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On Countable Dense and n-homogeneity
Jan van Mill

Abstract. We prove that a connected, countable dense homogeneous space is n-homogeneous for ev-
ery n, and strongly 2-homogeneous provided it is locally connected. We also present an example of
a connected and countable dense homogeneous space which is not strongly 2-homogeneous. This
answers in the negative Problem 136 of Watson in the Open Problems in Topology Book.

1 Introduction

Unless otherwise stated, all spaces under discussion are Tychonoff.
Recall that a separable space X is countable dense homogeneous (CDH) if, given

any two countable dense subsets D and E of X, there is a homeomorphism f : X → X
such that f (D) = E. The concept of CDH-ness obviously does not make sense for
spaces that are not separable, therefore separability is included in the definition.

Bennett [1] proved that a connected first countable CDH-space is homogeneous.
It was asked in Problem 136 of Watson [13] in the Open Problems in Topology Book
whether every connected CDH-space is strongly 2-homogeneous. Observe that the
real line R is an example of a space that is CDH but not strongly 3-homogeneous. We
show that every connected CDH-space is n-homogeneous for every n, and strongly 2-
homogeneous provided it is locally connected. Moreover, we construct an example of
a connected Lindelöf CDH-space that is not strongly 2-homogeneous. This answers
Watson’s problem in the negative.

2 Preliminaries

Notation We use ‘countable’ for ‘at most countable’. For a set X and n ∈ N, [X]<n

and [X]n denote {A ⊆ X : |A| < n} and {A ⊆ X : |A| = n}, respectively. In
addition, [X]<ω abbreviates the collection of all finite subsets of X.

Homogeneity notions If X is a space, then H(X) denotes the group of homeomor-
phisms of X. If G is a subgroup of H(X) and if Y is a subspace of X, then by GY

we denote the subgroup {g ∈ G : g(Y ) = Y} of G. Moreover, for every F ⊆ X we
let GF denote the subgroup

{
g ∈ G : (∀ x ∈ F)

(
g(x) = x

)}
. Hence GY

F denotes the
subgroup of G consisting of all the elements of G that keep Y invariant and restrict to
the identity on F. We do not requite that Y and F are related.
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If Y is a subspace of X, G is a subgroup of H(X)Y and y ∈ Y , then by τG(y) we
denote the G-orbit of y, i.e., τG(y) = {g(y) : g ∈ G}. Observe that τG(y) is a subset
of Y .

Now we define the central concepts in this paper.

Definition 2.1 Let X be a separable space. We say that
1. X ω-absorbing, abbreviated ωA, if it has the following absorption property: for

every countable dense subset D of X and every x ∈ X, there is a homeomorphism
f : X → X such that f (D ∪ {x}) ⊆ D;

2. X is weakly countable dense homogeneous, abbreviated wCDH, provided that for
all finite F ⊆ X and D, E ⊆ X \ F countable and dense in X, then there is a
homeomorphism f : X → X that restricts to the identity on F, while f (D) ⊆ E;

3. X is countable dense homogeneous, abbreviated CDH, provided that for all count-
able dense subsets D and E of X there is a homeomorphism f : X → X such that
f (D) = E;

4. X is n-homogeneous, where n ≥ 1, if for all n-point subsets F and G of X, there is
a homeomorphism f : X → X such that f (F) = G;

5. X is strongly n-homogeneous, where n ≥ 1, if, given any two n-tuples (x1, . . . , xn)
and (y1, . . . , yn) of distinct points of X, there exists a homeomorphism g of X
such that g(xi) = yi for every i ≤ n.

The concept of a wCDH-space may seem to be the less intuitive one. In [8, Propo-
sition 3.1] (see also Proposition 4.1 below) it was shown that every CDH-space is
wCDH. That is our basic tool in this paper. Hence it is clear that

CDH =⇒ wCDH =⇒ ωA.

It is not known whether these implications are strict.
In contrast to CDH, it is easy to check that the properties wCDH and ωA are open

hereditary for a restricted class of open subspaces and that is precisely why our proof
works.

Let the group G act on the space X. We say that G makes X CDH provided that for
all countable dense subsets D and E of X there is an element g ∈ G such that gD = E.
So, informally speaking, G witnesses the fact that X is CDH. In the considerations to
come, X is quite often a subspace of a space Y , and G is a subgroup of H(Y )X . We
use similar terminology for the concepts wCDH, ωA, n homogeneous, and strongly
n-homogeneous.

Connectivity Let X be a connected space. A segment of X is a component of X\{p}
for some p ∈ X.

3 Bennett’s Theorem

For later use, we will prove a slightly stronger result than just the homogeneity that
we are after in this section.
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Theorem 3.1 Suppose that X is a separable subspace of Y , and the subgroup G of
H(Y )X makes X ω-absorbing. Then for every x ∈ X, τG(x) is clopen in X.

Proof Let D ⊆ X be countable and dense. Fix an x ∈ X, and put E = τG(x) ∩ D.

Claim 1 E ⊆ τG(x).

Proof Pick an arbitrary p ∈ E, and put D0 = E ∪ (D \ E). Then D0 is clearly dense,
and τG(x) ∩ (D \ E) = ∅. There is by assumption an element f0 ∈ G such that
f0(D0 ∪ {p}) ⊆ D0. Since f0

(
τG(x)

)
= τG(x) we get f0(E) ⊆ E, hence f0(E) ⊆ E.

This means that f0(p) ∈ E ∩ D0 = E ⊆ τG(x), and so p ∈ τG(x).

Claim 2 E is not nowhere dense in X.

Proof Striving for a contradiction, assume that E is nowhere dense in X. Then D1 =
D \ E is dense. Observe that D1 ∩ τG(x) = ∅. There is by assumption an element
f1 ∈ G such that f1(D1 ∪ {x}) ⊆ D1. Hence f1(x) ∈ D1 ∩ τG(x) = ∅, which is a
contradiction.

Let U be the interior of E.

Claim 3 τG(x) is open.

Proof Let D2 = (D∩U )∪ (D \ E) and observe that it is dense. Moreover, (D \ E)∩
τG(x) = ∅. Fix p ∈ τG(x). There is an element f2 ∈ G such that f2(D2 ∪ {p}) ⊆ D2.
Hence f2(p) ∈ D2 ∩ τG(x) = D ∩U . We conclude that p ∈ f−1

2 (U ) ⊆ τG(x). Hence
τG(x) is a neighborhood of p.

Since the collection {τG(x) : x ∈ X} partitions X, it follows from the previous
claim that every τG(x) is clopen.

Corollary 3.2 Every connected ωA-space is homogeneous.

It consequently follows that every connected CDH-space is homogeneous, a result
which is due to Fitzpatrick and Lauer [4].

Corollary 3.3 Let X be a space without isolated points. Assume that the group G
makes X wCDH. Then for every finite subset F ⊆ X, every GF-invariant subset of X \ F
is open.

Proof Observe that GF makes X\F ω-absorbing. Hence we are done by Theorem 3.1.

This leads us to the following result, which generalizes van Mill [8, Theorem 1.2]
where the same result was proved for separable metrizable spaces.

Theorem 3.4 If the group G makes the infinite space X wCDH and no set of size n−1
separates X, then G makes X strongly n-homogeneous.

Proof All we need to show is that for every subset F of size n−1, the group GF acts
transitively on X \ F. By Corollary 3.3 every orbit GFx for x ∈ X \ F is open. Since
orbits are disjoint, they are clopen. So we are done by connectivity.
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4 Tools

Our basic tool in this paper is the following result [8, Proposition 3.1] of which we
include the simple proof for the sake of completeness.

Proposition 4.1 Let the group G make X CDH. If F ⊆ X is finite and D, E ⊆ X \ F
are countable and dense in X, then there is an element f ∈ GF such that f (D) ⊆ E.

Proof Let h0 be an arbitrary element in G. Suppose {hβ : β < α} ⊆ G have been
constructed for some α < ω1. Now by CDH, pick hα ∈ G such that

(†) hα(F ∪ E) =
⋃
β<α

hβ(D).

For 1 ≤ α < ω1, let Tα be a nonempty finite subset of [1, α) such that hα(F) ⊆⋃
β∈Tα

hβ(D). By the Pressing Down Lemma, for the function T : [1, ω1) → [ω1]<ω

defined by T(α) = Tα, the fiber B = T−1(A) is uncountable for some A ∈ [ω1]<ω .
Then hα(F) ⊆

⋃
β∈A hβ(D) for every α ∈ B. Since

⋃
β∈A hβ(D) is countable, and B

is uncountable, we may consequently assume without loss of generality that hα�F =
hβ�F for all α, β ∈ B. Hence if α, β ∈ B are such that β < α, then hα�F = hβ�F and
by (†), (h−1

α ◦ hβ)(D) ⊆ E.

In [11], Ungar proved that for a locally compact separable metrizable space in
which no finite set separates, countable dense homogeneity is equivalent to (strong)
n-homogeneity for every n. He claimed that for such spaces, every dense open set
is CDH. However, his argument is incomplete and whether it is true is still open.
For Polish spaces it is not true: there is by van Mill [7] an example of a connected
Polish CDH-space with a dense rigid connected open subset. Proposition 4.1 allows
us to prove in Proposition 4.2 below that certain open subspaces of wCDH-spaces are
wCDH. Although it seems to be a rather weak result, it is precisely what we will need
later on.

Proposition 4.2 Let the group G make X wCDH. If U is connected, and F = U \U
is finite, then GU

F makes U wCDH.

Proof Let A ⊆ U be finite, and pick two countable dense subsets D and E in U \ A.
By connectivity, we may assume that A 6= ∅. Since X is separable, we may select a
countable dense subset B of the open set X \U . There is an element f ∈ GA∪F such
that f (B ∪ D) ⊆ B ∪ E. We claim that f (U ) = U , and hence that f (D) ⊆ E. First
observe that f (U ) does not intersect F since f is a homeomorphism and restricts to
the identity on F. Hence if f (U ) would intersect X \U , then it would be contained
in U ∪ (X \U ) and since A 6= ∅ it would intersect both U and X \U ; but this would
contradict the connectivity of f (U ). Similarly for f−1. Hence indeed f (U ) = U ,
and we are done.

We will now continue by proving two results about segments in wCDH-spaces.

Proposition 4.3 Let X be nontrivial, connected and wCDH. Then every segment of
X is open.
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Proof Let C be an arbitrary component of X\{p} for certain p ∈ X. Then T = X\C
is connected, by Kok [6, Lemma 9, p. 10]. Hence if C is a singleton, then X \ {p}
is connected, by homogeneity (Corollary 3.2). So we may assume without loss of
generality that every component of X \ {p} is nontrivial.

Let C be an arbitrary component of X \ {p}. Moreover, let U be the possibly
empty interior of C , and take an arbitrary element x ∈ C . By the above we may pick
an element y ∈ C \ {x}. Let D be any countable dense subset of X. Then

D0 =
(

D ∩ (U \ {y})
)
∪
(

D \ ({p} ∪C)
)

is dense, as well as D1 = D0 ∪ {x}. By Proposition 4.1, there is a homeomorphism
f : X → X that restricts to the identity on {p, y}, while moreover f (D1) ⊆ D0.
Clearly, f (C) = C , hence f (x) ∈ U . But this implies that x ∈ f−1(U ) ⊆ C . Hence C
is open.

Proposition 4.4 Let X be nontrivial, connected and wCDH. If p ∈ X, then X \ {p}
has at most two components.

Proof Striving for a contradiction, assume that we can split X \ {p} into three pair-
wise disjoint nonempty open sets, say U , V and W . Pick arbitrary elements u ∈ U ,
v ∈ V and w ∈ W . Let D ⊆ X \ {p, u, v,w} be countable and dense. There is a
homeomorphism f : X → X such that f restricts to the identity on {u, v,w} and
f (D ∪ {p}) ⊆ D. We may assume without loss of generality that f (p) ∈ V and
f−1(p) ∈ V ∪W . Let Cu be the component of X \ {p} containing u. Then Cu is an
open subset of U by Proposition 4.3 and hence p ∈ Cu by connectivity of X. Hence
f (p) ∈ f (Cu) and so V ∩ f (Cu) 6= ∅. Since p 6∈ f (Cu) and u ∈ f (Cu) we conclude
that f (Cu) is a connected set that intersects both U and V but does not contain p.
But this is impossible.

This leads to the following.

Proposition 4.5 Let X be nontrivial, connected and wCDH. Then for every finite
subset F ⊆ X, every component of X \ F is open.

Proof If |F| = 1, then there is nothing to prove by Proposition 4.3. So assume the
result is true for all finite subsets of size n ≥ 1 of all nontrivial connected wCDH-
spaces, and assume that F has size n+1. Pick an arbitrary p ∈ F. Let U be an arbitrary
component of X \ {p}. Then U is open by Proposition 4.3 and wCDH by Proposi-
tion 4.2. Hence every component of U \ F is open by our inductive hypothesis. And
all these components are components of X \ F. Let C be a component of X \ F that
intersects U . Then C ⊆ U since p 6∈ C . Hence C is a component of U \ F. Since U
was arbitrary, we consequently conclude that all components of X \ F are open.

5 Proof of the Main Result

The aim of this section is to prove the following result.

Theorem 5.1 Let X be a nontrivial connected space. If the group G makes X wCDH,
then G makes X n-homogeneous for every n.



On Countable Dense and n-homogeneity 865

For the remaining part of this section, let X be a nontrivial connected space and
let the group G make X wCDH. That G makes X 1-homogeneous was proved in
Theorem 3.4. So assume that for n ≥ 1, every group H that makes the nontrivial
connected space Y wCDH, makes Y n-homogeneous. Our task is to show that G
makes X (n+1)-homogeneous.

By Proposition 4.4 and Corollary 3.2 there are two cases to consider. The first case
is that X\{p} is connected for some (equivalently: for all) p ∈ X. A moment’s reflec-
tion shows that all we need to prove is that for a given p ∈ X, the group G{p} makes
X \ {p} n-homogeneous. But this is clear from Proposition 4.2 and our inductive
hypothesis. So we may assume that X \ {p} has exactly two components for some
(equivalently: every) p ∈ X. Hence if X were locally connected, then by Ward [12]
we would get that X is homeomorphic to the real line R and one could then try to
use its properties to complete the proof. However, it is unknown whether a Polish
connected CDH-space is locally connected (Fitzpatrick and Zhou [5, Problem 386]),
hence this approach does not seem to work.

Lemma 5.2 Let U ⊆ X be nonempty, open and connected, and assume that F = U\U
is finite. Then the group GU

F makes U wCDH, and if p ∈ U , then U \ {p} has precisely
two components. Moreover, every segment in U is open in X.

Proof Assume that V = U \ {p} is connected. Since U = V ∪ {p} = V ∪ {p}, it
follows that F ⊆ V . Now let W be any component of X \ F that misses U . Then W is
open by Proposition 4.5, hence W ∩ F 6= ∅ by connectivity. This clearly implies that
X \ {p} is connected, which is a contradiction. Hence U \ {p} is disconnected, and
so we are done by Propositions 4.3 and 4.2.

It will be convenient to introduce the following notation. If p ∈ X, then C0
p and C1

p

denote the components of X \ {p}. Observe that they are open subsets of X.
The following result is the first step in the proof of Ward’s Theorem A in [12]. Its

proof is repeated here for the sake of completeness. If i ∈ {0, 1}, then ı̄ denotes 1+i
(mod 2).

Lemma 5.3 If x and y are any two distinct points in X, and assume that x ∈ C j
y and

y ∈ C i
x for certain i, j ∈ {0, 1}. Then C ı̄

x ∩C j̄
y = ∅.

Proof It is clear that the connectivity of X gives us that C i
x = C i

x∪{x} for i ∈ {0, 1}.
Suppose that C ı̄

x ∩C j̄
y 6= ∅. Then

X \ {y} = C0
y ∪C1

y = C0
y ∪C1

y ∪C ı̄
x

is connected, which is a contradiction.

This leads us to the following.

Proposition 5.4 If x, y and z are any three distinct points of X, there is one of them
which separates the other two.
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Proof By Lemma 5.3 we may assume without loss of generality that x ∈ C0
y , y ∈ C1

x

and C0
x ∩ C y

1 = ∅. Consider the set C1
x which contains C1

y . We claim that C1
y is a

component of X \ {x, y}. For assume that C is a connected set in X \ {x, y} that
contains C1

y . If it intersects X \ C0
y then X \ {y} = C0

y ∪ C is connected which
contradicts our assumptions. Hence C1

y is a component of X \ {x, y} and hence also

of C1
x \ {y}. There is another component of C1

x \ {y} which consequently has to be
equal to E = C0

y \(C0
x∪{x}) = C1

x \(C1
y∪{y}) (Lemma 5.2). It follows similarly that

C0
x is a component of X \ {x, y} as well as C0

y . So we conclude that the components

of X \ {x, y} are C0
x , E and C1

y . Hence there are three cases to consider.

Case 1 z ∈ C0
x . Then x separates z and y.

Case 2 z ∈ C1
y . Then y separates x and z.

Case 3 z ∈ E. Let A and B be the components of E \ {z} (Lemma 5.2). Suppose
first that A ∩ {x, y} = ∅. We claim that {x, y} ⊆ B. For assume that, e.g., x /∈ B.
Then the partition

C0
x ∪ {x}, E ∪ {y} ∪C1

y

contradicts the connectivity of X. Pick arbitrary points u ∈ C0
x , v ∈ C1

y and w ∈ A,
and let D ⊆ X \ {u, v,w, x, y, z} be a countable dense set. There is by assumption a
homeomorphism f : X → X such that f restricts to the identity on {u, v,w, y, z} and
f (D ∪ {x}) ⊆ D. It is clear that f (A) = A and f (C1

y) = C1
y . Hence f (x) ∈ C0

x ∪ E.

Assume first that p = f (x) ∈ E. Observe that f (C0
x ∪ {x}) is a connected set that is

contained in C0
x ∪ {x} ∪ E and meets both C0

x and E. As a consequence, it contains x.
Hence we conclude that f (E) is a connected subset of C0

x ∪ {x} ∪ E that contains z,
and does not contain x. Hence we conclude that f (E) ⊆ E. Hence the components
of E \ {p} are K = f (C0

x) ∩ E and L = f (E).

Observe that the boundary of K consists of two elements, namely, x and p. More-
over, the boundary of f (E) is the set {p, y}. By Lemma 5.2 and Theorem 3.4, there
is a homeomorphism g : E ∪ {x, y} → E ∪ {x, y} which restricts to the identity on
{x, y} and has the property that g(z) = p. But the only boundary point of A is z,
hence the only boundary point of g(A) is p, which clearly is a contradiction since we
know what the components are of E \ {p}. If p ∈ C0

x , then q = f−1(x) ∈ E and we
can reach a contradiction by a similar reasoning.

Hence we conclude that A ∩ {x, y} 6= ∅, and similarly for B. Suppose that, e.g.,
{x, y} ⊆ A. Since B ∩ {x, y} 6= ∅, this means that X \ {z} is connected, which is a
contradiction. Hence we may assume without loss of generality that A∩{x, y} = {x},
and B∩ {x, y} = {y}. But then both C0

x ∪ {x} ∪ A and B∪ {y} ∪C1
y are connected,

i.e., z separates x and y.

It follows now by Ward [12] that X admits a weaker orderable topology, and so
by separability, X with this topology can be identified with a subinterval J of R (see
also Kok [6, Theorem 3, p. 16]). Moreover, X and J have the same connected sets
by Kok [6, Theorem 3, p. 5]. Hence, for example by homogeneity, J does not have
endpoints, and so we may assume without loss of generality that J = R.
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Now let A and B be subsets of X of size n+1. Let a0 and b0 be the minima of A
and B. Take a point s < min{a0, b0}. There is by Lemma 5.2 (take U = (s,∞)) a
homeomorphism f : X → X such that f (s) = s and f (a0) = b0. Then f is clearly
order preserving. Hence

f (A \ {a0}) ∪ (B \ {b0})

is contained in the interval [b0,→). By our inductive assumption and Lemma 5.2,
there is a homeomorphism g : X → X such that g(b0) = b0 and g

(
f (A \ {a0})

)
=

B \ {b0}. Hence if h = g ◦ f , then h is a homeomorphism of X such that h(A) = B.

Corollary 5.5 Every nontrivial connected and locally connected wCDH-space is
strongly 2-homogeneous.

Proof Let X be as in the corollary. If X \ {p} is connected for some p ∈ X, then
we are done by Theorem 3.4. If not, then by Ward [12] we arrive at the conclusion
that X is homeomorphic to R, and hence there is nothing to prove.

6 The Example

In this section we will present an example of a connected CDH-space that is not
strongly 2-homogeneous. Our space is of course Tychonoff, but not metrizable. It
may be possible to construct a separable metrizable space with similar properties
using the methods of Saltsman [9], [10]. However, his methods need the Continuum
Hypothesis, while our result requires no additional set theoretic assumptions.

As usual, λ denotes Lebesgue measure on R. For every x ∈ R we will define a
certain collection of subsets Fx of (←, x), as follows: F ∈ Fx iff F is closed in (←, x),
and

∞∑
n=0

2nλ([x−2−n, x−2−n−1] ∩ F) <∞.

Observe that Fx is closed under finite unions and contains all closed subsets of (←, x)
of measure 0. Topologize R as follows: a basic neighborhood of x ∈ R has the form
U \ F, where U is an open subset of R containing x, and F ∈ Fx. Let B(x) denote
all sets of this form. We will prove that B(x) is a neighborhood system for x, and the
space with the topology τ generated by these neighborhood systems will be denoted
by X. Clearly, τ is stronger than the euclidean topology on R.

To this end, observe that B(x) is closed under finite intersections since Fx is closed
under finite unions. Moreover, let U \ F ∈ B(x), where U ⊆ R is open and F ∈ Fx.
Assume that y ∈ U \ F. We will prove that there is an element B ∈ By such that
B ⊆ U \ F. If y = x, then there is nothing to prove. Moreover, if y 6= x, then y is in
the euclidean interior of U \ F, which is open in X. Hence again there is nothing to
prove.

Lemma 6.1 X is regular and Lindelöf.

Proof Let x ∈ X, U ⊆ R open such that x ∈ U , and F ∈ Fx. There is an open
neighborhood A of F in (←, x) such that the closure G of A in (←, x) belongs to Fx.
Let V be an open neighborhood of x in R such that V ⊆ U , and consider W = V \G.
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We claim that the closure of W in X is contained in U \ F. To check this, let p be an
arbitrary element of that closure. Clearly, p ∈ V ⊆ U . Assume that p ∈ F. Then A is
a neighborhood of p in R and hence in X which misses W which is a contradiction.
Hence p ∈ U \ F. Hence X is regular.

To see that X is Lindelöf, it suffices to observe that the topology on X is weaker
than the Sorgenfrey topology on R, which is Lindelöf [3, 3.8.14].

We conclude from this that X is normal, and hence Tychonoff [3, 3.8.2].

Lemma 6.2 X is CDH.

Proof Let D and E be any two countable dense subsets of X. Then D and E are
countable dense subsets of R, and hence by Zamora Avilés [14] (see also [2]), there
is a homeomorphism f : R→ R having the following properties:
(1) f (D) = E,

(2) for all distinct x, y ∈ R, 1/2 ≤ | f (x)− f (y)|
|x − y|

≤ 2.

This implies that for every measurable subset S of R we have that

1/2λ(S) ≤ λ
(

f (S)
)
≤ 2λ(S).

Hence f : X → X is a homeomorphism as well since it maps for every x ∈ X every
element of Fx onto an element of F f (x), etc.

Lemma 6.3 X is connected but not strongly 2-homogeneous.

Proof The proof that X is connected follows the same pattern as the standard proof
that R is connected. Assume that X can be written as U ∪ V , where U and V are
nonempty disjoint open sets. Pick arbitrary a ∈ U and b ∈ V . We may assume
without loss of generality that a < b; let c = inf(V ∩ [a, b]). Assume that c ∈ V .
Then a < c and since V is open and any open neighborhood of c contains points that
are strictly smaller than c and belong to [a, b], this contradicts c = inf(V ∩ [a, b]).
So c ∈ U , and hence c < b. Since U is open, there are x, y ∈ R and F ∈ Fc such that
x < c < y < b and (x, y) \ F ⊆ U . Hence (c, y)∩V = ∅, and this again contradicts
c = inf(V ∩ [a, b]).

Since the identity X → R is a bijection, this implies that X and R have the same
connected sets by Kok [6, Theorem 3, p. 5].

It will be convenient for every x ∈ R to denote (←, x) and (x,→) by Lx and Rx,
respectively.

Take p, q ∈ R such that p < q. We claim that there does not exist a homeomor-
phism f : X → X such that f (p) = q and f (q) = p. Striving for a contradiction,
assume that such a homeomorphism f exists. Since X and R have the same con-
nected sets, a moments reflection shows that f (Rq ∪ {q}) = Lp ∪ {p}. There is a
sequence (qn)n in Rq such that qn → q. Hence

(
f (qn)

)
n

is a sequence in Lp such that
f (qn) → p. But this is clearly impossible since no sequence in Lp converges to p,
being of measure 0.

Question 6.4 Is there a separable and metrizable connected space X which is CDH
but not strongly 2-homogeneous?
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