. There is a noncompact clopen subset V of \mathbb{K} such that $V^{*} \subseteq \mathbb{K}^{*} \backslash A$. Write V as $\bigcup_{n<\omega} V_{n}$, where for each $n, V_{n}=\left[d_{n}^{+}, e_{n}^{-}\right]$is a clopen segment and $V_{n} \cap V_{m}=\emptyset$ if $n \neq m$. For every n, pick a point $p_{n} \in\left(d_{n}, e_{n}\right)$. Observe that $P=\left\{p_{n}: n<\omega\right\}$ is closed in [0,1) but not compact. Hence we may pick a point $p \in P^{*}$. Put $W=\mathbb{K} \backslash V$. Then W is clopen and $A \subseteq \bar{W}$. Moreover, $g_{0}(W)$ is a closed subset of $[0,1)$ that misses P, i.e., $p \notin \overline{g_{0}(W)} \supseteq \bar{g}_{0}(A)$.

Proposition 3.2. Let $U \subseteq[0,1)^{*}$ be nonempty. If U is not dense, then $\overline{\bar{g}_{0}^{-1}(U)}$ is not clopen or $\overline{\bar{g}_{1}^{-1}(U)}$ is not clopen.
Proof. Striving for a contradiction, assume that $\overline{\bar{g}_{0}^{-1}(U)}$ and $\overline{\bar{g}_{1}^{-1}(U)}$ are both clopen. Since U is not dense in $[0,1)^{*}, \overline{\bar{g}_{0}^{-1}(U)}$ and $\overline{\bar{g}_{1}^{-1}(U)}$ are proper subsets of \mathbb{K}^{*}.

Claim 1. If A is a clopen subset of \mathbb{K} such that $A^{*}=\overline{\bar{g}_{0}^{-1}(U)}$, then $\operatorname{Fr} g_{0}(A)$ is nonempty and is contained in D.
Proof. Since $\overline{\bar{g}_{0}^{-1}(U)} \neq \mathbb{K}^{*}$, it follows that A is a proper closed subset of \mathbb{K} and A is nonempty since U is nonempty. Hence since g_{0} is perfect and irreducible, $g_{0}(A)$ is a proper nonempty closed subset of $[0,1)$.

By connectivity of $\left[0,1\right.$), the boundary of $g_{0}(A)$ is nonempty. Take an arbitrary $p \in \operatorname{Fr} g_{0}(A)$. We will prove that $p \in D$. If $\left|g_{0}^{-1}(p)\right|=1$, then $q=g_{0}^{-1}(p)$ belongs to A since $p \in g_{0}(A)$. Since A is open and g_{0} is perfect, there is a neighborhood V of p such that $g_{0}^{-1}(V) \subseteq A$. But this means that p is in the interior of $g_{0}(A)$, which is a contradiction. Hence $\left|g_{0}^{-1}(p)\right|=2$, i.e., $p \in D$.

Since ε is a homeomorphism, the following result has an identical proof.
Claim 2. If B is a clopen subset of \mathbb{K} such that $B^{*}=\overline{\bar{g}_{1}^{-1}(U)}$, then $\operatorname{Fr} g_{0}(B)$ is nonempty and is contained in E.
Now let A and B be arbitrary clopen sets such as in Claims 1 and 2.
Claim 3. $g_{0}(A)^{*}=g_{1}(B)^{*}=\bar{U}$.
Proof. It suffices to prove that $g_{0}(A)^{*}=\bar{U}$. First observe that $\beta g_{0}(\bar{A})=\overline{g_{0}(A)}$. This holds since $g_{0}(A)$ is dense in $\beta g_{0}(\bar{A})$ as well as $\overline{g_{0}(A)}$. Now $\bar{A}=A \cup A^{*}$, hence

$$
\beta g_{0}(\bar{A})=g_{0}(A) \cup \bar{g}_{0}\left(A^{*}\right)=g_{0}(A) \cup \bar{g}_{0}\left(\overline{\bar{g}_{0}^{-1}(U)}\right)=g_{0}(A) \cup \bar{U}
$$

Since

$$
\overline{g_{0}(A)}=g_{0}(A) \cup g_{0}(A)^{*}
$$

we consequently get what we want.
Claim 4. The open set $[0,1) \backslash\left(g_{0}(A) \cup g_{1}(B)\right)$ does not have compact closure in $[0,1)$.
Proof. By Claim 3 we get that $\left(g_{0}(A) \cup g_{1}(B)\right)^{*}=g_{0}(A)^{*} \cup g_{1}(B)^{*}=\bar{U}$ is a proper subset of $[0,1)^{*}$, from which the desired result follows immediately.

So from Claim 3 and the remarks in Section 2.3 we have that $g_{0}(A) \Delta g_{1}(B)$ has compact closure in $[0,1)$. Hence there exists $t \in[0,1)$ such that $g_{0}(A) \cap[t, 1)=g_{1}(B) \cap[t, 1)$. By Claim 4 we may assume without loss of generality that $t \in[0,1) \backslash\left(g_{0}(A) \cup g_{1}(B) \cup D \cup E\right)$. Now put

$$
\tilde{A}=A \cap\left[g_{0}^{-1}(t), 1\right), \quad \tilde{B}=B \cap\left[g_{1}^{-1}(t), 1\right)
$$

Then \tilde{A} and \tilde{B} are clopen subsets of \mathbb{K} such that $\tilde{A}^{*}=A^{*}$ and $\tilde{B}^{*}=B^{*}$. Moreover,

$$
g_{0}(\tilde{A})=g_{0}(A) \cap[t, 1), \quad g_{1}(\tilde{B})=g_{1}(B) \cap[t, 1)
$$

Hence $g_{0}(\tilde{A})=g_{1}(\tilde{B})$. By Claims 1 and $2, \emptyset \neq \operatorname{Fr} g_{0}(\tilde{A}) \subseteq D$ and $\emptyset \neq \operatorname{Fr} g_{1}(\tilde{B}) \subseteq E$. But this is a contradiction since $D \cap E=\emptyset$.

4. The example

Our example will be based on Lokucievskii's paper [16] in which he constructs a simple compact space with noncoinciding dimensions. Since we aim at an F-space, we have to adjust the construction.

4.1. Step 1

Let $L=[\mathbf{u}, \mathbf{v}]$ be a compact connected ordered space of weight \mathfrak{c}^{+}in which \mathbf{v} is a $P_{c^{+}}$-point. (Such a space is easily found. For example, let L denote the long-segment of length \mathfrak{c}^{+}. That is, L is the one-point compactification of the product $\mathfrak{c}^{+} \times[0,1)$ endowed with the lexicographical order.)

Put $L_{0}=L \backslash\{\mathbf{v}\}, S=L \times \mathbb{K}^{*}$, and $P=\{\mathbf{v}\} \times \mathbb{K}^{*}$, respectively. It is easy to prove that $\operatorname{dim} S=\operatorname{ind} S=$ Ind $S=1$. Finally, observe that the weight of S is \mathfrak{c}^{+}since the weight of \mathbb{K}^{*} is \mathfrak{c}.

4.2. Step 2

Put $T=S \times \omega$. It will be convenient to represent a point from T as (x, p, n), where $x \in L, p \in \mathbb{K}^{*}$, and $n \in \omega$. Let $\pi: T \rightarrow S$ denote the projection $(x, p, n) \mapsto(x, p)$.

It is clear that Ind $T=$ Ind $S=1$, and it consequently follows that Ind $\beta T=1$ [9, 2.2.10]. Since T^{*} contains nontrivial continua by Section 2.4, we get Ind $T^{*}=1$. The weight of βT is easily seen to be equal to $\left(\mathfrak{c}^{+}\right)^{\omega}=\mathfrak{c}^{+}$.

The following lemma is a consequence of van Douwen and van Mill [6, Lemma 3]. For the convenience of the reader we will repeat its simple proof.

Lemma 4.1. $\beta \pi^{-1}(P)=\overline{P \times \omega}$, hence $\bar{\pi}^{-1}(P)=(P \times \omega)^{*}$.
Proof. That $\beta \pi^{-1}(P) \supseteq \overline{P \times \omega}$ is clear. Now take an arbitrary element $z \in \beta \pi^{-1}(P)$, and assume that $z \notin \overline{P \times \omega}$. There is a closed neighborhood C of z in βT which misses $P \times \omega$. Hence $C \cap T$ is a σ-compact subset of T which has z in its closure. But $\pi(C \cap T) \cap P=\emptyset$, hence $\overline{\pi(C \cap T)} \cap P=\emptyset$ since $P=\{\mathbf{v}\} \times \mathbb{K}^{*}$ is a P-set of S. Since $z \in \overline{C \cap T}$ and hence $\beta \pi(z) \in \overline{\pi(C \cap T)} \cap P$, this is a contradiction.

Fix arbitrary $\mu \in[\mathbf{u}, \mathbf{v})$ and $t \in \mathbb{K}^{*}$. Since $[\mu, \mathbf{v}]$ is a nontrivial continuum, every component of $([\mu, \mathbf{v}] \times\{t\} \times \omega)^{*}$ is by Section 2.4 of the form

$$
\mathbb{I}(\mu, t, \xi)=\bigcap_{A \in \xi} \bigcup_{n \in A} \overline{[\mu, \mathbf{v}] \times\{t\} \times\{n\}}
$$

for some free ultrafilter ξ on ω. Observe that

$$
\mathbb{I}(\mu, t, \xi) \cap(P \times \omega)^{*}=\lim _{\xi}\{(\mathbf{v}, t, n): n<\omega\}
$$

is a single point.

4.3. Step 3

Let $\varphi=\bar{\pi} \upharpoonright(P \times \omega)^{*}:(P \times \omega)^{*} \rightarrow P$, and consider the adjunction space

$$
Y=T^{*} \cup_{\varphi} P
$$

Observe that Y is T^{*} with the $P_{\mathfrak{c}^{+}}$-set $(P \times \omega)^{*}$ of T^{*} replaced by P (in a natural way). Since $P=\{\mathbf{v}\} \times \mathbb{K}^{*} \approx \mathbb{K}^{*}$ is an F space (Section 2.3), we get that Y is an F-space as well (Lemma 2.3). Since Ind $P=0$, we get Ind $Y \leqslant 1$ by Proposition 2.2(1). Since Y contains a nontrivial continuum, Ind $Y=1$. Also, the weight of Y is easily seen to be equal to \mathfrak{c}^{+}.

Let $F: T^{*} \rightarrow Y$ denote the standard quotient map. We think of $T^{*} \backslash(P \times \omega)^{*}$ and $F\left(T^{*} \backslash(P \times \omega)^{*}\right)$ as the same spaces, 'identifying' p and $F(p)$ for every $p \in T^{*} \backslash(P \times \omega)^{*}$. Hence F restricts to the identity on $T^{*} \backslash(P \times \omega)^{*}$. It will also be convenient to think of P and $F\left((P \times \omega)^{*}\right)$ as the same spaces.

Observe that for $\xi \in \omega^{*}$ and $t \in \mathbb{K}^{*}$ we have that
($\dagger \dagger$)

$$
F\left(\lim _{\xi}\{(\mathbf{v}, t, n): n<\omega\}\right)=(\mathbf{v}, t)
$$

Also observe that by ($\dagger \dagger$) we have that the restriction of F to every continuum of the form $\mathbb{I}(\mu, t, \xi)$ is one-to-one. We will denote $F(\mathbb{I}(\mu, t, \xi))$ by $\hat{\mathbb{I}}(\mu, t, \xi)$, hence by our identifications,

$$
\hat{\mathbb{I}}(\mu, t, \xi)=\left(\mathbb{I}(\mu, t, \xi) \backslash\left\{\lim _{\xi}\{(\mathbf{v}, t, n): n<\omega\}\right\}\right) \cup\{(\mathbf{v}, t)\} .
$$

There clearly is a map $G: Y \rightarrow S$ such that $\bar{\pi}=G \circ F$. The map G has the property that $G^{-1}(p)=\{p\}$ for every $p \in P$.
Our identifications are sometimes confusing. For example, P is a subset of S as well as Y, and a point in Y that belongs to P is just as in S represented by a pair (\mathbf{v}, t), where $t \in \mathbb{K}^{*}$. However, without these identifications, the notation becomes cumbersome.

Lemma 4.2. Let U be an open subset of \mathbb{K}^{*}. Moreover, let $t \in \bar{U}$ be such that every G_{δ}-subset of \mathbb{K}^{*} that contains t meets U. Finally, let V be an open subset of Y such that $V \cap P=\{\mathbf{v}\} \times U$. Then Fr V contains a nontrivial continuum that misses P or \bar{V} contains a closed G_{δ}-subset of P that contains (\mathbf{v}, t).

Proof. Put $K=Y \backslash V$, and $W=S \backslash G(K)$. Observe that since $G^{-1}(p)=\{p\}$ for every $p \in P, W$ is an open subset of S such that $W \cap P=\{\mathbf{v}\} \times U$ and $G^{-1}(W) \subseteq V$.

Let E be a subset of U of size \mathfrak{c} such that E meets every nonempty G_{δ}-subset of U. Since U has weight \mathfrak{c}, such a set is easily found. Since W is open, there is for every $e \in E$ an element $\kappa_{e} \in L_{0}$ such that $\left[\kappa_{e}, \mathbf{v}\right] \times\{e\} \subseteq W$. Since \mathbf{v} is a $P_{\mathfrak{c}^{+}}$-point in L, there exists $\kappa \in L_{0}$ such that $\bigcup_{e \in E}[\kappa, \mathbf{v}] \times\{e\} \subseteq W$. Hence $\bigcup_{e \in E} G^{-1}([\kappa, \mathbf{v}] \times\{e\}) \subseteq V$ and $[\kappa, \mathbf{v}] \times\{t\} \subseteq \bar{W}$.

Claim 1. $F\left(([\kappa, \mathbf{v}] \times\{t\} \times \omega)^{*}\right) \subseteq \bar{V}$.
Proof. First observe that $F\left(([\kappa, \mathbf{v}] \times\{t\} \times \omega)^{*}\right) \cap P=\{(\mathbf{v}, t)\} \subseteq \bar{V}$. Now take an arbitrary $p \in([\kappa, \mathbf{v}] \times\{t\} \times \omega)^{*} \backslash(P \times \omega)^{*}$ and an arbitrary open neighborhood Z of p in $T^{*} \backslash(P \times \omega)^{*}=Y \backslash P$. We will show that $Z \cap V \neq \emptyset$. We may assume without loss of generality that Z is of the form $\operatorname{Ex}\left(\bigcup_{n \in N} Z_{n}\right)$, where N is an infinite subset of ω, and for each $n \in N, Z_{n} \subseteq S \times\{n\}$ is open and intersects $[\kappa, \mathbf{v}) \times\{t\} \times\{n\}$, say in the point $\left(x_{n}, t, n\right)$. For each $n \in N$, pick open neighborhoods A_{n} and B_{n} of x_{n} in L and t in \mathbb{K}^{*} such that $A_{n} \times B_{n} \subseteq Z_{n}$. Then $t \in \bigcap_{n \in N} B_{n}$ and hence, by assumption, there exists an element $e \in \bigcap_{n \in N} B_{n} \cap E$. So $\left(x_{n}, e, n\right) \in A_{n} \times B_{n}$ for every $n \in N$. Take an arbitrary limit point q of the sequence $\left\{\left(x_{n}, e, n\right): n \in N\right\}$. Then $q \in Z$, and

$$
\begin{aligned}
q & \in([\kappa, \mathbf{v}] \times\{e\} \times \omega)^{*} \backslash(P \times \omega)^{*} \\
& \subseteq \overline{([\kappa, \mathbf{v}] \times\{e\} \times \omega)} \\
& \subseteq G^{-1}([\kappa, \mathbf{v}] \times\{e\}) \\
& \subseteq V
\end{aligned}
$$

as required.
Assume that for some $\mu \in[\kappa, \mathbf{v})$ we have that $\hat{\mathbb{I}}(\mu, t, \xi)$, the image under F of the component of $([\mu, \mathbf{v}] \times\{t\} \times \omega)^{*}$ corresponding to $\xi \in \omega^{*}$, is contained in $\operatorname{Fr} V$. Then we are done since $\hat{\mathbb{I}}(\mu, t, \xi)$ meets P in exactly one point, so a proper subcontinuum of it not containing that point is what we are after. Hence assume the contrary. Fix an arbitrary free ultrafilter ξ on ω. For every $\mu \in[\kappa, \mathbf{v})$ we have $\hat{\mathbb{I}}(\mu, t, \xi) \subseteq \bar{V}$ by Claim 1 and $\hat{\mathbb{I}}(\mu, t, \xi) \cap V \neq \emptyset$ by assumption. Observe again that $\hat{\mathbb{I}}(\mu, t, \xi) \cap P$ is a single point and hence, since $\hat{\mathbb{I}}(\mu, t, \xi)$ is a nontrivial continuum, $\hat{\mathbb{I}}(\mu, t, \xi) \cap(V \backslash P) \neq \emptyset$.

Let \mathscr{H} be a clopen neighborhood base of t in \mathbb{K}^{*} such that $|\mathscr{H}| \leqslant c$. In addition, let $\left\{\mathbf{v}_{\delta}\right\}_{\delta<c^{+}} \nearrow \mathbf{v}$ be a strictly increasing cofinal sequence in L_{0}. For every $\delta<\mathfrak{c}^{+}$we will construct
(1) $\kappa_{\delta} \in[\kappa, \mathbf{v})$,
(2) $A_{\delta} \in \xi$,
(3) $f_{\delta}: A_{\delta} \rightarrow\left[\kappa_{\delta}, \mathbf{v}\right)$,
(4) $g_{\delta}: A_{\delta} \rightarrow \mathscr{H}$,
such that
(5) if $\delta<\varepsilon<\mathfrak{c}^{+}$, then $\kappa_{\varepsilon}>\sup \left\{f_{\delta}(n): n \in A_{\delta}\right\} \geqslant \max \left\{\kappa_{\delta}, \mathbf{v}_{\delta}\right\}$,
(6) $\overline{\left\{\left\{f_{\delta}(n)\right\} \times g_{\delta}(n) \times\{n\}: n \in A_{\delta}\right\}} \subseteq V \backslash P$.

The construction is simple. At stage δ, let κ_{δ} be an arbitrary point from $\left(\mathbf{v}_{\delta}, \mathbf{v}\right)$ greater than the supremum of the set

$$
\left\{f_{\delta^{\prime}}(n): \delta^{\prime}<\delta, n \in A_{\delta^{\prime}}\right\} .
$$

By assumption, $\hat{\mathbb{I}}\left(\kappa_{\delta}, t, \xi\right)$ meets $V \backslash P$, say in the point y. Since $V \backslash P$ is open, it contains a neighborhood of y of the form $\operatorname{Ex}(O)$, where O is open in T. It is clear that $A_{\delta}=\left\{n<\omega:\left(\left[\kappa_{\delta}, \mathbf{v}\right) \times\{t\} \times\{n\}\right) \cap O \neq \emptyset\right\} \in \xi$. For every $n \in A_{\delta}$ pick $y_{n} \in\left[\kappa_{\delta}, \mathbf{v}\right)$ such that $\left(y_{n}, t, n\right) \in O$. Let $f_{\delta}: A_{\delta} \rightarrow\left[\kappa_{\delta}, \mathbf{v}\right)$ be defined by $f_{\delta}(n)=\left(y_{n}, t, n\right)$. For every $n \in A_{\delta}$ there is an element $H_{n} \in \mathscr{H}$ such that $\left\{y_{n}\right\} \times H_{n} \times\{n\} \subseteq O$. Let $g_{\delta}: A_{\delta} \rightarrow \mathscr{H}$ be defined by $g_{\delta}(n)=H_{n}$ for every $n \in A_{\delta}$. These choices clearly satisfy the inductive requirements.

The function $\delta \mapsto\left(A_{\delta}, \bigcap_{n \in A_{\delta}} g_{\delta}(n)\right)$ maps \mathfrak{c}^{+}into a set of size \mathfrak{c}. Hence since \mathfrak{c}^{+}is regular, there are $A \in \xi$ and a closed G_{δ}-subset H of \mathbb{K}^{*} containing t such that the set $M=\left\{\kappa_{\delta} \in[\kappa, \mathbf{v}): A_{\delta}=A, \bigcap_{n \in A_{\delta}} g_{\delta}(n)=H\right\}$ is cofinal in L_{0}.

Claim 2. $\{\mathbf{v}\} \times H \subseteq \bar{V}$.
Proof. Pick an arbitrary $t^{\prime} \in H$, and let Z be an arbitrary neighborhood of $\left(\mathbf{v}, t^{\prime}\right)$ in Y. We will prove that Z intersects V. Since $G^{-1}\left(\mathbf{v}, t^{\prime}\right)=\left\{\left(\mathbf{v}, t^{\prime}\right)\right\}$, there is a closed neighborhood Z^{\prime} of $\left(\mathbf{v}, t^{\prime}\right)$ in S such that $G^{-1}\left(Z^{\prime}\right) \subseteq Z$. Pick $\delta<\mathfrak{c}^{+}$such that $\kappa_{\delta} \in M$ and $\left[\kappa_{\delta}, \mathbf{v}\right] \times\left\{t^{\prime}\right\} \subseteq Z^{\prime}$. For every $n \in A_{\delta}$ we have $\pi\left(x_{n}^{\delta}, t^{\prime}, n\right) \in\left[\kappa_{\delta}, \mathbf{v}\right] \times\left\{t^{\prime}\right\} \subseteq Z^{\prime}$. Let $q=\lim _{\xi \upharpoonright A_{\delta}}\left\{\left(x_{n}^{\delta}, t^{\prime}, n\right): n \in A_{\delta}\right\}$. Then $q \in V \backslash P$ by (1), and clearly $\bar{\pi}(q) \in Z^{\prime}$. From this we conclude that $q \in Z \cap V$, as required.

So we are done.

4.4. Step 4

Consider the $(\leqslant) 2$-to-one functions $\bar{g}_{i}: \mathbb{K}^{*} \rightarrow[0,1)^{*}, i=0,1$, that we defined in Section 3 . Define $h_{i}: P \rightarrow[0,1)^{*}$ in the obvious way by

$$
h_{i}(\mathbf{v}, p)=\bar{g}_{i}(p) \quad(i=0,1)
$$

Consider the adjunction spaces

$$
X_{i}=Y \cup_{h_{i}} P \quad(i=0,1)
$$

Hence the X_{i} are just Y with P replaced by (a copy of) $[0,1)^{*}$. First observe that the X_{i} are compact F-spaces by Lemma 2.3. Next, Ind $X_{i} \leqslant 1, i=0,1$, by Proposition 2.2(2). Hence Ind $X_{0}=\operatorname{Ind} X_{1}=1$ since X_{0} and X_{1} contain nontrivial continua. Moreover, X_{0} and X_{1} have weight \mathfrak{c}^{+}.

Let $q_{i}: Y \rightarrow X_{i}$ denote the natural quotient maps, $i=0$, 1 . It will be convenient to identify $Y \backslash P$ and $X_{i} \backslash[0,1)^{*}$. Observe that it is not clear that X_{0} and X_{1} are homeomorphic, probably they are not. The point $p \in[0,1)^{*}$ 'corresponds' in X_{0} to $\bar{g}_{0}^{-1}(p)$, while in X_{1} it 'corresponds' to $\bar{g}_{1}^{-1}(p)=\bar{g}_{0}^{-1}\left(\bar{\varepsilon}^{-1}(p)\right)$.

Proposition 4.3. Let U be a proper, nonempty open set in $[0,1)^{*}$, and fix $i \in\{0,1\}$. Assume that $\overline{\bar{g}_{i}^{-1}(U)}$ is not clopen. Then for every open subset V of X_{i} such that $V \cap[0,1)^{*}=U$, the boundary $\operatorname{Fr} V$ of V contains a nontrivial continuum.

Proof. We assume without loss of generality that $i=1$.
Let $t \in \overline{h_{1}^{-1}(U)}$ witness the fact that $\overline{h_{1}^{-1}(U)}$ is not clopen. That is, every neighborhood of t in P meets $W=P \backslash \overline{h_{1}^{-1}(U)}$.
Assume first that there is a closed G_{δ}-subset A of P such that $t \in A \subseteq \overline{h_{1}^{-1}(U)}$. Write $A=\bigcap_{n<\omega} U_{n}$, where each U_{n} is clopen in P and $U_{n+1} \subseteq U_{n}$ for every n. By recursion on n we will construct a nonempty clopen subset K_{n} of P such that $K_{n} \subseteq\left(U_{n} \cap W\right) \backslash \bigcup_{i<n} K_{i}$. If $n=0$, then we get what we want from $U_{0} \cap W \neq \emptyset$. Suppose that we constructed K_{0}, \ldots, K_{n-1}. Observe that $U_{n} \backslash \bigcup_{i<n} K_{i}$ is an open neighborhood of t in P, and hence intersects W. This means that $\left(U_{n} \cap W\right) \backslash \underline{\bigcup_{i<n} K_{i} \neq \emptyset}$ and hence it is a triviality to pick K_{n}.

Clearly, $\overline{\bigcup_{n<\omega} K_{n}} \backslash \bigcup_{n<\omega} K_{n} \subseteq \bigcap_{n<\omega} U_{n}=A$, and $\overline{\bigcup_{n<\omega} K_{n}} \subseteq \bar{W}$. By Lemma 3.1 we may pick for every n a nonempty open subset L_{n} of $[0,1)^{*}$ such that $h_{1}^{-1}\left(L_{n}\right) \subseteq K_{n}$. Since $[0,1)^{*}$ is a continuum, there is for every n a nontrivial continuum $H_{n} \subseteq L_{n}$. Since $[0,1)^{*}$ is an F-space, every σ-compact subset of it is C^{*}-embedded, Section 2.3. Hence by Section 2.4 we may pick a nontrivial continuum

$$
H \subseteq \overline{\bigcup_{n<\omega} H_{n}} \backslash \bigcup_{n<\omega} H_{n}
$$

Clearly, $H \subseteq h_{1}\left(\overline{\bigcup_{n<\omega} K_{n}} \backslash \bigcup_{n<\omega} K_{n}\right) \subseteq h_{1}(A) \subseteq h_{1}\left(\overline{h_{1}^{-1}(U)}\right)=\bar{U}$. Moreover, $H \subseteq h_{1}(\bar{W})$ and $h_{1}(\bar{W}) \cap U=\emptyset$. From this we conclude that $H \subseteq \bar{U} \backslash U \subseteq \operatorname{Fr} V$, as required.

Hence we may assume without loss of generality that every G_{δ}-subset of P that contains t meets W.

If $\operatorname{Fr} q_{1}^{-1}(V)$ contains a nontrivial continuum that misses P then we are clearly done. Hence by Lemma 4.2, we may assume without loss of generality that $\overline{q_{1}^{-1}(V)}$ contains a closed G_{δ}-subset C of P that contains t. By assumption, C meets W, hence $C \cap W$ has nonempty interior in P by Section 2.3. As above, there is a nontrivial continuum L of $[0,1)^{*}$ such that $h_{1}^{-1}(L) \subseteq C \cap W$. Then $L \subseteq \bar{V}$ but misses U. This evidently implies that $L \subseteq \bar{V} \backslash V=\mathrm{Fr} V$, as required.

4.5. Step 5

It will be convenient to think of X_{0} and X_{1} as disjoint spaces. Consider the identity function id: $[0,1)^{*} \rightarrow[0,1)^{*}$, and the adjunction space

$$
\mathbb{X}=X_{0} \cup_{\mathrm{id}} X_{1}
$$

We claim that \mathbb{X} is the required example. First observe that \mathbb{X} is a compact F-space by Lemma 2.3 . Pick two distinct elements $p, q \in[0,1)^{*}$, and let V be an open neighborhood of p in \mathbb{X} whose closure misses q. By Proposition 3.2, $\overline{\bar{g}_{0}^{-1}\left(V \cap[0,1)^{*}\right)}$ is not clopen, or $\overline{\bar{g}_{1}^{-1}\left(V \cap[0,1)^{*}\right)}$ is not clopen. Hence by Proposition 4.3, $\operatorname{Fr}\left(V \cap X_{0}\right)$ or $\operatorname{Fr}\left(V \cap X_{1}\right)$ contains a nontrivial continuum. That continuum is clearly also a subcontinuum of $\mathrm{Fr} V$. From this we conclude that Ind $\mathbb{X} \geqslant$ ind $\mathbb{X} \geqslant 2$. Now, $\operatorname{dim} X_{0}=\operatorname{dim} X_{1} \leqslant 1$ since Ind $X_{0}=\operatorname{Ind} X_{1}=1$ (Theorem 2.1). As a consequence, $\operatorname{dim} \mathbb{X}=1$ by the Countable Closed Sum Theorem [9, 3.1.8]. Clearly, the weight of \mathbb{X} is \mathfrak{c}^{+}.

References

[1] B. Balcar, R. Frankiewicz, C. Mills, More on nowhere dense closed P-sets, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (5-6) (1980) 295-299 (1981).
[2] M.G. Charalambous, The gap between the dimensions of countably paracompact spaces, Topology Appl. 155 (2008) 2216-2220.
[3] W.W. Comfort, N. Hindman, S. Negrepontis, F^{\prime}-spaces and their product with P-spaces, Pacific J. Math. (1969) 489-502.
[4] E.K. van Douwen, Cardinal functions on compact F-spaces and on weakly countably complete Boolean algebras, Fund. Math. 108 (1981) $235-256$.
[5] E.K. van Douwen, Applications of maximal topologies, Topology Appl. 51 (1993) 125-139.
[6] E.K. van Douwen, J. van Mill, Spaces without remote points, Pacific J. Math. 105 (1983) 69-75.
[7] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
[8] R. Engelking, General Topology, second ed., Heldermann Verlag, Berlin, 1989.
[9] R. Engelking, Theory of Dimensions Finite and Infinite, Heldermann Verlag, Lemgo, 1995.
[10] V.V. Fedorchuk, A differentiable manifold with noncoinciding dimensions, Topology Appl. 54 (1993) 221-239.
[11] N.J. Fine, L. Gillman, Extension of continuous functions in $\beta \mathbb{N}$, Bull. Amer. Math. Soc. 66 (1960) 376-381.
[12] L. Gillman, M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, 1960.
[13] K.P. Hart, The Čech-Stone compactification of the real line, in: M. Hušek, J. van Mill (Eds.), Recent Progress in General Topology, North-Holland Publishing Co., Amsterdam, 1992, pp. 317-352.
[14] K.P. Hart, J. van Mill, Covering dimension and finite-to-one maps, Topology Appl. 158 (18) (2011) 2512-2519.
[15] K.L. Kozlov, Characterization of compact spaces with noncoinciding dimensions which are subsets of products of simple spaces, Topology Appl. 155 (2008) 2009-2016.
[16] O.V. Lokucievskiĭ, On the dimension of bicompacta, Dokl. Akad. Nauk SSSR (N.S.) 67 (1949) 217-219.
[17] J. van Mill, An introduction to $\beta \omega$, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland Publishing Co., Amsterdam, 1984, pp. 503-567.
[18] R.G. Woods, Characterizations of some C^{*}-embedded subspaces of βN, Pacific J. Math. 65 (1976) 573-579.

[^0]: E-mail address: j.van.mill@vu.nl.

