Contents lists available at SciVerse ScienceDirect

Topology and its Applications

© 2012 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/topol

Homeomorphism groups of homogeneous compacta need not be minimal

It is shown that the homeomorphism group of the *n*-dimensional Menger universal

continuum is not minimal. This answers a question by Stojanov from about 1984.

Jan van Mill

Faculty of Sciences, Department of Mathematics, VU University Amsterdam, De Boelelaan 1081^a, 1081 HV Amsterdam, The Netherlands

ARTICLE INFO

ABSTRACT

MSC: 22A05 54H11 54F15

Keywords: Homogeneous compactum Homeomorphism group Minimal topology

1. Introduction

All spaces under discussion are Hausdorff.

A topological group *G* is called *minimal* if its topology cannot be properly weakened to another group topology. It is known that a minimal Abelian topological group is precompact (Prodanov and Stojanov [23]), and that for non-Abelian groups this need not hold (Gaughan [17]). For information on minimal groups, see e.g., Dikranjan, Prodanov and Stojanov [10], Dikranjan and Megrelishvili [9] and Lukács [19].

It was asked by Stojanov (see Arhangel'skii [3, VI.7] or Comfort, Hofmann and Remus [7, 3.3.3(a)]), whether the homeomorphism group $\mathscr{H}(X)$ of a homogeneous compactum is minimal. As usual, $\mathscr{H}(X)$ is endowed with the compact-open topology. It is known that this is the case for X the Cantor set (Gamarnik [16]; see also Uspenskiy [24]), but it is not known for X the Hilbert cube (this is a question of Uspenskiy [25]). The aim of this note is to answer Stojanov's question in the negative.

A topological group is *non-archimedean* if it has a local base at the identity consisting of open subgroups. A non-archimedean topological group is clearly zero-dimensional. The group of rational numbers with its usual topology is an example of a zero-dimensional group which is not non-archimedean.

The aim of this note is to prove the following result.

Theorem 1.1. For $n \ge 1$, let X be an n-dimensional compact space such that for every nonempty open subset U of X there is a compact subset A of U that homotopically dominates the n-sphere. Then $\mathscr{H}(X)$ admits a weaker non-archimedean group topology whose weight does not exceed the weight of X.

For the proof of Theorem 1.1 we make good use of the proof of Theorem 5 in Oversteegen and Tymchatyn [22]. Similar arguments were also used by Anderson [1] (for details, see [6, Theorem 1.3]).

What we will describe is actually a (simple) method for constructing potentially interesting non-archimedean group topologies on homeomorphism groups $\mathscr{H}(X)$ for compact spaces X. This method may have the potential of applications way beyond the scope of this note.

E-mail address: vanmill@few.vu.nl.

^{0166-8641/\$ –} see front matter $\,\,\odot\,$ 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2011.12.024

For $n \ge 1$, let μ^n denote the *n*-dimensional universal Menger continuum (Menger [20]). These spaces are obtained from finite-dimensional cubes by drilling holes in them in a way similar to the creation of the Cantor ternary set by repeatedly deleting the open middle thirds of a set of line segments. See [14, §1.11] for details. From the definition of μ^n it is clear that every nonempty open subset of it contains a copy of \mathbb{S}^n . Hence μ^n satisfies the conditions mentioned in Theorem 1.1.

Bestvina [5] provided elegant characterizations of these spaces and proved their homogeneity (for n = 1 this was done earlier by Anderson [2]). We denote the group of homeomorphisms of μ^n by \mathcal{H}^n . It was shown in Oversteegen and Tymchatyn [22, Theorem 5] that dim $\mathcal{H}^n \leq 1$. Dijkstra [8, Theorem 7] established that \mathcal{H}^n contains a copy of the famed Erdős space \mathscr{E} from [15] which is 1-dimensional. The surprising and highly counterintuitive conclusion of these results is that dim $\mathcal{H}^n = 1$.

By Theorem 1.1, \mathscr{H}^n admits a weaker (separable metrizable) non-archimedean group topology. This topology is strictly weaker than the 1-dimensional compact-open topology on \mathscr{H}^n and so μ^n solves Stojanov's problem in the negative.

I am indebted to Dikran Dikranjan, Michael Megrelishvili and Gábor Lukács for helpful comments.

2. Preliminaries

For $n \in \mathbb{N}$, let \mathbb{S}^n denote the euclidean sphere $\{x \in \mathbb{R}^{n+1}: \|x\| = 1\}$. As usual, by $f \simeq g$ we mean that f and g are homotopic functions. It is well known, and easy to prove, that if $f, g: X \to \mathbb{S}^n$ are such that for each $x \in X$, f(x) and g(x) are not antipodal, then $f \simeq g$ (Dugundji [11, XV.1.2(1)]). In particular, if $\|f(x) - g(x)\| < 1$ for every $x \in X$, then $f \simeq g$.

Let *X* and *Y* be spaces. We say that *X* homotopically dominates *Y* if there exist continuous functions $f : X \to Y$ and $g : Y \to X$ such that $f \circ g$ is homotopic to the identity function on *Y*.

Let $f, f': X \to Y$ and $g, g': Y \to Z$. If $f \simeq f'$ and $g \simeq g'$, then $g \circ f \simeq g' \circ f'$. This elementary fact about the homotopy relation will be used without explicit reference from now on.

If X and Y are topological spaces, then C(X, Y) denotes the set of all continuous functions from X to Y endowed with the compact-open topology. Moreover, let $\mathscr{H}(X, Y)$ denote { $h \in C(X, Y)$: h is a homeomorphism}. If X = Y, then $\mathscr{H}(X)$ abbreviates $\mathscr{H}(X, X)$. Hence $\mathscr{H}(X)$ is the group of homeomorphisms of X with the compact-open topology. It is not necessarily a topological group with function composition as the group operation. But for a compact space X, $\mathscr{H}(X)$ is a topological group with the relative topology from C(X, X) and function composition as the group operation.

Let G be a group, and let \mathscr{G} be a collection of subsets of G with the following properties:

(G1) $G^{-1} = G$ for every $G \in \mathscr{G}$,

(G2) for every $G \in \mathscr{G}$, there exists $H \in \mathscr{G}$ such that $H^2 \subseteq G$,

(G3) for every $G \in \mathscr{G}$ and $x \in G$, there is $H \in \mathscr{G}$ such that $x^{-1}Hx \subseteq G$.

Let \mathscr{H} denote the family of all finite intersections of members of \mathscr{G} . Then

$$\tau = \{ 0 \subset G \colon (\forall x \in 0) \; (\exists H \in \mathscr{H}) \; (Hx \subset 0) \}$$

is a group topology on G. If \mathscr{G} moreover satisfies

 $(G4) \ \{e\} = \bigcap \mathscr{G},$

then τ is Hausdorff. For details, see [19, Proposition 1.12] (or [18, II.4.5], [4, 1.3.12]). Observe that a T_1 -topological group is Tychonoff, see e.g. [18, II.8.4] or [4, 3.3.11].

The identity function on a set X is denoted by id_M or 1_M .

3. Proof of Theorem 1.1

Let *X* be a compact space satisfying the hypotheses stated in Theorem 1.1. In addition, let *U* be a dense subset of $C(X, \mathbb{S}^n)$ with extra conditions to be specified later. For every $u \in U$ we put

 $C_u = \{h \in \mathscr{H}(X): u \circ h \simeq u\}.$

Lemma 3.1. For $u \in U$, C_u is a clopen subgroup of $\mathscr{H}(X)$.

Proof. Let $f, g \in C_u$. Then $f \circ g \in C_u$ since $u \circ (f \circ g) = (u \circ f) \circ g \simeq u \circ g \simeq u$. Moreover, $f^{-1} \in C_u$ since $u = u \circ f \circ f^{-1} \simeq u \circ f^{-1}$. Hence C_u is a subgroup. To prove it is clopen, take an arbitrary $h \in \mathcal{H}(X)$. There exists a neighborhood N of h in $\mathcal{H}(X)$ such that for every $g \in N$, $||(u \circ h) - (u \circ g)|| < 1$. Hence if $g \in N$, then $u \circ g \simeq u \circ h$, and so $g \in C_u$ if and only if $h \in C_u$. This clearly implies that C_u is open and that $\mathcal{H}(X) \setminus C_u$ is open. \Box

Lemma 3.2. For every $u \in U$ and $g \in \mathscr{H}(X)$ there exists $v \in U$ such that $gC_v g^{-1} \subseteq C_u$.

Proof. Pick $v \in U$ such that $||v - (u \circ g)|| < 1$. Now if $h \in C_v$, then $v \circ h \simeq v$, and hence

$$u \circ g \circ h \simeq v \circ h \simeq v \simeq u \circ g.$$

So $u \circ g \circ h \circ g^{-1} \simeq u \circ g \circ g^{-1} = u$, as required. \Box

Hence $\mathscr{C} = \{C_u: u \in U\}$ satisfies the conditions (G1) through (G3) in Section 2.

Remark 3.3. The collection \mathscr{C} determines a group topology τ on $\mathscr{H}(X)$. Observe that besides compactness, the conditions on *X* were not used so far. In addition, with respect to homotopies the only thing we used is that 'close' maps into \mathbb{S}^n are homotopic. So we can replace \mathbb{S}^n by any ANR. The problem with this topology is of course that it may not be Hausdorff. Consider for example the case that $\mathscr{H}(X)$ is connected. Below we use the conditions on the space *X* in Theorem 1.1 to prove Hausdorffness. Different ANR's and different arguments may yield Hausdorffness in different situations.

Now we impose extra conditions on *U*. Assume that *U* is a dense subset of $C(X, \mathbb{S}^n)$ whose cardinality does not exceed the weight of *X* [13, Theorem 3.4.16].

Lemma 3.4. Let $g \in \mathcal{H}(X)$ not be the identity. Then there exists $u \in U$ such that $g \notin C_u$.

Proof. Since *g* is not the identity, there is a nonempty open subset *V* of *X* such that $V \cap g(V) = \emptyset$. Let *A* be a compact subset of *V* which homotopically dominates \mathbb{S}^n . Let $\xi : \mathbb{S}^n \to A$ and $\eta : A \to \mathbb{S}^n$ be continuous functions such that $\eta \circ \xi$ is homotopic to the identity function on \mathbb{S}^n . Define $\alpha : A \cup g(A) \to \mathbb{S}^n$ as follows:

$$\alpha(x) = \begin{cases} \eta(x) & (x \in A), \\ (1, 0, \dots, 0) & (x \in g(A)) \end{cases}$$

Since dim X = n, α can be extended to a continuous function $\bar{\alpha} : X \to \mathbb{S}^n$ ([14, 3.2.10]). Pick $u \in U$ such that $\|\bar{\alpha} - u\| < 1$. We claim that $g \notin C_u$. Striving for a contradiction, assume that $u \circ g \simeq u$. Since $\bar{\alpha} \simeq u$, we have

$$\bar{\alpha} \circ g \simeq u \circ g \simeq u \simeq \bar{\alpha},$$

hence $\bar{\alpha} \circ g \circ \xi \simeq \bar{\alpha} \circ \xi$. But $\bar{\alpha} \circ g \circ \xi$ is the constant function with value (1, 0, 0, ...), and $\bar{\alpha} \circ \xi = \eta \circ \xi$ is homotopic to the identity function on \mathbb{S}^n . This violates the Brouwer Fixed-Point Theorem. \Box

Hence \mathscr{C} satisfies condition (G4) in Section 2. Since \mathscr{C} consists of clopen subgroups of $\mathscr{H}(X)$, we consequently conclude that there is a Hausdorff group topology τ on $\mathscr{H}(X)$ such that \mathscr{C} is a neighborhood subbase at e in $(\mathscr{H}(X), \tau)$. Hence τ is contained in the original topology on $\mathscr{H}(X)$, and the elements of \mathscr{C} are clopen in $(\mathscr{H}(X), \tau)$. As a consequence, $(\mathscr{H}(X), \tau)$ is non-archimedean.

Lemma 3.5. The weight of $(\mathcal{H}(X), \tau)$ does not exceed the weight of X.

Proof. Let $\kappa \ge \omega$ be the weight of *X*. As we observed in Section 2, the weight and hence the Lindelöf number of $\mathscr{H}(X)$ does not exceed κ . This implies that the Lindelöf number of $(\mathscr{H}(X), \tau)$ does not exceed κ . But $|\mathscr{C}| \le \kappa$, hence the neutral element of $(\mathscr{H}(X), \tau)$ has a neighborhood base of size at most κ . This clearly implies that the weight of $(\mathscr{H}(X), \tau)$ is at most $\kappa \cdot \kappa = \kappa$. \Box

It is natural to ask whether τ is a 'nice' topology in the sense that the natural action

 $(\mathscr{H}(X), \tau) \times X \to X$

is continuous. We will show that for the spaces μ^n , this is not the case.

Proposition 3.6. Let C be a clopen subgroup of $\mathcal{H}(X)$, where X is a homogeneous compact space. Then for every $x \in X$ we have that Cx is clopen in X.

Proof. By the Effros Theorem from [12] (see also [21]), Cx is open in X for every $x \in X$. Now pick an arbitrary $x \in X$, and take $y \in Cx$. Then $Cy \cap Cx \neq \emptyset$ since Cy is open. Pick $\alpha, \beta \in C$ such that $\alpha x = \beta y$. Then $(\beta^{-1}\alpha)x = y$, i.e., $y \in Cx$ since $\beta^{-1}\alpha \in C$. \Box

Hence if the space X in Proposition 3.6 is a nontrivial continuum, then for every clopen subgroup C of $\mathscr{H}(X)$ and every $x \in X$ we have that Cx = X. This evidently implies that for a weaker non-archimedean topology \mathscr{T} on $\mathscr{H}(X)$, the natural action $X \times (\mathscr{H}(X), \mathscr{T}) \to X$ is badly discontinuous. Simply observe that if V is any proper nonempty open subset of X, then the preimage of V under the natural action is not open.

References

- [1] R.D. Anderson, The group of all homeomorphisms of the universal curve, Abstract 323, Bull. Amer. Math. Soc. 63 (1957) 43.
- [2] R.D. Anderson, A characterization of the universal curve and a proof of its homogeneity, Ann. of Math. (2) 67 (1958) 313-324.
- [3] A.V. Arhangel'skii, Topological homogeneity. Topological groups and their continuous images, Russian Math. Surveys 42 (1987) 83-131.
- [4] A.V. Arhangel'skii, M.G. Tkachenko, Topological Groups and Related Structures, Atlantis Studies in Mathematics, vol. 1, Atlantis Press, World Scientific, Paris, 2008.
- [5] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 71 (380) (1988), vi+110.
- [6] B.L. Brechner, On the dimensions of certain spaces of homeomorphisms, Trans. Amer. Math. Soc. 121 (1966) 516-548.
- [7] W.W. Comfort, K.-H. Hofmann, D. Remus, Topological groups and semigroups, in: M. Hušek, J. van Mill (Eds.), Recent Progress in General Topology, North-Holland Publishing Co., Amsterdam, 1992, pp. 58–144.
- [8] J.J. Dijkstra, On homeomorphism groups of Menger continua, Trans. Amer. Math. Soc. 357 (2005) 2665–2679.
- [9] D.N. Dikranjan, M. Megrelishvili, Relative minimality and co-minimality of subgroups in topological groups, Topology Appl. 157 (2010) 62-76.
- [10] D.N. Dikranjan, I.R. Prodanov, L.N. Stojanov, Topological Groups. Characters, Dualities and Minimal Group Topologies, Monographs and Textbooks in Pure and Applied Mathematics, vol. 130, Marcel Dekker Inc., New York, 1990.
- [11] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
- [12] E.G. Effros, Transformation groups and C*-algebras, Ann. of Math. 81 (1965) 38–55.
- [13] R. Engelking, General Topology, second ed., Heldermann Verlag, Berlin, 1989.
- [14] R. Engelking, Theory of Dimensions Finite and Infinite, Heldermann Verlag, Lemgo, 1995.
- [15] P. Erdős, The dimension of the rational points in Hilbert space, Ann. of Math. 41 (1940) 734-736.
- [16] D. Gamarnik, Minimality of the group Aut(C), Serdika 17 (1991) 197–201.
- [17] E.D. Gaughan, Topological group structures of infinite symmetric groups, Proc. Natl. Acad. Sci. USA 38 (1967) 907-910.
- [18] E. Hewitt, K.A. Ross, Abstract Harmonic Analysis I, Springer-Verlag, New York, Heidelberg, Berlin, 1979.
- [19] G. Lukács, Compact-Like Topological Groups, Research and Exposition in Mathematics, vol. 31, Heldermann Verlag, Lemgo, 2009.
- [20] K. Menger, Kurventheorie, Teubner, Leipzig, 1932.
- [21] J. van Mill, A note on the Effros theorem, Amer. Math. Monthly. 111 (2004) 801-806.
- [22] L.G. Oversteegen, E.D. Tymchatyn, On the dimension of certain totally disconnected spaces, Proc. Amer. Math. Soc. 122 (1994) 885-891.
- [23] I. Prodanov, L.N. Stojanov, Every minimal Abelian group is precompact, C. R. Acad. Bulgare Sci. 37 (1984) 23-26.
- [24] V.V. Uspenskiy, The Roelcke compactification of groups of homeomorphisms, Topology Appl. 111 (2001) 195-205.
- [25] V.V. Uspenskiy, On subgroups of minimal topological groups, Topology Appl. 155 (2008) 1580-1606.