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1. Introduction

All spaces under discussion here are Tychonoff.
It is well known that the three fundamental dimension functions take on the same values for all separable metrizable

spaces. This does not hold for various other classes of spaces with very nice properties, see e.g., Fedorchuk [10], Kozlov [15]
and Charalambous [2] for results and references. The first examples of compact spaces with noncoinciding dimensions were
constructed by Lunc and Lokucievskiı̆ [16] in 1949. Lokucievskiı̆’s now classical example is a compact space X of weight
ω1 such that dim X = ind X = 1 but Ind X = 2. In Hart and van Mill [14, Theorem 2.1] it was proved under the Continuum
Hypothesis that for every compact F -space X of weight c we have ind X = Ind X = dim X . It is not known whether this is
a theorem of ZFC. The aim of this paper is to show that this cannot be generalized to compact F -spaces of larger weight.
We will use the example by Lokucievskiı̆ [16] for the construction of the following example:

Example 1.1. There is a compact F -space X of weight c+ with Ind X = 2 and closed subspaces X0 and X1 such that X =
X0 ∪ X1 and Ind X0 = Ind X1 = 1.

This implies that dim X = 1. From the construction it will be clear that ind X = 2.

2. Preliminaries

2.1. Notation and terminology

For a subset A of a space X its boundary Fr A is the set A \ Int A. Hence if U is open, then Fr U = U \ U . A subset of a
space X is clopen if it is both open and closed. A continuous surjection f : X → Y is called irreducible provided that there
does not exist a proper closed subset A of X such that f (A) = Y . It is not difficult to show that if f : X → Y is a continuous
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surjection with compact fibers, then there is a closed subspace A of X such that f � A : A → Y is irreducible (and hence,
onto) [8, Exercise 3.1.C].

Let A and B be disjoint closed subsets of a space X . We say that a closed subset K of X is a partition between A and B
provided that X \ K can be written as U ∪ V , where U and V are disjoint open subsets of X such that A ⊆ U and B ⊆ V .

A subset A of a space X is called a P -set provided that the intersection of countably many neighborhoods of A is again
a neighborhood of A.

If X is a space then β X denotes its Čech–Stone compactification, and X∗ = β X \ X . If X is normal, and A is closed in X ,
then we can and will identify β A and the closure of A in β X [8, 3.6.8]. Observe that if A and B are closed subsets of the
metrizable space X , and A∗ = B∗ , then the symmetric difference A � B of A and B has compact closure in X . To prove this,
assume that e.g., A \ B does not have compact closure in X . By [8, 4.1.17], there is a countably infinite discrete set D in
A \ B which is closed in X . Since D ∩ B = ∅, we have D ∩ B = ∅ (here ‘closure’ means closure in β X ). Since D is infinite,
there is a point p ∈ D∗ . Then p ∈ A∗ \ B∗ , which is a contradiction.

If Y is compact and f : X → Y is continuous, then f can be extended to a continuous function β f :β X → Y . This
(unique) function is called the Stone extension of f . We put f̄ = β f � X∗ : X∗ → Y .

Let {xn: n < ω} be a sequence of points in the compact space X . Then for every ultrafilter ξ on ω, let limξ {xn: n < ω}
be the unique point in the intersection

⋂
P∈ξ {xn: n ∈ P }. This point is called the ξ -limit of the sequence {xn: n ∈ ω}. Let f

denote the obvious function ω → {xn: n < ω}. It is easy to see that limξ {xn: n < ω} is equal to β f (ξ).
If U ⊆ X is open, then Ex U = β X \ (X \ U ) is open in β X . Clearly, Ex U is the largest open subset of β X whose intersec-

tion with X equals U . Let X be normal. If F ⊆ X is closed, and U ⊆ X is open, and F ⊆ U , then F ⊆ Ex(U ). Simply observe
that F ∩ (X \ U ) = ∅ and hence F ∩ X \ U = ∅. This fact will be used frequently in the forthcoming, and without explicit
reference.

Cardinals are initial (von Neumann) ordinals, and get the discrete topology; c is the cardinality of the continuum. If
X is a set and κ is a cardinal number, then [X]κ , [X]<κ and [X]�κ denote {A ⊆ X: |A| = κ}, {A ⊆ X: |A| < κ} and
{A ⊆ X: |A| � κ}, respectively.

2.2. Dimension theory

A space is called zero-dimensional if it has a base consisting entirely of clopen sets. In this paper we are only interested in
the dimension theory of compact spaces. Our basic dimension function is the covering dimension dim X of a space X . So if we
say that a compact space X is n-dimensional, this always refers to the covering dimension. Besides the covering dimension,
there are the so-called small and large inductive dimension functions ind and Ind, respectively. For more information on
dimension theory and definitions, see [9]. For us, the following well-known results will be important:

Theorem 2.1. If X is a compact space, then dim X � ind X � Ind X. Moreover,

dim X = 0 ⇔ ind X = 0 ⇔ Ind X = 0.

Proof. The inequality ind X � Ind X holds for all normal spaces X [9, 1.6.3]. Moreover, the inequality dim X � ind X holds
for all strongly paracompact spaces X [9, 3.1.29]. The second part of the theorem is a direct consequence of [9, 3.1.30]. �

So for a compact space there is only one notion of zero-dimensionality. In fact, a compact space is zero-dimensional if
and only if it does not contain any nontrivial continuum [9, 1.4.5].

None of these inequalities is sharp, even for spaces with very nice properties, see e.g., Fedorchuk [10], Kozlov [15] and
Charalambous [2] for results and references.

Proposition 2.2. Let X and Y be compact spaces and f : X → Y a continuous surjection. Put A =⋃{ f −1(y): (y ∈ Y )& (| f −1(y)|>1)}
and B = f (A), respectively. Assume moreover that Ind X � 1. Then the following hold:

(1) If Ind B � 0, then Ind Y � 1.
(2) If Ind A � 0, and f is (�)2-to-one, then Ind Y � 1.

Proof. For (1), let E and F be arbitrary disjoint closed subsets of Y . There are relatively clopen disjoint sets C and D
in B such that C ∪ D = B , and (E ∪ C) ∩ (F ∪ D) = ∅. Let R be a partition between f −1(E ∪ C) and f −1(F ∪ D) in X
such that Ind R � 0. Write X \ R as U ∪ V , where U and V are disjoint open subsets of X such that f −1(E ∪ C) ⊆ U and
f −1(F ∪ D) ⊆ V . Let p ∈ U ∪ R and q ∈ V ∪ R be distinct points such that f (p) = f (q). We may assume without loss of
generality that f (p) = f (q) ∈ C . But then q ∈ U , which is a contradiction. Hence such points p and q do not exist, from
which it follows that f (U ∪ R) ∩ f (V ∪ R) = f (R). Hence f (R) is by compactness a partition between E and F in X and is
homeomorphic to R , which is as desired.

For (2), let E and F be disjoint closed subsets of Y , and let C be a clopen subset of A such that f −1(E) ∩ A ⊆ C ⊆
A \ ( f −1(F ) ∩ A) = A \ f −1(F ). Let D be a partition between f −1(E) ∪ C and f −1(F ) ∪ (A \ C) in X such that Ind D � 0.
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Write X \ D as U ∪ V , where U and V are nonempty open subsets of X such that f −1(E)∪ C ⊆ U and f −1(F )∪ (A \ C) ⊆ V .
Let Û = U ∪ D and V̂ = V ∪ D , respectively. Observe that both Û and V̂ are closed, that Û ∪ V̂ = X , and that Û ∩ V̂ = D
misses A. Moreover, Û ∩ f −1(F ) = ∅ and V̂ ∩ f −1(E) = ∅. From this it clearly follows that

D̂ = f (Û ) ∩ f (V̂ )

is a partition between E and F . We claim that dim D̂ � 0 (and hence Ind D̂ � 0 by Theorem 2.1). To prove this, pick an
arbitrary y ∈ D̂ . There are u ∈ Û and v ∈ V̂ such that f (u) = f (v) = y.

Case 1. u /∈ A and v ∈ A.

Then f −1(y) contains two distinct points and hence must be contained in A. Since u /∈ A, this is impossible.

Case 2. u /∈ A and v /∈ A.

Observe that f � (X \ A) is one-to-one. Hence u = v ∈ D .

Case 3. u ∈ A and v ∈ A.

Then u ∈ C and v ∈ C \ A.
The conclusion is that D̂ is contained in the disjoint union of the compact sets f (D) and f (C ′), where C ′ = {u ∈ C : (∃v ∈

C \ A) ( f (u) = f (v))}, and that f is one-to-one on both D and C ′ (here we use that f is (�)2-to-one). Observe that by
compactness, both f � D and f � C ′ are homeomorphisms. Since Ind A � 0 and Ind D � 0, this means that the compact space
D̂ is contained in the union of two zero-dimensional compact spaces and hence is zero-dimensional itself [9, 3.1.8]. �
2.3. F -spaces

An F -space is a space in which every cozero-set is C∗-embedded, see [12]. It is easy to see that a compact space X is
an F -space if the following holds: if F and G are Fσ -subsets of X with F ∩ G = ∅ = F ∩ G , then F ∩ G = ∅ (van Douwen [4,
p. 239]).

Let X be a compact F -space, and let D in X be Fσ (for example, D is countable). We claim that D is C∗-embedded in X .
For this it suffices to prove that D = βD . Indeed, if A and B are relatively closed disjoint subsets of D , then A and B are
Fσ -subsets of X such that A ∩ B = ∅ = A ∩ B , and so by van Douwen’s result, A ∩ B = ∅. Since every infinite space contains
an infinite discrete space, this shows that every infinite compact F -space contains a copy of βω and hence has weight at
least c. See Comfort, Hindman and Negrepontis [3] and Woods [18] for stronger results about C∗-embedded subspaces of
compact F -spaces.

It is clear that in a compact space X van Douwen’s condition is equivalent to the following statement: every two disjoint
open Fσ -subsets of X have disjoint closures.

A closed subspace of a compact F -space is again a compact F -space, as well as the topological sum of finitely many
compact F -spaces. These facts follow easily from van Douwen’s criterion and will be used without explicit reference in the
forthcoming.

The basic examples of compact F -spaces are the spaces of the form X∗ , where X is any locally compact, σ -compact
space [12, 14.27]. Such a remainder also has the property that every nonempty Gδ of it has nonempty interior, see Fine and
Gillman [11, p. 377].

2.4. Continua in β X

For each n, let Xn be a nontrivial continuum. We assume that the sequence {Xn: n < ω} is pairwise disjoint. We let X
denote the topological sum of the Xn ’s. Finally, let π : X → ω be the ‘projection’ defined by f (x) = n iff x ∈ Xn .

The collection of components of X∗ coincides with the collection

{
π̄−1(p): p ∈ ω∗}.

A moment’s reflection consequently shows that a closed subset C of X∗ is a component of X∗ if and only if there exists
p ∈ ω∗ such that

C =
⋂
P∈P

⋃
n∈P

Xn.

Observe that all these components are nontrivial. For details, see e.g. Hart [13].
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2.5. Adjunction spaces

Let X and Y be two disjoint compact spaces, let A ⊆ X be closed, and let f : A → Y be continuous. The decomposition

Q = {
f −1(y) ∪ {y}: y ∈ f (A)

} ∪ {{x}: x ∈ (X \ A) ∪ (
Y \ f (A)

)}

of the topological sum X + Y of X and Y is upper semi-continuous, and the quotient space (X + Y )/Q is denoted by X ∪ f Y .
It is called the adjunction space obtained from X and Y by f . Let p f : X + Y → X ∪ f Y be the natural quotient map.

That X and Y are disjoint is not essential of course. A similar construction can also be performed when X and Y
intersect. We simply replace X by X × {0} and Y by Y × {1}, and proceed as before. So when we talk about adjunction
spaces in the sequel, we will always implicitly assume that the spaces under consideration are disjoint.

Observe that we can think of X ∪ f Y as created in two steps. In the first step we replace A in X by f (A) thus obtaining
the space X ′ . In X ′ and the space Y there are two copies of f (A) that are being identified in the second step. That brings
us to X ∪ f Y . We concentrate on compact spaces here. For noncompact spaces one can perform similar constructions, see [7,
p. 127] for details.

In case f : A → Y is surjective, there is no need to consider the topological sum X + Y for the construction of X ∪ f Y .
For then, X ∪ f Y is simply X/Q, where Q is the upper semi-continuous decomposition

Q = {
f −1(y): y ∈ Y

} ∪ {{x}: x ∈ X \ A
}

of X .
The following result is implicit in Balcar, Frankiewicz and Mills [1] (see also [17, 1.4.1]). For completeness sake, we will

include the simple proof.

Lemma 2.3. Let X and Y be two compact F -spaces. If A is a closed P -set in X and f : A → Y is continuous, then X ∪ f Y is a compact
F -space.

Proof. Compactness is clear. To prove that X ∪ f Y is an F -space, let U and V be disjoint open Fσ -subsets of X ∪ f Y .
We have to show that U ∩ V = ∅, Section 2.3. It will be convenient to identify Y and p f (Y ), and, similarly, X \ A and
p f (X \ A). Since Y is a compact F -space, U ∩ Y ∩ V ∩ Y = ∅. Let E and F be disjoint closed Gδ-subsets of X ∪ f Y that are
neighborhoods of U ∩ Y respectively V ∩ Y . Then U \ E and V \ F are disjoint open Fσ -subsets of X ∪ f Y which both do
not meet A.

Claim 1. U \ E ∩ V = ∅ and V \ F ∩ U = ∅.

Striving for a contradiction, assume that there exists e.g. an element p ∈ U \ E ∩ V . Observe that U \ E is an open
Fσ -subset of X that misses A. Hence U \ E ∩ A = ∅ since A is a P -set. Let K be an open Fσ -subset of X such that
U \ E ⊆ K ⊆ K ⊆ X \ A. Then, clearly, p ∈ K ∩ V ⊆ K ∩ V . Hence U \ E and K ∩ V are disjoint open Fσ ’s of X such that
p ∈ U \ E ∩ K ∩ V , which contradicts X being an F -space.

Since U = U \ E ∪ U ∩ E , V = V \ F ∪ V ∩ F , and, clearly, U ∩ E ∩ V ∩ F = ∅, we get by Claim 1 that U ∩ V = ∅, as
required. �
3. Reflections on β[0,1)

Let D denote an arbitrary countable dense subset of (0,1). In I we split each point d ∈ D in two points, d− and d+ . The
points in I \ D will not be split. Order the set

� = (I \ D) ∪ {
d−,d+: d ∈ D

}

in the natural way, where d− always precedes d+ . Endow � with the order topology derived from this order. It is clear
that topologically, � is nothing but the ordinary Cantor middle-third set in I. Let f :� → I be the unique order preserving
function that maps for each d ∈ D the points d− and d+ to d. Clearly, f is a continuous surjection, and for y ∈ I, | f −1(y)| = 2
if y ∈ D and | f −1(y)| = 1 otherwise. That such a map exists is well known of course and goes back to Alexandroff and
Hausdorff (see [9, 1.3.D]). Observe that f is irreducible.

A set of the form [d+
0 ,d−

1 ], where d0,d1 ∈ D and d0 < d1, is called a clopen segment of �.
Let ε : I → I be a homeomorphism such that ε(0) = 0, ε(1) = 1 and ε(D) ∩ D = ∅. It will be convenient to denote ε(D)

by E .
Put K = � \ {1}, and let g0 = f � K : K → [0,1) and g1 = (ε ◦ g0) � K : K → [0,1), respectively. Then g0 and g1 are both

perfect since f −1(1) = {1} and ε−1(1) = {1}. Observe that both g0 and g1 are irreducible.
Observe that K is a σ -compact zero-dimensional space. It consequently follows that Ind βK = Ind K

∗ = 0 [9, 2.2.10].
Moreover, K has weight ω, hence the weight of βK is easily seen to be c (prove that K has c many clopen subsets).
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Consider for i = 0,1 the Stone extensions

βgi :βK → β[0,1),

and let

ḡi = βgi � K
∗ : K

∗ → [0,1)∗.
We claim that the ḡi are (�)2-to-one continuous surjections. For this, first observe that the ḡi are continuous surjections
since the gi are perfect surjections. That they are (�)2-to-one is a consequence of van Douwen [5, Lemma 4.3].

Lemma 3.1. Both ḡ0 and ḡ1 are irreducible.

Proof. It is clear that it suffices to prove this for ḡ0. So let A be a proper closed subset of K
∗ . There is a noncompact

clopen subset V of K such that V ∗ ⊆ K
∗ \ A. Write V as

⋃
n<ω Vn , where for each n, Vn = [d+

n , e−
n ] is a clopen segment

and Vn ∩ Vm = ∅ if n �= m. For every n, pick a point pn ∈ (dn, en). Observe that P = {pn: n < ω} is closed in [0,1) but not
compact. Hence we may pick a point p ∈ P∗ . Put W = K \ V . Then W is clopen and A ⊆ W . Moreover, g0(W ) is a closed
subset of [0,1) that misses P , i.e., p /∈ g0(W ) ⊇ ḡ0(A). �
Proposition 3.2. Let U ⊆ [0,1)∗ be nonempty. If U is not dense, then ḡ−1

0 (U ) is not clopen or ḡ−1
1 (U ) is not clopen.

Proof. Striving for a contradiction, assume that ḡ−1
0 (U ) and ḡ−1

1 (U ) are both clopen. Since U is not dense in [0,1)∗ , ḡ−1
0 (U )

and ḡ−1
1 (U ) are proper subsets of K

∗ .

Claim 1. If A is a clopen subset of K such that A∗ = ḡ−1
0 (U ), then Fr g0(A) is nonempty and is contained in D .

Proof. Since ḡ−1
0 (U ) �= K

∗ , it follows that A is a proper closed subset of K and A is nonempty since U is nonempty. Hence
since g0 is perfect and irreducible, g0(A) is a proper nonempty closed subset of [0,1).

By connectivity of [0,1), the boundary of g0(A) is nonempty. Take an arbitrary p ∈ Fr g0(A). We will prove that p ∈ D . If
|g−1

0 (p)| = 1, then q = g−1
0 (p) belongs to A since p ∈ g0(A). Since A is open and g0 is perfect, there is a neighborhood V

of p such that g−1
0 (V ) ⊆ A. But this means that p is in the interior of g0(A), which is a contradiction. Hence |g−1

0 (p)| = 2,
i.e., p ∈ D . �

Since ε is a homeomorphism, the following result has an identical proof.

Claim 2. If B is a clopen subset of K such that B∗ = ḡ−1
1 (U ), then Fr g0(B) is nonempty and is contained in E .

Now let A and B be arbitrary clopen sets such as in Claims 1 and 2.

Claim 3. g0(A)∗ = g1(B)∗ = U .

Proof. It suffices to prove that g0(A)∗ = U . First observe that βg0(A) = g0(A). This holds since g0(A) is dense in βg0(A) as
well as g0(A). Now A = A ∪ A∗ , hence

βg0(A) = g0(A) ∪ ḡ0
(

A∗) = g0(A) ∪ ḡ0
(

ḡ−1
0 (U )

) = g0(A) ∪ U .

Since

g0(A) = g0(A) ∪ g0(A)∗,
we consequently get what we want. �
Claim 4. The open set [0,1) \ (g0(A) ∪ g1(B)) does not have compact closure in [0,1).

Proof. By Claim 3 we get that (g0(A) ∪ g1(B))∗ = g0(A)∗ ∪ g1(B)∗ = U is a proper subset of [0,1)∗ , from which the desired
result follows immediately. �

So from Claim 3 and the remarks in Section 2.3 we have that g0(A) � g1(B) has compact closure in [0,1). Hence
there exists t ∈ [0,1) such that g0(A) ∩ [t,1) = g1(B) ∩ [t,1). By Claim 4 we may assume without loss of generality that
t ∈ [0,1) \ (g0(A) ∪ g1(B) ∪ D ∪ E). Now put
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Ã = A ∩ [
g−1

0 (t),1
)
, B̃ = B ∩ [

g−1
1 (t),1

)
.

Then Ã and B̃ are clopen subsets of K such that Ã∗ = A∗ and B̃∗ = B∗ . Moreover,

g0( Ã) = g0(A) ∩ [t,1), g1(B̃) = g1(B) ∩ [t,1).

Hence g0( Ã) = g1(B̃). By Claims 1 and 2, ∅ �= Fr g0( Ã) ⊆ D and ∅ �= Fr g1(B̃) ⊆ E . But this is a contradiction since
D ∩ E = ∅. �
4. The example

Our example will be based on Lokucievskiı̆’s paper [16] in which he constructs a simple compact space with noncoin-
ciding dimensions. Since we aim at an F -space, we have to adjust the construction.

4.1. Step 1

Let L = [u,v] be a compact connected ordered space of weight c+ in which v is a Pc+ -point. (Such a space is easily
found. For example, let L denote the long-segment of length c+ . That is, L is the one-point compactification of the product
c+ × [0,1) endowed with the lexicographical order.)

Put L0 = L \ {v}, S = L × K
∗ , and P = {v} × K

∗ , respectively. It is easy to prove that dim S = ind S = Ind S = 1. Finally,
observe that the weight of S is c+ since the weight of K

∗ is c.

4.2. Step 2

Put T = S ×ω. It will be convenient to represent a point from T as (x, p,n), where x ∈ L, p ∈ K
∗ , and n ∈ ω. Let π : T → S

denote the projection (x, p,n) �→ (x, p).

It is clear that Ind T = Ind S = 1, and it consequently follows that IndβT = 1 [9, 2.2.10]. Since T ∗ contains nontrivial
continua by Section 2.4, we get Ind T ∗ = 1. The weight of βT is easily seen to be equal to (c+)ω = c+ .

The following lemma is a consequence of van Douwen and van Mill [6, Lemma 3]. For the convenience of the reader we
will repeat its simple proof.

Lemma 4.1. βπ−1(P ) = P × ω, hence π̄−1(P ) = (P × ω)∗ .

Proof. That βπ−1(P ) ⊇ P × ω is clear. Now take an arbitrary element z ∈ βπ−1(P ), and assume that z /∈ P × ω. There is
a closed neighborhood C of z in βT which misses P × ω. Hence C ∩ T is a σ -compact subset of T which has z in its
closure. But π(C ∩ T ) ∩ P = ∅, hence π(C ∩ T ) ∩ P = ∅ since P = {v} × K

∗ is a P -set of S . Since z ∈ C ∩ T and hence
βπ(z) ∈ π(C ∩ T ) ∩ P , this is a contradiction. �

Fix arbitrary μ ∈ [u,v) and t ∈ K
∗ . Since [μ,v] is a nontrivial continuum, every component of ([μ,v] × {t} × ω)∗ is by

Section 2.4 of the form

(†) I(μ, t, ξ) =
⋂
A∈ξ

⋃
n∈A

[μ,v] × {t} × {n}

for some free ultrafilter ξ on ω. Observe that

(††) I(μ, t, ξ) ∩ (P × ω)∗ = lim
ξ

{
(v, t,n): n < ω

}

is a single point.

4.3. Step 3

Let ϕ = π̄ � (P × ω)∗ : (P × ω)∗ → P , and consider the adjunction space

Y = T ∗ ∪ϕ P .

Observe that Y is T ∗ with the Pc+ -set (P × ω)∗ of T ∗ replaced by P (in a natural way). Since P = {v} × K
∗ ≈ K

∗ is an F -
space (Section 2.3), we get that Y is an F -space as well (Lemma 2.3). Since Ind P = 0, we get Ind Y � 1 by Proposition 2.2(1).
Since Y contains a nontrivial continuum, Ind Y = 1. Also, the weight of Y is easily seen to be equal to c+ .

Let F : T ∗ → Y denote the standard quotient map. We think of T ∗ \ (P × ω)∗ and F (T ∗ \ (P × ω)∗) as the same spaces,
‘identifying’ p and F (p) for every p ∈ T ∗ \ (P × ω)∗ . Hence F restricts to the identity on T ∗ \ (P × ω)∗ . It will also be
convenient to think of P and F ((P × ω)∗) as the same spaces.
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Observe that for ξ ∈ ω∗ and t ∈ K
∗ we have that

(†††) F
(

lim
ξ

{
(v, t,n): n < ω

}) = (v, t).

Also observe that by (††) we have that the restriction of F to every continuum of the form I(μ, t, ξ) is one-to-one. We will
denote F (I(μ, t, ξ)) by Î(μ, t, ξ), hence by our identifications,

Î(μ, t, ξ) =
(
I(μ, t, ξ) \

{
lim
ξ

{
(v, t,n): n < ω

}})
∪ {

(v, t)
}
.

There clearly is a map G : Y → S such that π̄ = G ◦ F . The map G has the property that G−1(p) = {p} for every p ∈ P .
Our identifications are sometimes confusing. For example, P is a subset of S as well as Y , and a point in Y that belongs

to P is just as in S represented by a pair (v, t), where t ∈ K
∗ . However, without these identifications, the notation becomes

cumbersome.

Lemma 4.2. Let U be an open subset of K
∗ . Moreover, let t ∈ U be such that every Gδ-subset of K

∗ that contains t meets U . Finally, let
V be an open subset of Y such that V ∩ P = {v} × U . Then Fr V contains a nontrivial continuum that misses P or V contains a closed
Gδ-subset of P that contains (v, t).

Proof. Put K = Y \ V , and W = S \ G(K ). Observe that since G−1(p) = {p} for every p ∈ P , W is an open subset of S such
that W ∩ P = {v} × U and G−1(W ) ⊆ V .

Let E be a subset of U of size c such that E meets every nonempty Gδ-subset of U . Since U has weight c, such a set is
easily found. Since W is open, there is for every e ∈ E an element κe ∈ L0 such that [κe,v]× {e} ⊆ W . Since v is a Pc+ -point
in L, there exists κ ∈ L0 such that

⋃
e∈E [κ,v] × {e} ⊆ W . Hence

⋃
e∈E G−1([κ,v] × {e}) ⊆ V and [κ,v] × {t} ⊆ W .

Claim 1. F (([κ,v] × {t} × ω)∗) ⊆ V .

Proof. First observe that F (([κ,v]× {t}×ω)∗)∩ P = {(v, t)} ⊆ V . Now take an arbitrary p ∈ ([κ,v]× {t}×ω)∗ \ (P ×ω)∗ and
an arbitrary open neighborhood Z of p in T ∗ \ (P ×ω)∗ = Y \ P . We will show that Z ∩ V �= ∅. We may assume without loss
of generality that Z is of the form Ex(

⋃
n∈N Zn), where N is an infinite subset of ω, and for each n ∈ N , Zn ⊆ S ×{n} is open

and intersects [κ,v) × {t} × {n}, say in the point (xn, t,n). For each n ∈ N , pick open neighborhoods An and Bn of xn in L
and t in K

∗ such that An × Bn ⊆ Zn . Then t ∈ ⋂
n∈N Bn and hence, by assumption, there exists an element e ∈ ⋂

n∈N Bn ∩ E .
So (xn, e,n) ∈ An × Bn for every n ∈ N . Take an arbitrary limit point q of the sequence {(xn, e,n): n ∈ N}. Then q ∈ Z , and

q ∈ ([κ,v] × {e} × ω
)∗ \ (P × ω)∗

⊆ ([κ,v] × {e} × ω
)

⊆ G−1([κ,v] × {e})

⊆ V ,

as required. �
Assume that for some μ ∈ [κ,v) we have that Î(μ, t, ξ), the image under F of the component of ([μ,v] × {t} × ω)∗

corresponding to ξ ∈ ω∗ , is contained in Fr V . Then we are done since Î(μ, t, ξ) meets P in exactly one point, so a proper
subcontinuum of it not containing that point is what we are after. Hence assume the contrary. Fix an arbitrary free ultrafilter
ξ on ω. For every μ ∈ [κ,v) we have Î(μ, t, ξ) ⊆ V by Claim 1 and Î(μ, t, ξ) ∩ V �= ∅ by assumption. Observe again that
Î(μ, t, ξ) ∩ P is a single point and hence, since Î(μ, t, ξ) is a nontrivial continuum, Î(μ, t, ξ) ∩ (V \ P ) �= ∅.

Let H be a clopen neighborhood base of t in K
∗ such that |H | � c. In addition, let {vδ}δ<c+ ↗ v be a strictly increasing

cofinal sequence in L0. For every δ < c+ we will construct

(1) κδ ∈ [κ,v),
(2) Aδ ∈ ξ ,
(3) fδ : Aδ → [κδ,v),
(4) gδ : Aδ → H ,

such that

(5) if δ < ε < c+ , then κε > sup{ fδ(n): n ∈ Aδ} � max{κδ,vδ},
(6) {{ fδ(n)} × gδ(n) × {n}: n ∈ Aδ} ⊆ V \ P .



1632 J. van Mill / Topology and its Applications 159 (2012) 1625–1633
The construction is simple. At stage δ, let κδ be an arbitrary point from (vδ,v) greater than the supremum of the set

{
fδ′(n): δ′ < δ, n ∈ Aδ′

}
.

By assumption, Î(κδ, t, ξ) meets V \ P , say in the point y. Since V \ P is open, it contains a neighborhood of y of the form
Ex(O ), where O is open in T . It is clear that Aδ = {n < ω: ([κδ,v)×{t}×{n})∩ O �= ∅} ∈ ξ . For every n ∈ Aδ pick yn ∈ [κδ,v)

such that (yn, t,n) ∈ O . Let fδ : Aδ → [κδ,v) be defined by fδ(n) = (yn, t,n). For every n ∈ Aδ there is an element Hn ∈ H
such that {yn}× Hn ×{n} ⊆ O . Let gδ : Aδ → H be defined by gδ(n) = Hn for every n ∈ Aδ . These choices clearly satisfy the
inductive requirements.

The function δ �→ (Aδ,
⋂

n∈Aδ
gδ(n)) maps c+ into a set of size c. Hence since c+ is regular, there are A ∈ ξ and a closed

Gδ-subset H of K
∗ containing t such that the set M = {κδ ∈ [κ,v): Aδ = A,

⋂
n∈Aδ

gδ(n) = H} is cofinal in L0.

Claim 2. {v} × H ⊆ V .

Proof. Pick an arbitrary t′ ∈ H , and let Z be an arbitrary neighborhood of (v, t′) in Y . We will prove that Z intersects V .
Since G−1(v, t′) = {(v, t′)}, there is a closed neighborhood Z ′ of (v, t′) in S such that G−1(Z ′) ⊆ Z . Pick δ < c+ such that
κδ ∈ M and [κδ,v] × {t′} ⊆ Z ′ . For every n ∈ Aδ we have π(xδ

n, t′,n) ∈ [κδ,v] × {t′} ⊆ Z ′ . Let q = limξ�Aδ
{(xδ

n, t′,n): n ∈ Aδ}.
Then q ∈ V \ P by (1), and clearly π̄ (q) ∈ Z ′ . From this we conclude that q ∈ Z ∩ V , as required. �

So we are done. �
4.4. Step 4

Consider the (�)2-to-one functions ḡi : K
∗ → [0,1)∗ , i = 0,1, that we defined in Section 3. Define hi : P → [0,1)∗ in the

obvious way by

hi(v, p) = ḡi(p) (i = 0,1).

Consider the adjunction spaces

Xi = Y ∪hi P (i = 0,1).

Hence the Xi are just Y with P replaced by (a copy of) [0,1)∗ . First observe that the Xi are compact F -spaces by Lemma 2.3.
Next, Ind Xi � 1, i = 0,1, by Proposition 2.2(2). Hence Ind X0 = Ind X1 = 1 since X0 and X1 contain nontrivial continua.
Moreover, X0 and X1 have weight c+ .

Let qi : Y → Xi denote the natural quotient maps, i = 0,1. It will be convenient to identify Y \ P and Xi \ [0,1)∗ . Observe
that it is not clear that X0 and X1 are homeomorphic, probably they are not. The point p ∈ [0,1)∗ ‘corresponds’ in X0 to
ḡ−1

0 (p), while in X1 it ‘corresponds’ to ḡ−1
1 (p) = ḡ−1

0 (ε̄−1(p)).

Proposition 4.3. Let U be a proper, nonempty open set in [0,1)∗ , and fix i ∈ {0,1}. Assume that ḡ−1
i (U ) is not clopen. Then for every

open subset V of Xi such that V ∩ [0,1)∗ = U , the boundary Fr V of V contains a nontrivial continuum.

Proof. We assume without loss of generality that i = 1.

Let t ∈ h−1
1 (U ) witness the fact that h−1

1 (U ) is not clopen. That is, every neighborhood of t in P meets W = P \ h−1
1 (U ).

Assume first that there is a closed Gδ-subset A of P such that t ∈ A ⊆ h−1
1 (U ). Write A = ⋂

n<ω Un , where each Un is
clopen in P and Un+1 ⊆ Un for every n. By recursion on n we will construct a nonempty clopen subset Kn of P such
that Kn ⊆ (Un ∩ W ) \ ⋃

i<n Ki . If n = 0, then we get what we want from U0 ∩ W �= ∅. Suppose that we constructed
K0, . . . , Kn−1. Observe that Un \ ⋃

i<n Ki is an open neighborhood of t in P , and hence intersects W . This means that
(Un ∩ W ) \ ⋃

i<n Ki �= ∅ and hence it is a triviality to pick Kn .
Clearly,

⋃
n<ω Kn \ ⋃

n<ω Kn ⊆ ⋂
n<ω Un = A, and

⋃
n<ω Kn ⊆ W . By Lemma 3.1 we may pick for every n a nonempty

open subset Ln of [0,1)∗ such that h−1
1 (Ln) ⊆ Kn . Since [0,1)∗ is a continuum, there is for every n a nontrivial continuum

Hn ⊆ Ln . Since [0,1)∗ is an F -space, every σ -compact subset of it is C∗-embedded, Section 2.3. Hence by Section 2.4 we
may pick a nontrivial continuum

H ⊆
⋃

n<ω

Hn \
⋃

n<ω

Hn.

Clearly, H ⊆ h1(
⋃

n<ω Kn \ ⋃
n<ω Kn) ⊆ h1(A) ⊆ h1(h

−1
1 (U )) = U . Moreover, H ⊆ h1(W ) and h1(W ) ∩ U = ∅. From this we

conclude that H ⊆ U \ U ⊆ Fr V , as required.
Hence we may assume without loss of generality that every Gδ-subset of P that contains t meets W .
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If Fr q−1
1 (V ) contains a nontrivial continuum that misses P then we are clearly done. Hence by Lemma 4.2, we may as-

sume without loss of generality that q−1
1 (V ) contains a closed Gδ-subset C of P that contains t . By assumption, C meets W ,

hence C ∩ W has nonempty interior in P by Section 2.3. As above, there is a nontrivial continuum L of [0,1)∗ such that
h−1

1 (L) ⊆ C ∩ W . Then L ⊆ V but misses U . This evidently implies that L ⊆ V \ V = Fr V , as required. �
4.5. Step 5

It will be convenient to think of X0 and X1 as disjoint spaces. Consider the identity function id : [0,1)∗ → [0,1)∗ , and
the adjunction space

X = X0 ∪id X1.

We claim that X is the required example. First observe that X is a compact F -space by Lemma 2.3. Pick two distinct
elements p,q ∈ [0,1)∗ , and let V be an open neighborhood of p in X whose closure misses q. By Proposition 3.2,

ḡ−1
0 (V ∩ [0,1)∗) is not clopen, or ḡ−1

1 (V ∩ [0,1)∗) is not clopen. Hence by Proposition 4.3, Fr(V ∩ X0) or Fr(V ∩ X1)

contains a nontrivial continuum. That continuum is clearly also a subcontinuum of Fr V . From this we conclude that
Ind X � ind X � 2. Now, dim X0 = dim X1 � 1 since Ind X0 = Ind X1 = 1 (Theorem 2.1). As a consequence, dim X = 1 by
the Countable Closed Sum Theorem [9, 3.1.8]. Clearly, the weight of X is c+ .
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[13] K.P. Hart, The Čech–Stone compactification of the real line, in: M. Hušek, J. van Mill (Eds.), Recent Progress in General Topology, North-Holland

Publishing Co., Amsterdam, 1992, pp. 317–352.
[14] K.P. Hart, J. van Mill, Covering dimension and finite-to-one maps, Topology Appl. 158 (18) (2011) 2512–2519.
[15] K.L. Kozlov, Characterization of compact spaces with noncoinciding dimensions which are subsets of products of simple spaces, Topology Appl. 155

(2008) 2009–2016.
[16] O.V. Lokucievskiı̆, On the dimension of bicompacta, Dokl. Akad. Nauk SSSR (N.S.) 67 (1949) 217–219.
[17] J. van Mill, An introduction to βω, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland Publishing Co., Amsterdam,

1984, pp. 503–567.
[18] R.G. Woods, Characterizations of some C∗-embedded subspaces of βN , Pacific J. Math. 65 (1976) 573–579.


	A compact F-space with noncoinciding dimensions
	1 Introduction
	2 Preliminaries
	2.1 Notation and terminology
	2.2 Dimension theory
	2.3 F-spaces
	2.4 Continua in βX
	2.5 Adjunction spaces

	3 Reﬂections on β[0,1)
	4 The example
	4.1 Step 1
	4.2 Step 2
	4.3 Step 3
	4.4 Step 4
	4.5 Step 5

	References


