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0. Introduction

Universal objects play an important role in mathematics. In topology, there is a wealth of such objects
that go back a long time. For example, the Cantor set is a universal space for the class of all zero-dimensional
separable metrizable spaces, the n-dimensional Nöbeling spaces for the class of all n-dimensional separable
metrizable spaces, the Hilbert space for the class of all separable metrizable spaces, etc. There are also
many interesting results for isometries. For example, the Urysohn Universal Metric Space and the space
C[0, 1] of all continuous functions on [0, 1] with the uniform convergence contain isometrically all separable
metric spaces. For details and references on universality, see Iliadis [2]. For basic information about frames
or pointfree topology, see Picado and Pultr [4] or Johnstone [3].

The aim of this note is to construct a universal frame in the class of all frames of weight at most a given
infinite cardinal number τ . Some but not all frames have a topological space as underlying object, so our
result is independent of that of the existence of universal objects in the class of all topological T0-spaces
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of weight τ given in [2]. We employ the general technique of constructing universal objects as given by
Iliadis [2]. In so doing, a novel method for constructing new frames involving very set theoretical methods
is presented.

1. Universal frames

1.1. Definitions and notation. Recall that a frame is a complete lattice L in which

x ∧
∨

S =
∨

{x ∧ s: s ∈ S}

for any x ∈ L and any S ⊆ L. Our notations shall be fairly standard from Picado and Pultr [4]. For
instance we denote the top element and the bottom element of L by 1L and 0L respectively. As usual,
≺ is the rather below relation whilst ≺≺ denotes the completely below relation. For x, y ∈ L, x ≺ y iff
x∗ ∨ y = 1L where x∗ =

∨
{t ∈ L: t ∧ x = 0} whilst x ≺≺ y iff there is a system {cr ∈ L: r ∈ Q ∩ [0, 1]}

such that c0 = x, c1 = y and cr ≺ cs whenever r < s. A frame L is completely regular if for each x ∈ L,
x =

∨
{y ∈ L: y ≺≺ x} and regular frames are those in which each element is the join of elements rather

below it. If x ∨ x∗ = 1L then x is complemented in L. The frame L is zero-dimensional provided that each
element of L is a join of complemented elements (see Banaschewski [1]). A frame homomorphism is a map
between frames which preserves finite meets, including the top element, and arbitrary joins, including the
bottom element. We denote the class of all frames that are completely regular by CRegFrm, regular by
RegFrm, and zero-dimensional by 0-DFrm.

A subset B of a complete lattice (or frame) L is called base for L if each element of L is a supremum of a
subset of B. The weight of a complete lattice (or frame) L is the minimal cardinal κ for which there exists
a base B for L of cardinality κ.

An ordinal number is the set of smaller ordinal numbers, and a cardinal number is an initial ordinal
number. By ω we denote the least infinite cardinal. By τ we denote a fixed infinite cardinal and by F the
set of all non-empty finite subsets of τ .

Each mapping ϕ of τ onto a set X is called an indexation of X and will be denoted by

X = {x0, . . . , xδ, . . .},

where xδ = ϕ(δ), δ ∈ τ .

1.2. Definition of a universal complete lattice (or frame). Let L be a class of (non-empty) complete lattices
(or frames). We say that a complete lattice (or frame) T is universal in this class if (a) T ∈ L and (b) for
every L ∈ L there exists a homomorphism of T onto L.

1.3. Theorem. In the class L of all frames of weight � τ there exist universal elements.

Proof. Without loss of generality we can suppose that L is a set and that its elements are mutually disjoint.
For every L ∈ L we denote by

BL =
{
aL0 , a

L
1 , . . . , a

L
δ , . . .

}

an indexed base of L of cardinality � τ such that aL0 = 0 and aL1 = 1. We assume without loss of generality
that BL is closed under taking finite infima. By θL we denote a fixed mapping of the set F into τ such that
for every t ∈ F we have

aLθ (t) =
∧{

aLδ : δ ∈ t
}
,

L
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with the additional condition that if t = {δ}, then θL(t) = δ. We note that for distinct elements L and G

in L the mappings θL and θG need not have any relation to each other.
Fix s ∈ F for a moment. By ∼s we denote the equivalence relation on the family L defined as follows:

two elements L,G ∈ L are ∼s-equivalent if and only if for all t ⊆ s such that t 	= ∅ we have θL(t) = θG(t).
It is easy to see that if ∅ 	= s′ ⊆ s, then ∼s ⊆∼s′ . We set R = {∼s: s ∈ F}.
We denote by C(∼s) the set of all equivalence classes of the relation ∼s, s ∈ F , and put

C(R) =
⋃{

C
(
∼s

)
: s ∈ F

}
.

It is easy to see that the cardinality of the set C(∼s) is less than or equal to τ and, therefore, the cardinality
of the set C(R) is also less than or equal to τ .

Now we consider the free union U of the elements of L, i.e.,

U =
⋃

{L: L ∈ L}.

For every s ∈ F , H ∈ C(∼s), and δ ∈ s we put

Aδ(H) =
{
aLδ : L ∈ H

}
∪
{
aL0 = 0L: L ∈ L \ H

}
⊂ U.

Obviously, for every L ∈ L the intersection L∩Aδ(H) consists of one element only: the element aLδ if L ∈ H
and the element 0L if L /∈ H. We put

B =
{
Aδ(H): δ ∈ s, s ∈ F ,H ∈ C

(
∼s

)}
.

Obviously, the cardinality of B is � τ .
For every subset

M =
{
Aδj (Hj): j ∈ J

}
⊆ B

we shall define a subset of U, denoted by M̃ . For the definition of this set we first fix an element L ∈ L and
denote by ML the set of elements aLδ of L for which there exists j ∈ J such that

{
aLδ

}
= L ∩Aδj (Hj).

Therefore, aLδ coincides either with aLδj or with 0L. Then, we put

M̃ = {supML: L ∈ L}.

Observe that the element supML ∈ M̃ in general is not an element of ML.
Now we consider the set

T = {M̃ : M ⊆ B}.

The subset M ⊆ B will be called a generator of M̃ ∈ T. The generators of the elements of T are not
uniquely determined. It is easy to see that the union of any number of generators of an element of T is also
a generator of this element. Therefore, the union of all generators of a certain element of T is the maximal
generator of that element.

We note that each element Aδ(H) ∈ B is an element of T, that is B ⊆ T. Indeed, for the set N =
{Aδ(H)} ⊆ B, it is easy to see that Ñ = Aδ(H).

In T we define an order � by putting M̃ � Ñ for M̃, Ñ ∈ T if and only if for every L ∈ L we have
supML � supNL. Obviously, the pair (T,�) is a poset. �
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Lemma 1. The poset (T,�) is a complete lattice of weight � τ .

Proof. To prove the lemma it suffices to prove the existence of suprema of arbitrary subsets (Picado and
Pultr [4, 4.3.1]), and that the weight of T is at most τ . This last fact will follow once we show that B is a
base for T.

The existence of suprema. Let

G =
{
M̃λ: λ ∈ Λ

}
⊆ T.

We must prove that the supremum of G exists. Denote by M the union of all generators Mλ of all elements
of G, i.e.,

M =
⋃{

Mλ: λ ∈ Λ
}
.

Then, the set

M̃ = {supML: L ∈ L}

is an element of T. We shall prove that M̃ = supG.
Indeed, consider an element L ∈ L. Then, it is easy to see that

ML =
⋃{

Mλ
L: λ ∈ Λ

}

and, therefore,

supML = sup
(⋃{

Mλ
L : λ ∈ Λ

})
= sup

{
supMλ

L : λ ∈ Λ
}
. (1)

This relation shows supMλ
L � supML, that is M̃λ � M̃ for every λ ∈ Λ.

Now, suppose that N is an element of T such that Mλ � N for every λ ∈ Λ, that is

supMλ
L � supNL

for every L ∈ L and for every λ ∈ Λ. Then,

sup
{
supMλ

L : λ ∈ Λ
}

� supNL

and by relation (1) we have

supML � supNL,

that is M̃ � Ñ proving that M̃ = supG.

The set B is a base for T. Consider an arbitrary element M̃ of T and let

M =
{
Aδλ(Hλ): λ ∈ Λ

}
.

We put Mλ = {Aδλ(Hλ)}. Then,

M̃λ = Aδλ(Hλ) ∈ B ⊆ T and M =
⋃{

Mλ: λ ∈ Λ
}
.
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Consider the set

G =
{
M̃λ: λ ∈ Λ

}
⊆ B.

As in the above we can prove that

M̃ = supG = sup
{
M̃λ: λ ∈ Λ

}
.

This relation shows that B is a base for T and, therefore, the weight of T is at most τ . The proof of the
lemma is complete. �

It follows from Lemma 1 that T has a bottom and a top. For later use, it will be convenient to have an
explicit description of these two elements.

The existence of the bottom. Let s = {0} ∈ F . Consider the set

M =
{
A0(H): H ∈ C

(
∼s

)}
.

By the definition of the indexation of BL, for every H ∈ C(∼s) we have

A0(H) = {0L: L ∈ H} ∪ {0L: L ∈ L \ H}.

Then, for every L ∈ L, ML = {0L} and, therefore, supML = sup{0L} = 0L. Thus,

M̃ = {0L: L ∈ L}.

Obviously, by the definition of the order in T for every Ñ ∈ T we have M̃ � Ñ . Therefore, the constructed
element M̃ ∈ T is the least element of the poset (T,�) and will be denoted by 0T.

The existence of the top. Let s = {1} ∈ F . Consider the set

M =
{
A1(H): H ∈ C

(
∼s

)}
.

By the definition of the indexation of BL,

A1(H) = {1L: L ∈ H} ∪ {0L: L ∈ L \ H}, H ∈ C
(
∼s

)
.

Since the distinct classes of ∼s are disjoint and the union of all classes is L, for every L ∈ L we have
ML = {1L} and, therefore, supML = sup{1L} = 1L. Then,

M̃ = {1L: L ∈ L}.

Obviously, by the definition of the order in T for every Ñ ∈ T we have Ñ � M̃ . Therefore, the constructed
element M̃ ∈ T is the greatest element of (T,�) and will be denoted by 1T.

Lemma 2. For every L ∈ L there exists a homomorphism hL of T onto L.

Proof. Let L be a fixed element of L.
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The definition of hL. We define the mapping hL setting for every element M̃ ∈ T:

hL(M̃) is the unique element in L ∩ M̃.

Obviously,

hL(M̃) = supML.

We note that hL(M̃) is independent of the generator M of the element M̃ .
Since for any elements Ñ and M̃ of T the relation Ñ � M̃ means that supNL � supML, the mapping

hL is order preserving.
By the definition of hL it follows immediately that hL(0T) = 0L and hL(1T) = 1L.

The mapping hL is onto. Let a ∈ L. Since BL is a base for L, there exists a subset κ ⊆ τ such that for

A =
{
aLδ : δ ∈ κ

}
⊆ BL ⊆ L

we have a = supA. For every s ∈ F denote by HL
s the equivalence class of C(∼s) containing L. For every

δ ∈ s ∩ κ consider the set Aδ(HL
s ) and put

M =
{
Aδ

(
HL

s

)
: s ∈ F , δ ∈ s ∩ κ

}
.

Then,

ML =
⋃{{

aLδ
}

= L ∩Aδ

(
HL

s

)
: s ∈ F , δ ∈ s ∩ κ

}
.

The above equality means that A = ML. Hence, supML = a, so hL(M̃) = a showing that hL is indeed
onto.

The mapping hL preserves suprema. Let

M̃ = sup
{
M̃λ: λ ∈ Λ

}
.

Then,

hL(M̃) = supML = sup
(⋃{

Mλ
L: λ ∈ Λ

})

= sup
{
supMλ

L : λ ∈ Λ
}

= sup
{
hL

(
M̃λ

)
: λ ∈ Λ

}
,

that is, hL preserve suprema.

The mapping hL preserves finite infima. Let Aδj (Hj) and Aηi
(Hi) be two fixed elements of B such that

δj ∈ sj , Hj ∈ R(∼sj ), ηi ∈ si, and Hi ∈ R(∼si). We shall define a subset of B, denoted by

M(j,i) = Aδj (Hj)ΔAηi
(Hi)

as follows. Let s = sj ∪ si. Then, for every L,G ∈ H ∈ C(∼s) we have θL(t) = θG(t) where t = {δj , ηi}. In
this case we put θH(t) = θL(t). By the properties of the elements of the family R it follows that if H is an
element of C(∼s), then either H ⊆ Hj ∩Hi or H∩ (Hj ∪Hi) = ∅. If the set Hj ∩Hi is empty, then we put

M(j,i) =
{
A0(H): H ∈ C

(
∼s

)}
.
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If Hj ∩Hi 	= ∅, then we put

M(j,i) =
{
Aδ(H): H ∈ C

(
∼s

)
, H ⊆ Hj ∩ Hi, δ = θH(t)

}
.

We note that if sj = si, Hj = Hi, and δj = ηi, then θL(t) = δj and s = sj . Therefore, in this case

M(j,i) =
{
Aδj (Hj)

}
=

{
Aηi

(Hi)
}
.

It is easy to see that for every Aδ(H) ∈ M(j,i) we have

Aδ(H) � Aδj (Hj) and Aδ(H) � Aηi
(Hi). (2)

Now, let Ñ and K̃ be two elements of T. Suppose that

N =
{
Aδj (Hj): j ∈ J, Hj ∈ C

(
∼sj

)
, δj ∈ sj ∈ F

}

and

K =
{
Aηi

(Hi): i ∈ I, Hi ∈ C
(
∼si

)
, ηi ∈ si ∈ F

}
.

Without loss of generality we can suppose that N and K are the maximal generators of Ñ and K̃, respec-
tively.

Consider the set

M =
⋃{

M(j,i) = Aδj (Hj)ΔAηi
(Hi): (j, i) ∈ J × I

}
.

First, we shall prove that

M̃ = Ñ ∧ K̃. (3)

Indeed, let L ∈ L. Obviously, for every (j, i) ∈ J × I we have

Aδj (Hj) � Ñ and Aηi
(Hi) � K̃. (4)

Then, since N and K are maximal generators by the definition of the set M and the relations (2) and (4)
for every (j, i) ∈ J × I we have

M(j,i) ⊆ N and M(j,i) ⊆ K

and, therefore,
⋃{

M(j,i): (j, i) ∈ J × I
}
⊆ N and

⋃{
M(j,i): (j, i) ∈ J × I

}
⊆ K.

This means that

supML = sup
(⋃{

(M(j,i))L: (j, i) ∈ J × I
})

� supNL (5)

and similarly

supML � supKL. (6)
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The relations (5) and (6) imply that

M̃ � Ñ and M̃ � K̃.

Suppose now that for an element P̃ ∈ T we have

P̃ � Ñ and P̃ � K̃.

Since N and K are maximal generators we have

P ⊆ N and P ⊆ K.

Let Aδ(H) be an element of P . Then, Aδ(H) ∈ N and Aδ(H) ∈ K. Setting Aδj (Hj) = Aηi
(Hi) = Aδ(H),

by the above, we have M(j,i) = {Aδ(H)}. Therefore, Aδ(H) ∈ M , that is P ⊆ M which means that P̃ � M̃ .
Thus, relation (3) is proved.

We shall now prove that

supML = supNL ∧ supKL. (7)

First, we shall prove that if aLδj ∈ NL and aLηi
∈ KL, then

aLδj ∧ aLηi
∈ ML. (8)

Indeed, let aLδj ∈ NL and aLηi
∈ KL. Then there exist elements Hj ∈ C(∼sj ) and Hi ∈ C(∼si) for some

sj , si ∈ F such that L ∈ Hj ∩ Hi, Aδj (Hj) ∈ N and Aηi
(Hi) ∈ K. Let t = {δj , ηi}, s = sj ∪ si, and H be

the element of C(∼s) containing L. Then, AθH(t)(H) ∈ M(j,i) ⊆ M . Since aLθH(t) = aLθL(t) = aLδj ∧ aLηi
we

have aLδj ∧ aLηi
∈ ML.

Now, let a ∈ ML. Then, there exist

δj ∈ sj ∈ F , Hj ∈ C
(
∼sj

)
, ηi ∈ si ∈ F and Hi ∈ C

(
∼si

)

such that a ∈ (M(j,i))L, where

M(j,i) = Aδj (Hj)ΔAηi
(Hi).

Therefore, we have

a ∈ AθH(t)(H) ∈ M(j,i),

where t = {δj , ηi}, s = sj ∪ si, and H is the element of C(∼s) containing L. This means that

a = aLδj ∧ aLηi
. (9)

The relations (8) and (9) show that

ML =
{
aLδj ∧ aLηi

: aLδj ∈ NL, a
L
ηi

∈ KL

}

and, therefore,

supML = sup
{
aLδ ∧ aLη : aLδ ∈ NL, a

L
η ∈ KL

}
.

j i j i
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Since L is a frame we have

supML = sup
{
aLδj : aLδj ∈ NL

}
∧ sup

{
aLηi

: ηi ∈ KL

}
= supNL ∧ supKL

proving relation (7). Relations (3) and (7) prove that the mapping hL preserves finite infima. Hence we are
done. �
Lemma 3. The complete lattice (T,�) is a frame.

Proof. We must prove that

Ñ ∧ sup
{
K̃λ: λ ∈ Λ

}
= sup

{
Ñ ∧ K̃λ: λ ∈ Λ

}
(10)

for all Ñ , K̃λ ∈ T. Without loss of generality we can suppose that N and Kλ, λ ∈ Λ, are the maximal
generators of Ñ and K̃λ, respectively.

Suppose that

N =
{
Aδj (Hj): j ∈ J, δj ∈ sj ∈ F ,Hj ∈ C

(
∼sj

)}

and

Kλ =
{
Aηi(λ)(Hi(λ)): i(λ) ∈ I(λ), ηi(λ) ∈ si(λ) ∈ F ,Hi(λ) ∈ C

(
∼si(λ)

)}
.

Then, the set

K =
⋃{

Kλ: λ ∈ Λ
}

=
{
Aηi(λ)(Hi(λ)): i(λ) ∈ I(λ), ηi(λ) ∈ si(λ) ∈ F ,Hi(λ) ∈ C

(
∼si(λ)

)
, λ ∈ Λ

}

is a generator of the element sup{K̃λ: λ ∈ Λ} ∈ T and, therefore,

K̃ = sup
{
K̃λ: λ ∈ Λ

}
.

By the relation (4) for every λ ∈ Λ the set

Mλ =
⋃{

Aδj (Hj) ΔAηi(λ)(Hi(λ)): j ∈ J, δj ∈ sj ∈ F ,Hj ∈ C
(
∼sj

)
, i(λ) ∈ I(λ),

ηi(λ) ∈ si(λ) ∈ F ,Hi(λ) ∈ C
(
∼si(λ)

)}

is a generator of the element Ñ ∧ K̃λ ∈ T. Hence, the set

M =
⋃{

Mλ: λ ∈ Λ
}

=
{
Aδj (Hj)ΔAηi(λ)(Hi(λ)): j ∈ J, δj ∈ sj ∈ F ,Hj ∈ C

(
∼sj

)
, i(λ) ∈ I(λ),

ηi(λ) ∈ si(λ) ∈ F ,Hi(λ) ∈ C
(
∼si(λ)

)
, λ ∈ Λ

}

is a generator of the element sup{Ñ ∧ K̃λ: λ ∈ Λ} ∈ T. Therefore,

M̃ = sup
{
Ñ ∧ K̃λ: λ ∈ Λ

}
.

Thus, relation (10) takes the form
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Ñ ∧ K̃ = M̃.

Suppose that K̃ ′ = K̃, where

K ′ =
{
Aδj′ (Hj′): j′ ∈ J ′, δj′ ∈ sj′ ∈ F ,Hj′ ∈ C

(
∼sj′

)}

is the maximal generator of the element K̃ ∈ T (therefore, containing K).
The set

P =
{
Aδj (Hj)ΔAδj′ (Hj′): j ∈ J, δj ∈ sj ∈ F ,Hj ∈ C

(
∼sj

)
, j′ ∈ J ′,

δj′ ∈ sj′ ∈ F ,Hj′ ∈ C
(
∼sj′

)}

is a generator of the element Ñ ∧ K̃ ∈ T and, therefore,

P̃ = Ñ ∧ K̃ = Ñ ∧ K̃ ′.

Since K ⊆ K ′ we have M ⊆ P . Therefore,

M̃ � Ñ ∧ K̃ = Ñ ∧ K̃ ′.

Thus, to prove the lemma it suffices to prove that

Ñ ∧ K̃ ′ � M̃

or equivalently

supPL � supML

for every L ∈ L. For this purpose it suffices to prove that if L ∈ L and a ∈ PL, then a � supML. Let
a ∈ PL. Then, there exist

Aδj (Hj) ∈ N and Aδj′ (Hj′) ∈ K ′

such that a ∈ L ∩AθH(t)(H), where H is the element of C(∼s) containing L, s = sj ∪ sj′ , and t = {δj , δj′}.
Therefore,

a = aLθL(t) = aLδj ∧ aLδj′ .

If aLδj′ = aLηi(λ)
for some λ ∈ Λ and i(λ) ∈ I(λ), then a ∈ ML. Thus,

sup
{
aLδj ∧ aLδj′ : j ∈ J, j′ ∈ J ′} = sup

{
aLδj : j ∈ J

}
∧ sup

{
aLδj′ : j′ ∈ J ′}

= sup
{
aLδj : j ∈ J

}
∧ sup

{
aLηi(λ)

: λ ∈ Λ, i(λ) ∈ I(λ)
}

proving the lemma. �
Lemmas 1–3 prove the theorem. �

1.4. Some problems. Consider the class of all frames having a given property P. It is interesting for what
properties P this class contains universal elements. For example:
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1. Are there universal elements in the class CRegFrm?
2. Are there universal elements in the class RegFrm?
3. Are there universal elements in the class 0-DFrm?
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