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continuum is not minimal. This answers a question by Stojanov from about 1984.
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1. Introduction

All spaces under discussion are Hausdorff.
A topological group G is called minimal if its topology cannot be properly weakened to another group topology. It is

known that a minimal Abelian topological group is precompact (Prodanov and Stojanov [23]), and that for non-Abelian
groups this need not hold (Gaughan [17]). For information on minimal groups, see e.g., Dikranjan, Prodanov and Sto-
janov [10], Dikranjan and Megrelishvili [9] and Lukács [19].

It was asked by Stojanov (see Arhangel’skii [3, VI.7] or Comfort, Hofmann and Remus [7, 3.3.3(a)]), whether the home-
omorphism group H (X) of a homogeneous compactum is minimal. As usual, H (X) is endowed with the compact-open
topology. It is known that this is the case for X the Cantor set (Gamarnik [16]; see also Uspenskiy [24]), but it is not known
for X the Hilbert cube (this is a question of Uspenskiy [25]). The aim of this note is to answer Stojanov’s question in the
negative.

A topological group is non-archimedean if it has a local base at the identity consisting of open subgroups. A non-
archimedean topological group is clearly zero-dimensional. The group of rational numbers with its usual topology is an
example of a zero-dimensional group which is not non-archimedean.

The aim of this note is to prove the following result.

Theorem 1.1. For n � 1, let X be an n-dimensional compact space such that for every nonempty open subset U of X there is a compact
subset A of U that homotopically dominates the n-sphere. Then H (X) admits a weaker non-archimedean group topology whose
weight does not exceed the weight of X .

For the proof of Theorem 1.1 we make good use of the proof of Theorem 5 in Oversteegen and Tymchatyn [22]. Similar
arguments were also used by Anderson [1] (for details, see [6, Theorem 1.3]).

What we will describe is actually a (simple) method for constructing potentially interesting non-archimedean group
topologies on homeomorphism groups H (X) for compact spaces X . This method may have the potential of applications
way beyond the scope of this note.
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For n � 1, let μn denote the n-dimensional universal Menger continuum (Menger [20]). These spaces are obtained from
finite-dimensional cubes by drilling holes in them in a way similar to the creation of the Cantor ternary set by repeatedly
deleting the open middle thirds of a set of line segments. See [14, §1.11] for details. From the definition of μn it is clear
that every nonempty open subset of it contains a copy of S

n . Hence μn satisfies the conditions mentioned in Theorem 1.1.
Bestvina [5] provided elegant characterizations of these spaces and proved their homogeneity (for n = 1 this was done

earlier by Anderson [2]). We denote the group of homeomorphisms of μn by H n . It was shown in Oversteegen and
Tymchatyn [22, Theorem 5] that dim H n � 1. Dijkstra [8, Theorem 7] established that H n contains a copy of the famed
Erdős space E from [15] which is 1-dimensional. The surprising and highly counterintuitive conclusion of these results is
that dim H n = 1.

By Theorem 1.1, H n admits a weaker (separable metrizable) non-archimedean group topology. This topology is strictly
weaker than the 1-dimensional compact-open topology on H n and so μn solves Stojanov’s problem in the negative.

I am indebted to Dikran Dikranjan, Michael Megrelishvili and Gábor Lukács for helpful comments.

2. Preliminaries

For n ∈ N, let S
n denote the euclidean sphere {x ∈ R

n+1: ‖x‖ = 1}. As usual, by f � g we mean that f and g are
homotopic functions. It is well known, and easy to prove, that if f , g : X → S

n are such that for each x ∈ X , f (x) and g(x)
are not antipodal, then f � g (Dugundji [11, XV.1.2(1)]). In particular, if ‖ f (x) − g(x)‖ < 1 for every x ∈ X , then f � g .

Let X and Y be spaces. We say that X homotopically dominates Y if there exist continuous functions f : X → Y and
g : Y → X such that f ◦ g is homotopic to the identity function on Y .

Let f , f ′ : X → Y and g, g′ : Y → Z . If f � f ′ and g � g′ , then g ◦ f � g′ ◦ f ′ . This elementary fact about the homotopy
relation will be used without explicit reference from now on.

If X and Y are topological spaces, then C(X, Y ) denotes the set of all continuous functions from X to Y endowed with
the compact-open topology. Moreover, let H (X, Y ) denote {h ∈ C(X, Y ): h is a homeomorphism}. If X = Y , then H (X)

abbreviates H (X, X). Hence H (X) is the group of homeomorphisms of X with the compact-open topology. It is not necessarily
a topological group with function composition as the group operation. But for a compact space X , H (X) is a topological
group with the relative topology from C(X, X) and function composition as the group operation.

Let G be a group, and let G be a collection of subsets of G with the following properties:

(G1) G−1 = G for every G ∈ G ,
(G2) for every G ∈ G , there exists H ∈ G such that H2 ⊆ G ,
(G3) for every G ∈ G and x ∈ G , there is H ∈ G such that x−1 Hx ⊆ G .

Let H denote the family of all finite intersections of members of G . Then

τ = {
O ⊆ G: (∀x ∈ O ) (∃H ∈ H ) (Hx ⊆ O )

}
is a group topology on G . If G moreover satisfies

(G4) {e} = ⋂
G ,

then τ is Hausdorff. For details, see [19, Proposition 1.12] (or [18, II.4.5], [4, 1.3.12]). Observe that a T1-topological group is
Tychonoff, see e.g. [18, II.8.4] or [4, 3.3.11].

The identity function on a set X is denoted by idM or 1M .

3. Proof of Theorem 1.1

Let X be a compact space satisfying the hypotheses stated in Theorem 1.1. In addition, let U be a dense subset of
C(X,S

n) with extra conditions to be specified later. For every u ∈ U we put

Cu = {
h ∈ H (X): u ◦ h � u

}
.

Lemma 3.1. For u ∈ U , Cu is a clopen subgroup of H (X).

Proof. Let f , g ∈ Cu . Then f ◦ g ∈ Cu since u ◦ ( f ◦ g) = (u ◦ f ) ◦ g � u ◦ g � u. Moreover, f −1 ∈ Cu since u = u ◦ f ◦ f −1 �
u ◦ f −1. Hence Cu is a subgroup. To prove it is clopen, take an arbitrary h ∈ H (X). There exists a neighborhood N of h in
H (X) such that for every g ∈ N , ‖(u ◦ h) − (u ◦ g)‖ < 1. Hence if g ∈ N , then u ◦ g � u ◦ h, and so g ∈ Cu if and only if
h ∈ Cu . This clearly implies that Cu is open and that H (X) \ Cu is open. �
Lemma 3.2. For every u ∈ U and g ∈ H (X) there exists v ∈ U such that gCv g−1 ⊆ Cu .
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Proof. Pick v ∈ U such that ‖v − (u ◦ g)‖ < 1. Now if h ∈ Cv , then v ◦ h � v , and hence

u ◦ g ◦ h � v ◦ h � v � u ◦ g.

So u ◦ g ◦ h ◦ g−1 � u ◦ g ◦ g−1 = u, as required. �
Hence C = {Cu: u ∈ U } satisfies the conditions (G1) through (G3) in Section 2.

Remark 3.3. The collection C determines a group topology τ on H (X). Observe that besides compactness, the conditions
on X were not used so far. In addition, with respect to homotopies the only thing we used is that ‘close’ maps into S

n are
homotopic. So we can replace S

n by any ANR. The problem with this topology is of course that it may not be Hausdorff.
Consider for example the case that H (X) is connected. Below we use the conditions on the space X in Theorem 1.1 to
prove Hausdorffness. Different ANR’s and different arguments may yield Hausdorffness in different situations.

Now we impose extra conditions on U . Assume that U is a dense subset of C(X,S
n) whose cardinality does not exceed

the weight of X [13, Theorem 3.4.16].

Lemma 3.4. Let g ∈ H (X) not be the identity. Then there exists u ∈ U such that g /∈ Cu .

Proof. Since g is not the identity, there is a nonempty open subset V of X such that V ∩ g(V ) = ∅. Let A be a compact
subset of V which homotopically dominates S

n . Let ξ : S
n → A and η : A → S

n be continuous functions such that η ◦ ξ is
homotopic to the identity function on S

n . Define α : A ∪ g(A) → S
n as follows:

α(x) =
{

η(x) (x ∈ A),

(1,0, . . . ,0) (x ∈ g(A)).

Since dim X = n, α can be extended to a continuous function ᾱ : X → S
n ([14, 3.2.10]). Pick u ∈ U such that ‖ᾱ − u‖ < 1.

We claim that g /∈ Cu . Striving for a contradiction, assume that u ◦ g � u. Since ᾱ � u, we have

ᾱ ◦ g � u ◦ g � u � ᾱ,

hence ᾱ ◦ g ◦ ξ � ᾱ ◦ ξ . But ᾱ ◦ g ◦ ξ is the constant function with value (1,0,0, . . .), and ᾱ ◦ ξ = η ◦ ξ is homotopic to the
identity function on S

n . This violates the Brouwer Fixed-Point Theorem. �
Hence C satisfies condition (G4) in Section 2. Since C consists of clopen subgroups of H (X), we consequently conclude

that there is a Hausdorff group topology τ on H (X) such that C is a neighborhood subbase at e in (H (X), τ ). Hence
τ is contained in the original topology on H (X), and the elements of C are clopen in (H (X), τ ). As a consequence,
(H (X), τ ) is non-archimedean.

Lemma 3.5. The weight of (H (X), τ ) does not exceed the weight of X .

Proof. Let κ � ω be the weight of X . As we observed in Section 2, the weight and hence the Lindelöf number of H (X)

does not exceed κ . This implies that the Lindelöf number of (H (X), τ ) does not exceed κ . But |C | � κ , hence the neutral
element of (H (X), τ ) has a neighborhood base of size at most κ . This clearly implies that the weight of (H (X), τ ) is at
most κ ·κ = κ . �

It is natural to ask whether τ is a ‘nice’ topology in the sense that the natural action(
H (X), τ

) × X → X

is continuous. We will show that for the spaces μn , this is not the case.

Proposition 3.6. Let C be a clopen subgroup of H (X), where X is a homogeneous compact space. Then for every x ∈ X we have that
Cx is clopen in X.

Proof. By the Effros Theorem from [12] (see also [21]), Cx is open in X for every x ∈ X . Now pick an arbitrary x ∈ X , and
take y ∈ Cx. Then C y ∩ Cx �= ∅ since C y is open. Pick α,β ∈ C such that αx = β y. Then (β−1α)x = y, i.e., y ∈ Cx since
β−1α ∈ C . �

Hence if the space X in Proposition 3.6 is a nontrivial continuum, then for every clopen subgroup C of H (X) and every
x ∈ X we have that Cx = X . This evidently implies that for a weaker non-archimedean topology T on H (X), the natural
action X × (H (X),T ) → X is badly discontinuous. Simply observe that if V is any proper nonempty open subset of X ,
then the preimage of V under the natural action is not open.
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