On topological groups with a first-countable remainder, III

A.V. Arhangel’skiia, J. van Millb,c,*

a Moscow, 121165, Russia
b Faculty of Sciences, Department of Mathematics, VU University Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
c Faculty of Electrical Engineering, Mathematics and Computer Science, TU Delft, Postbus 5031, 2600 GA Delft, The Netherlands

Received 20 September 2012; received in revised form 8 July 2013; accepted 10 July 2013

Communicated by H.W. Broer

Abstract

We prove a general theorem that allows us to conclude that under CH, the free topological group over a nontrivial convergent sequence S has a first-countable remainder. It is also shown that any separable non-metrizable topological group with a first-countable remainder is Rajkov complete.

\textcopyright{} 2013 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Character; Remainder; Compactification; Topological group; First-countable; Metrizable; Rajkov complete; Continuum hypothesis

1. Introduction

In a series of papers, Arhangel’skii studied topological spaces having a compactification with a first-countable remainder. Specific attention was paid to topological groups that belong to this class. For details, and references, see e.g., [1–4].

Recently, the authors continued this study in [7,8] and obtained among other things the following results: a topological group with a first-countable remainder has character at most ω_1.

* Corresponding author at: Faculty of Sciences, Department of Mathematics, VU University Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands. Tel.: +31 35 6938094.
E-mail addresses: arhangel.alex@gmail.com (A.V. Arhangel’skii), j.van.mill@vu.nl (J. van Mill).

0019-3577/S - see front matter \textcopyright{} 2013 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.indag.2013.07.002
has weight at most $2^ω$, and is metrizable in case it is pre-compact. It was shown that moreover there exists a non-metrizable topological group with a first-countable remainder in ZFC, and a countable such space under CH (it was known by Arhangel’skii [2] that such a space cannot be countable under MA + ¬CH).

In this paper we continue these investigations. We prove a general theorem about spaces having a compactification with first-countable remainder that allows us to conclude that under CH, the free topological group over a nontrivial convergent sequence has a first-countable remainder. We also solve a problem in Juhász, van Mill and Weiss [14] in the negative. Spaces that have a strongly $ω$-bounded remainder play an important role in our investigations. We prove that a separable topological group with an $ω$-bounded remainder is Rajkov complete; this implies that any separable non-metrizable topological group with a first-countable remainder is Rajkov complete.

2. Preliminaries

Let P be any topological property. It is natural to call a space P-bounded if every subset with property P has compact closure. In particular, if $P \equiv \text{‘countable’}$ then we obtain the well-known class of $ω$-bounded spaces, and if $P \equiv \text{‘σ-compact’}$ then we obtain the class that is called strongly $ω$-bounded in Nyikos [16]. For other concepts that are in the same spirit, see e.g. Juhász, van Mill and Weiss [14].

A space X has countable type if every compact subspace of X is contained in a compact subspace of X which has countable character in X. By a well-known result in Henriksen and Isbell [13], a space X is of countable type if and only if the remainder in any (or in some) compactification of X is Lindelöf.

If X is a space, then $βX$ denotes its Čech–Stone compactification, and $X^* = βX \setminus X$. It follows by standard methods that a topological space X has an $ω$-bounded remainder if and only if every remainder of it is $ω$-bounded. Similarly for strongly $ω$-bounded. These well-known facts are left as exercises to the reader. A point $p \in X^*$ is said to be a remote point of X if $p \notin \overline{D}$, where D is any nowhere dense subset of X (here closure means closure in $βX$).

For all undefined notions, see Engelking [11]. For information on topological groups, see Arhangel’skii and Tkachenko [6].

3. The theorem

It is a well-known result by Franklin and Rajagopalan [12] that the space $X = ω \cup \{p\}$, where $p \in ω^*$ is a P-point, has a compactification bX such that $bX \setminus X$ is $W(ω_1)$, the space of all countable ordinal numbers. Hence $bX \setminus X$ is first countable. We will generalize this result to Theorem 3.1 below, which is our main tool for constructing spaces with a first-countable remainder.

Theorem 3.1 (CH). Let X be a strongly $ω$-bounded space of countable type with a compactification bX such that $w(bX) \leq 2^ω$. Then there are a compact space Z and a continuous surjection $f : bX \to Z$ having the following properties:

1. The restriction of f to $Y = bX \setminus X$ is a homeomorphism from Y onto $f(Y)$.
2. $f(Y) \cap f(X) = \emptyset$.
3. Z is first-countable at all points of $f(X)$.

Proof. We may assume that $bX \subseteq [\frac{1}{2}, 1]^{ω_1}$. For every $α < ω_1$, let $π_α : [\frac{1}{2}, 1]^{ω_1} \to I$ be the projection onto the $α$-th coordinate, and let $p_α : X \to I$ be the restriction of $π_α$ to X.
Let \mathcal{E} be the family of all compact subspaces F of X such that $\chi(F, X) \leq \omega$. Observe that if $F \in \mathcal{E}$ then $\chi(F, bX) \leq \omega$ since X is dense in bX. The next three statements are obvious from our assumptions.

(C1) $|\mathcal{E}| \leq \omega_1$.
(C2) $\bigcup \mathcal{E} = X$.
(C3) There exists an increasing ω_1-sequence \{\(F_\alpha : \alpha < \omega_1\) of members of \mathcal{E} such that
\[
\bigcup_{\alpha < \omega_1} F_\alpha = X.
\]

For each $\alpha < \omega_1$ we fix a decreasing sequence \{\(W_{\alpha, n} : n < \omega\) of open neighborhoods of F_α in bX which is a base at F_α in bX. Fix a continuous function $g_{\alpha, n} : bX \to \mathbb{I}$ satisfying the following conditions for $\alpha < \omega_1$ and $n < \omega$:

(s1) $g_{\alpha, n}(F_\alpha) = \{0\}$.
(s2) $g_{\alpha, n}(bX \setminus W_{\alpha, n}) = \{1\}$.

For every $\alpha < \omega_1$, put
\[
\mathcal{H}_\alpha = \{p_\alpha \cdot g_{\alpha, n} : n < \omega\}
\]

and let
\[
\mathcal{H} = \bigcup_{\alpha < \omega_1} \mathcal{H}_\alpha.
\]

Let $f : bX \to \mathbb{I}^\mathcal{H}$ denote the diagonal map of the family \mathcal{H}. That is, $f(p)_h = h(p)$ for every $p \in bX$ and $h \in \mathcal{H}$. We claim that $Z = f(bX)$ and f are as required.

Claim 1. For every $\alpha < \omega_1$, $f(F_\alpha)$ is metrizable and \(f^{-1}(f(F_\alpha)) = F_\alpha\).

Pick $g \in \mathcal{H}_\beta$ for some $\beta > \alpha$. Then for some n, $g = p_\beta \cdot g_{\beta, n}$. But then $g(F_\alpha) = \{0\}$ since $g_{\beta, n}$ is identically 0 on F_α. So we conclude that
\[
f(F_\alpha) \subseteq \left\{ q \in \mathbb{I}^\mathcal{H} : q_h = 0 \text{ for all } h \in \bigcup_{\beta > \alpha} \mathcal{H}_\beta \right\}.
\]

Hence $f(F_\alpha)$ is metrizable since $\bigcup_{\beta \leq \alpha} \mathcal{H}_\beta$ is countable.

We will now show that $f^{-1}(f(F_\alpha)) = F_\alpha$. To prove this, pick an arbitrary $p \in bX \setminus F_\alpha$, and let $n < \omega$ be so large that $p \not\in W_{\alpha, n}$. Put $h = p_\alpha \cdot g_{\alpha, n}$. Then
\[
f(p)_h = h(p) = p_\alpha \cdot g_{\alpha, n}(p) = p_\alpha(p) \geq \frac{1}{2},
\]

and
\[
f(x)_h = h(x) = p_\alpha \cdot g_{\alpha, n}(x) = 0
\]

for every $x \in F_\alpha$. This completes the proof of the claim.

Hence for every $\alpha < \omega_1$ we have that $f(F_\alpha)$ is a metrizable closed G_δ-subset of the compact space Z. Hence Z is first-countable at all points of $f(X)$.

It also follows from the claim that $f(Y) \cap f(X) = \emptyset$.

We now claim that $f \upharpoonright Y$ is one-to-one. Indeed, if $y(0)$ and $y(1)$ are distinct elements of Y, then we may pick $\alpha < \omega_1$ such that $y(0)_\alpha \neq y(1)_\alpha$. Fix n so that $y(0), y(1) \not\in W_{\alpha, n}$. Then
\[
p_\alpha \cdot g_{\alpha, n}(y(0)) = p_\alpha(y(0)) = y(0)_\alpha
\]

and, similarly, $p_\alpha \cdot g_{\alpha, n}(y(1)) = y(1)_\alpha$, so we are done.
From this we get that for every \(y \in Y \) we have \(f^{-1}(f(y)) = \{y\} \). Hence \(f \) restricts to a homeomorphism on \(Y \). \(\square \)

Observe that in order to be in a position to apply Theorem 3.1, we need a nowhere locally compact space \(X \) which has a compactification \(bX \) such that \(w(bX) \leq 2^\omega \) while moreover \(bX \setminus X \) is strongly \(\omega \)-bounded and of countable type. Then Theorem 3.1 tells us that \(bX \setminus X \) can be replaced by a first-countable remainder.

Corollary 3.2 (CH). If \(Y \) is a nowhere locally compact Lindelöf space with a strongly \(\omega \)-bounded remainder and \(w(Y) \leq 2^\omega \), then \(Y \) has a compactification with a first-countable remainder. Even more is true: for every compactification of \(Y \), there exists a smaller compactification with a first-countable remainder.

Proof. Simply use the fact that \(\beta Y \setminus Y \) has countable type by the Henriksen and Isbell Theorem from [13]. \(\square \)

Corollary 3.3 (CH). Every strongly \(\omega \)-bounded space \(X \) of countable type such that \(w(X) \leq 2^\omega \) can be mapped onto a first-countable space \(R \) by a perfect mapping (then automatically \(R \) is strongly \(\omega \)-bounded and \(w(R) \leq 2^\omega \)).

We will now discuss the assumptions in Theorem 3.1. We will first show that CH is essential.

Let \(\text{Seq} \) denote the set of all finite sequences of elements from \(\omega \). Moreover, let \(p \) be a free ultrafilter on \(\omega \). Define a topology \(\mathcal{T} \) on \(\text{Seq} \) by the rule: \(V \subseteq \text{Seq} \) is open iff for every \(s \in V \), the set \(\{ n < \omega : s \upharpoonright n \in V \} \in p \). Here \(s \upharpoonright n \) denotes the concatenation of \(s \) by \(n \). It is easy to verify that \(\text{Seq} \) with this topology is Tychonoff, zero-dimensional, perfect and extremally disconnected. For details and variations, see Arhangel’skii and Franklin [5] and Dow, Gubbi and Szymański [10].

Let \([\omega]^{<\omega} \) be the set of all finite subsets of \(\omega \). Clearly, the symmetric difference operator \(\triangle \) makes \([\omega]^{<\omega} \) a Boolean group. For a free ultrafilter \(p \) on \(\omega \), define a topology \(\mathcal{T}_p \) on \([\omega]^{<\omega} \) as follows:

\[
U \in \mathcal{T}_p \iff (\forall F \in U)(\{ n < \omega : F \triangle n \in U \} \in p).
\]

It is not difficult to see that \(\mathcal{T}_p \) is extremally disconnected.

This topology is due to Louveau [15] who proved that if \(p \) is selective, then \(\mathcal{T}_p \) is compatible with the group structure on \([\omega]^{<\omega} \). The topological group thus obtained is denoted by \(L(p) \) and hence is an example of a non-discrete extremally disconnected topological group.

It was shown by Vaughan [23] that \(L(p) \) and \(\text{Seq} \) (for the same ultrafilter \(p \)) are homeomorphic.

Theorem 3.4. If \(p \) is a selective ultrafilter on \(\omega \) of character greater than \(\omega_1 \), then \(\text{Seq} \) is a countable non-discrete topological group whose Čech–Stone remainder is strongly \(\omega \)-bounded but none of its remainders is first-countable.

Proof. That \(\text{Seq}^* \) is strongly \(\omega \)-bounded was proved in [10, Remark 1]. It is easy to see that the character of \(\text{Seq} \) is greater than \(\omega_1 \). Just observe that the space \(\omega \cup \{p\} \) is a subspace of \(\text{Seq} \). Hence \(\text{Seq} \) does not have a first-countable remainder since any topological group with a first-countable remainder has character \(\omega_1 \) by Arhangel’skii and van Mill [7, Theorem 2.1]. \(\square \)

Hence in Theorem 3.1 CH is indeed essential since for example under \(\text{MA} + \neg \text{CH} \) there exist selective ultrafilters on \(\omega \) and they have character \(2^\omega > \omega_1 \) [18].
The question of whether the assumption on strong ω-boundedness is essential in Theorem 3.1 is very natural. We will answer it in the negative by using a powerful recent result of Dow [9]. For basic facts on Čech–Stone compactifications, see van Mill [22].

Theorem 3.5 (\oslash). There are a σ-compact nowhere locally compact space X and a compactification bX of X such that $bX \setminus X$ is ω-bounded (and clearly of countable type) while moreover every compactification cX of X such that $cX \leq bX$ has the property that $cX \setminus X$ is not first-countable.

Proof. Put $K = \omega \times \omega^*$, and for every n, let $K_n = \{n\} \times \omega^*$. Dow [9] recently proved that under \oslash, K has a remote point p which is simultaneously a P-point of K^*. Put $S = \beta K \setminus \{p\}$. Since countable subsets of K are nowhere dense, it clearly follows that S is ω-bounded. It is not strongly ω-bounded though since it is not compact and contains a dense σ-compact subspace. We now put $X = (\beta K)^\omega \setminus S^\omega$ and $bX = (\beta K)^\omega$. We claim that X and bX are as required. Clearly, $bX \setminus X = S^\omega$ is ω-bounded. We let Δ denote the diagonal in the product $(\beta K)^\omega$ and, by abuse of notation, identify it with βK. Hence we consider p to also be a point of X. Assume that cX is a compactification of X such that $cX \leq bX$ and assume, striving for a contradiction, that $cX \setminus X$ is first-countable. Let $f : bX \to cX$ be a continuous surjection that restricts to the identity on X.

Fix n for a while, and let $g_n = f \upharpoonright K_n : K_n \to cX \setminus X$. Since $f(K_n)$ is first-countable, the fibers of the map g_n are all closed G_δ-subsets of K_n. But every closed G_δ-subset of ω^* has a dense interior. For every $s \in f(K_n)$, let U^n_s denote the dense interior of $g^{-1}_n(s)$. Let F_n be the complement in K_n of the union of the disjoint family $\{U^n_s : s \in f(K_n)\}$. Then F_n is a closed nowhere dense subset of K_n.

Since p is a remote point of K, p is not in the closure of the nowhere dense set $F = \bigcup_{n<\omega} F_n$. Hence there is a clopen set C in K which contains p in its closure and is contained in the complement of F. The compact set $C_n = C \cap K_n$ is covered by $\{U^n_s : s \in f(K_n)\}$. Hence there is a finite subset G_n of $f(K_n)$ such that $C_n \subseteq \bigcup_{s \in G_n} U^n_s$. Since p is in the closure (in cX) of $f(C)$, we conclude that p is in the closure of the countable subset $\bigcup_{n<\omega} G_n$ of $cX \setminus X$. Since X is nowhere locally compact, the remainder $cX \setminus X$ is dense in cX. Since it is first-countable, this implies that p has countable π-character in X. Since the restriction to X of the projection $(\beta K)^\omega \to \beta K$ onto the first factor space is open, this shows that p has countable π-character in βK, which is absurd. \qed

Problem 3.6. Is there in ZFC a nowhere locally compact Lindelöf space X having no first-countable remainder while X^* is ω-bounded? What if X in addition is a topological group?

4. **Applications to topological groups**

For topological groups with special properties, the property of having a first-countable remainder can be characterized as follows under CH:

Theorem 4.1 (CH). Suppose that G is a Lindelöf non-locally compact topological group with a strongly ω-bounded remainder. Then the following conditions are equivalent:

(i) G has a first-countable remainder.

(ii) The weight of G equals ω_1.

Proof. The implication (ii) \Rightarrow (i) is a consequence of Corollary 3.2. For (i) \Rightarrow (ii), we first use Arhangel’skii and van Mill [7] to conclude that the character of G is ω_1. But a Lindelöf
The first topological group with a first-countable remainder which is countable and not metrizable, was constructed by the authors under CH in [8]. This example is not a familiar topological group. The results in this paper allow us to conclude that many familiar topological groups have the same property.

Corollary 4.2 (CH). If G is the free (Abelian) topological group over any infinite separable compactum, then G has a first-countable remainder (clearly, G is not metrizable).

Proof. It is known that G is a k_{ω}-space, see e.g. Ordman [17] and Arhangel’skii and Tkachenko [6, Theorem 7.4.1]. Moreover, by an unpublished result of van Douwen (see [14, Proposition 5.3]), the Čech–Stone remainder of any k_{ω}-space is strongly ω-bounded. (This was independently and unaware of van Douwen’s result also established in Arhangel’skii [2].) Hence G^* is strongly ω-bounded and of countable type since G is Lindelöf being σ-compact. Since G has weight 2^{ω}, being separable, we are done by Theorem 4.1.

We finish this section by answering the first part of Questions 6.4 and 6.5 in Juhász, van Mill and Weiss [14] in the negative.

Corollary 4.3 (CH). There is a first-countable strongly ω-bounded space which has a dense hereditarily Lindelöf subspace and is neither ccc-bounded nor compact.

Proof. Let Y be the remainder of the compactification bG that was constructed in Corollary 4.2. It is clear that Y is not compact, G being nowhere locally compact. But Y is strongly ω-bounded and hence a Baire space. Since Y has weight 2^{ω}, as bG is separable, it follows that Y has a dense Luzin (hence hereditarily Lindelöf) subspace by van Douwen, Tall and Weiss [21]. Since both G and Y are dense in bG, we conclude that Y is ccc.

5. Rajkov completeness

A topological group G is called **Rajkov complete** if all of its Cauchy filters (with respect to the two-sided uniformity) converge. It is known that a closed subgroup of a Rajkov complete topological group is Rajkov complete, that every Čech-complete topological group is Rajkov complete and that a metrizable group is Rajkov complete if and only if it is Čech-complete. It is also known that for every topological group G there exists a unique (up to topological isomorphism) Rajkov complete topological group ρG containing (a topologically isomorphic copy of) G as a dense subgroup. For this and more information about Rajkov completeness, see Arhangel’skii and Tkachenko [6, Sections 3.6 and 4.3].

Observe that every Rajkov complete subgroup G of a topological group H is closed in H. Let us call a topological group G (a space X) **TOG-closed**, if for every topological group H and every subgroup A of H which is homeomorphic to G (homeomorphic to X) we have that A is closed in H. This property can easily be characterized, as follows:

Proposition 5.1. A topological group G is TOG-closed if and only if every topological group H which is homeomorphic to G is Rajkov complete.

Proof. Simply observe that if G is homeomorphic to H and H is not Rajkov complete, then it is not closed in ρH. □
Hence there are many such groups. For example, every Čech complete topological group is TOG-closed.

It is not true that a topological group is Rajkov complete if and only if it is TOG-closed: there are many examples of homeomorphic topological groups G and H such that G is Rajkov complete, but H is not. We will prove in Proposition 5.2 below that every topological group G has the property that its free topological group $F(G)$ is homeomorphic to the product of G and a nontrivial group N (similarly for $A(G)$). Hence the topological group $A(\mathbb{Q})$ is homeomorphic to $\mathbb{Q} \times N$, for some topological group N. Here \mathbb{Q} denotes the space of rational numbers. But $A(\mathbb{Q})$ is Rajkov complete (Arhangel'skii and Tkachenko [6, 7.9.7]), and the topological group $\mathbb{Q} \times N$ is not since \mathbb{Q} is not Čech complete.

Proposition 5.2. Let G be a topological group. Then its free topological group $F(G)$ is homeomorphic to $G \times N$, where N is a nontrivial topological group (similarly for $A(G)$).

Proof. There is clearly a retraction $r: F(G) \to G$ which is also a homomorphism. Let N denote its kernel. The function $f: F(G) \to G \times N$ defined by $f(p) = (r(p), p \cdot r(p)^{-1})$ is a homeomorphism. □

This suggests the following interesting problem.

Problem 5.3. Characterize the topological spaces X for which $A(X)$ and $X \times A(X)$ are homeomorphic. Similarly for $F(X)$.

It is not true that for all spaces X the product $X \times F(X)$ is homogeneous. For example, let $X = \beta\omega$. Indeed, the projection mapping from $X \times F(X)$ to X is open and continuous. Since the cardinality of X is greater than 2^ω, it follows from Theorem 4.1(a) of van Douwen’s paper [20] that no power of the space $X \times F(X)$ is homogeneous. Similarly for $X \times A(X)$. Of particular interest in Problem 5.3 is the case when X is (compact) metrizable.

A topological group G will be called Rajkov countably complete, if every countable subset of G is contained in a Rajkov complete subgroup of G.

Theorem 5.4. Suppose that G is a topological group with an ω-bounded remainder. Then G is Rajkov countably complete.

Proof. Fix a countable subset A of G and consider the Rajkov completion ρG of G. Let $\langle A \rangle$ be the countable subgroup of G algebraically generated by A in G. Fix any compactification B of the space ρG. Then B is also a compactification of G, since G is a dense subspace of ρG. So we put $bG = B$ and $Y = bG \setminus G$. Let H denote the closure of $\langle A \rangle$ in ρG. Suppose that there exists an element $p \in H \setminus G$. Then $p\langle A \rangle$ is a countable dense subset of H which is entirely contained in Y. But this disproves the fact that Y is ω-bounded. As a consequence, the Rajkov complete subgroup H of ρG is contained in G and hence we are done. □

Since a separable topological group is Rajkov countably complete if and only if it is Rajkov complete, the following corollary is obvious.

Corollary 5.5. Suppose that G is a separable topological group with an ω-bounded remainder. Then G is TOG-closed. If moreover G is countable, then every closed subgroup (subspace) of G is TOG-closed.
Thus, we have a dichotomy:

Theorem 5.6. If G is a separable topological group with a first-countable remainder, then either G is metrizable, or G is TOG-closed.

Proof. If G is not metrizable, then G has an ω-bounded remainder by Arhangel’skii [2].

Not every countable Rajkov complete topological group has a first-countable remainder, as the following result shows.

Example 5.7. The topological group $A(\mathbb{Q})$ does not have a first-countable remainder.

Proof. Note that \mathbb{Q} is closed in G. Assume, striving for a contradiction, that G has a first-countable remainder Y in some compactification bG of G. Let $b\mathbb{Q}$ be the closure of \mathbb{Q} in bG. Put $Z = b\mathbb{Q} \setminus \mathbb{Q}$. Clearly, Z is a closed subspace of Y, since \mathbb{Q} is closed in G. Since \mathbb{Q} is not locally compact, \mathbb{Q} is not open in $b\mathbb{Q}$. Since \mathbb{Q} is first-countable, we conclude that the closure of some countable subset of Z intersects \mathbb{Q}. Hence, neither Z, nor Y is ω-bounded. However, Y is ω-bounded, since G is not metrizable and Y is dense in bG and first-countable [2]. This is a contradiction.

This is also true for the free topological group $F(\mathbb{Q})$ over \mathbb{Q} since $F(\mathbb{Q})$ is Rajkov complete as well [19].

It follows from this and Corollary 4.2 that, under CH, \mathbb{Q} does not embed in the free Abelian group $A(S)$ over a nontrivial convergent sequence S as a closed subset. However, more is true. We claim that \mathbb{Q} cannot be embedded in $A(S)$. Indeed, the ‘layers’ of $A(S)$ are countable compact spaces of finite Cantor–Bendixson height. Hence every compact subspace of $A(S)$ has finite Cantor–Bendixson height. But \mathbb{Q} contains compacta of arbitrarily large (countable) Cantor–Bendixson height.

This last observation implies that every metrizable subspace of $A(S)$ is scattered. Indeed, if it were not scattered then it would contain a topological copy of \mathbb{Q}.

These results suggest the following problems.

Problem 5.8. Is every closed subgroup of a separable topological group with an ω-bounded remainder TOG-closed?

Problem 5.9. Is there in ZFC a countable Rajkov complete topological group with an ω-bounded remainder and no first-countable remainder?

The following problems are also quite interesting.

Problem 5.10. Is there a non-metrizable topological group with a first countable but not strongly ω-bounded remainder?

Problem 5.11. Does there exist, under CH, a countable topological group with an ω-bounded but not a strongly ω-bounded remainder?

References

