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1. Introduction

All spaces under discussion are Hausdorff.

A topological group G is called minimal if its topology cannot be properly weakened to another group topology. It is
known that a minimal Abelian topological group is precompact (Prodanov and Stojanov [23]), and that for non-Abelian
groups this need not hold (Gaughan [17]). For information on minimal groups, see e.g., Dikranjan, Prodanov and Sto-
janov [10], Dikranjan and Megrelishvili [9] and Lukacs [19].

It was asked by Stojanov (see Arhangel’skii [3, VI.7] or Comfort, Hofmann and Remus [7, 3.3.3(a)]), whether the home-
omorphism group ¢ (X) of a homogeneous compactum is minimal. As usual, 5#(X) is endowed with the compact-open
topology. It is known that this is the case for X the Cantor set (Gamarnik [16]; see also Uspenskiy [24]), but it is not known
for X the Hilbert cube (this is a question of Uspenskiy [25]). The aim of this note is to answer Stojanov’s question in the
negative.

A topological group is non-archimedean if it has a local base at the identity consisting of open subgroups. A non-
archimedean topological group is clearly zero-dimensional. The group of rational numbers with its usual topology is an
example of a zero-dimensional group which is not non-archimedean.

The aim of this note is to prove the following result.

Theorem 1.1. For n > 1, let X be an n-dimensional compact space such that for every nonempty open subset U of X there is a compact
subset A of U that homotopically dominates the n-sphere. Then 52 (X) admits a weaker non-archimedean group topology whose
weight does not exceed the weight of X.

For the proof of Theorem 1.1 we make good use of the proof of Theorem 5 in Oversteegen and Tymchatyn [22]. Similar
arguments were also used by Anderson [1] (for details, see [6, Theorem 1.3]).

What we will describe is actually a (simple) method for constructing potentially interesting non-archimedean group
topologies on homeomorphism groups 5Z°(X) for compact spaces X. This method may have the potential of applications
way beyond the scope of this note.
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For n > 1, let u™ denote the n-dimensional universal Menger continuum (Menger [20]). These spaces are obtained from
finite-dimensional cubes by drilling holes in them in a way similar to the creation of the Cantor ternary set by repeatedly
deleting the open middle thirds of a set of line segments. See [14, §1.11] for details. From the definition of u" it is clear
that every nonempty open subset of it contains a copy of S". Hence " satisfies the conditions mentioned in Theorem 1.1.

Bestvina [5] provided elegant characterizations of these spaces and proved their homogeneity (for n =1 this was done
earlier by Anderson [2]). We denote the group of homeomorphisms of u" by S#™. It was shown in Oversteegen and
Tymchatyn [22, Theorem 5] that dim 5#" < 1. Dijkstra [8, Theorem 7] established that 5#" contains a copy of the famed
Erdds space & from [15] which is 1-dimensional. The surprising and highly counterintuitive conclusion of these results is
that dim 57" = 1.

By Theorem 1.1, 5#" admits a weaker (separable metrizable) non-archimedean group topology. This topology is strictly
weaker than the 1-dimensional compact-open topology on .5#" and so u" solves Stojanov’s problem in the negative.

I am indebted to Dikran Dikranjan, Michael Megrelishvili and Gabor Lukécs for helpful comments.

2. Preliminaries

For n € N, let S" denote the euclidean sphere {x € R™1': |x|| =1}. As usual, by f ~ g we mean that f and g are
homotopic functions. It is well known, and easy to prove, that if f, g: X — S" are such that for each x € X, f(x) and g(x)
are not antipodal, then f ~ g (Dugundji [11, XV.1.2(1)]). In particular, if || f(x) — g(x)|| <1 for every x € X, then f ~g.

Let X and Y be spaces. We say that X homotopically dominates Y if there exist continuous functions f: X — Y and
g:Y — X such that f o g is homotopic to the identity function on Y.

Let f,f':X—>Yand g,g:Y— Z.If f~ f and g~ g, then go f >~ g’ o f’. This elementary fact about the homotopy
relation will be used without explicit reference from now on.

If X and Y are topological spaces, then C(X,Y) denotes the set of all continuous functions from X to Y endowed with
the compact-open topology. Moreover, let 5#°(X,Y) denote {h € C(X,Y): h is a homeomorphism}. If X =Y, then 2(X)
abbreviates 57 (X, X). Hence SZ(X) is the group of homeomorphisms of X with the compact-open topology. It is not necessarily
a topological group with function composition as the group operation. But for a compact space X, ¢ (X) is a topological
group with the relative topology from C(X, X) and function composition as the group operation.

Let G be a group, and let ¢ be a collection of subsets of G with the following properties:

(G1) G~1 =G for every G € ¥4,
(G2) for every G € ¢, there exists H € ¢ such that H> C G,
(G3) for every G € ¢ and x € G, there is H € ¢ such that x 'Hx C G.

Let 5% denote the family of all finite intersections of members of ¢. Then
T={0CG: (Vxe 0) @H € ) (Hx< 0)}

is a group topology on G. If ¢4 moreover satisfies

(G4) {e}=N9¥Y,

then t is Hausdorff. For details, see [19, Proposition 1.12] (or [18, 11.4.5], [4, 1.3.12]). Observe that a T;-topological group is
Tychonoff, see e.g. [18, 11.8.4] or [4, 3.3.11].
The identity function on a set X is denoted by idy; or 1y.

3. Proof of Theorem 1.1

Let X be a compact space satisfying the hypotheses stated in Theorem 1.1. In addition, let U be a dense subset of
C(X,S") with extra conditions to be specified later. For every u € U we put

Cu={he A (X): uoh~uj.
Lemma 3.1. For u € U, Cy, is a clopen subgroup of 7 (X).

Proof. Let f, g Cy. Then foge Cy since uo(fog)= (o f)og~uog~u. Moreover, f~! € Cy since u=uo fof 1~
uo f~1. Hence C, is a subgroup. To prove it is clopen, take an arbitrary h € #(X). There exists a neighborhood N of h in
€ (X) such that for every ge N, ||[(uoh) — (uog)| <1. Hence if g€ N, then uog~uoh, and so g € C, if and only if
h € Cy. This clearly implies that C, is open and that 5#(X) \ C, is open. O

Lemma 3.2. For every u € U and g € 5% (X) there exists v € U such that gC,g~! € C,,.
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Proof. Pick v € U such that |[v — (uo g)|| < 1. Now if h € Cy, then v oh > v, and hence
uogoh~voh~v>~uog.

1

Souogohog '~uogog1=u, as required. O

Hence ¥ = {Cy: u € U} satisfies the conditions (G1) through (G3) in Section 2.

Remark 3.3. The collection ¥ determines a group topology T on #(X). Observe that besides compactness, the conditions
on X were not used so far. In addition, with respect to homotopies the only thing we used is that ‘close’ maps into S" are
homotopic. So we can replace S" by any ANR. The problem with this topology is of course that it may not be Hausdorff.
Consider for example the case that .5#(X) is connected. Below we use the conditions on the space X in Theorem 1.1 to
prove Hausdorffness. Different ANR’s and different arguments may yield Hausdorffness in different situations.

Now we impose extra conditions on U. Assume that U is a dense subset of C(X,S") whose cardinality does not exceed
the weight of X [13, Theorem 3.4.16].

Lemma 3.4. Let g € 5 (X) not be the identity. Then there exists u € U such that g ¢ C,,.

Proof. Since g is not the identity, there is a nonempty open subset V of X such that V N g(V) =@. Let A be a compact
subset of V which homotopically dominates S". Let £ :S" — A and 7 : A — S" be continuous functions such that 1o £ is
homotopic to the identity function on S". Define ¢ : AU g(A) — S" as follows:

_n® (x € A),
() = { (1,0,...,0) (xeg(A)).

Since dim X =n, o can be extended to a continuous function & : X — S" (|14, 3.2.10]). Pick u € U such that ||& — u|| < 1.
We claim that g ¢ C,,. Striving for a contradiction, assume that u o g >~ u. Since & >~ u, we have

dog~Uuog~u~aw,

hence ¥ o goé§ ~ & o&. But @ o go& is the constant function with value (1,0,0,...), and & o £ =7 o & is homotopic to the
identity function on S". This violates the Brouwer Fixed-Point Theorem. O

Hence % satisfies condition (G4) in Section 2. Since ¥ consists of clopen subgroups of .7Z(X), we consequently conclude
that there is a Hausdorff group topology 7 on 5#°(X) such that € is a neighborhood subbase at e in (5 (X), t). Hence
T is contained in the original topology on .##(X), and the elements of % are clopen in (52 (X), ). As a consequence,
(22 (X), T) is non-archimedean.

Lemma 3.5. The weight of (5 (X), T) does not exceed the weight of X.

Proof. Let k > w be the weight of X. As we observed in Section 2, the weight and hence the Lindel6f number of 57 (X)
does not exceed «. This implies that the Lindel6f number of (5#°(X), ) does not exceed «. But |%’| < k, hence the neutral
element of (57 (X), t) has a neighborhood base of size at most «. This clearly implies that the weight of (57 (X), ) is at
most K-k =k. 0O

It is natural to ask whether 7 is a ‘nice’ topology in the sense that the natural action
(X)), 1) x X—> X

is continuous. We will show that for the spaces w", this is not the case.

Proposition 3.6. Let C be a clopen subgroup of 5 (X), where X is a homogeneous compact space. Then for every x € X we have that
Cx is clopen in X.

Proof. By the Effros Theorem from [12] (see also [21]), Cx is open in X for every x € X. Now pick an arbitrary x € X, and
take y € Cx. Then Cy N Cx # @ since Cy is open. Pick a, 8 € C such that ax = By. Then (8 la)x =y, i.e., y € Cx since
B laeC. O

Hence if the space X in Proposition 3.6 is a nontrivial continuum, then for every clopen subgroup C of 5#(X) and every
x € X we have that Cx = X. This evidently implies that for a weaker non-archimedean topology 7 on S#(X), the natural
action X x (€ (X), ) — X is badly discontinuous. Simply observe that if V is any proper nonempty open subset of X,
then the preimage of V under the natural action is not open.
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