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Abstract

We prove a general theorem that allows us to conclude that under CH, the free topological group over
a nontrivial convergent sequence S has a first-countable remainder. It is also shown that any separable
non-metrizable topological group with a first-countable remainder is Rajkov complete.
c⃝ 2013 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction

In a series of papers, Arhangel’skii studied topological spaces having a compactification with
a first-countable remainder. Specific attention was paid to topological groups that belong to this
class. For details, and references, see e.g., [1–4].

Recently, the authors continued this study in [7,8] and obtained among other things the
following results: a topological group with a first-countable remainder has character at most ω1,
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has weight at most 2ω, and is metrizable in case it is pre-compact. It was shown that moreover
there exists a non-metrizable topological group with a first-countable remainder in ZFC, and a
countable such space under CH (it was known by Arhangel’skii [2] that such a space cannot be
countable under MA + ¬CH).

In this paper we continue these investigations. We prove a general theorem about spaces
having a compactification with first-countable remainder that allows us to conclude that under
CH, the free topological group over a nontrivial convergent sequence has a first-countable
remainder. We also solve a problem in Juhász, van Mill and Weiss [14] in the negative. Spaces
that have a strongly ω-bounded remainder play an important role in our investigations. We prove
that a separable topological group with an ω-bounded remainder is Rajkov complete; this implies
that any separable non-metrizable topological group with a first-countable remainder is Rajkov
complete.

2. Preliminaries

Let P be any topological property. It is natural to call a space P-bounded if every subset
with property P has compact closure. In particular, if P ≡ ‘countable’ then we obtain the well-
known class of ω-bounded spaces, and if P ≡ ‘σ -compact’ then we obtain the class that is
called strongly ω-bounded in Nyikos [16]. For other concepts that are in the same spirit, see e.g.
Juhász, van Mill and Weiss [14].

A space X has countable type if every compact subspace of X is contained in a compact
subspace of X which has countable character in X . By a well-known result in Henriksen and
Isbell [13], a space X is of countable type if and only if the remainder in any (or in some)
compactification of X is Lindelöf.

If X is a space, then β X denotes its Čech–Stone compactification, and X∗
= β X \ X . It

follows by standard methods that a topological space X has an ω-bounded remainder if and only
if every remainder of it is ω-bounded. Similarly for strongly ω-bounded. These well-known facts
are left as exercises to the reader. A point p ∈ X∗ is said to be a remote point of X if p ∉ D,
where D is any nowhere dense subset of X (here closure means closure in β X ).

For all undefined notions, see Engelking [11]. For information on topological groups, see
Arhangel’skii and Tkachenko [6].

3. The theorem

It is a well-known result by Franklin and Rajagopalan [12] that the space X = ω ∪ {p},
where p ∈ ω∗ is a P-point, has a compactification bX such that bX \ X is W (ω1), the space
of all countable ordinal numbers. Hence bX \ X is first countable. We will generalize this result
to Theorem 3.1 below, which is our main tool for constructing spaces with a first-countable
remainder.

Theorem 3.1 (CH ). Let X be a strongly ω-bounded space of countable type with a
compactification bX such that w(bX) ≤ 2ω. Then there are a compact space Z and a continuous
surjection f : bX → Z having the following properties:

(1) The restriction of f to Y = bX \ X is a homeomorphism from Y onto f (Y ),
(2) f (Y ) ∩ f (X) = ∅,
(3) Z is first-countable at all points of f (X).

Proof. We may assume that bX ⊆ [
1
2 , 1]

ω1 . For every α < ω1, let πα: Iω1 → I be the projection
onto the α-th coordinate, and let pα: X → I be the restriction of πα to X .
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Let E be the family of all compact subspaces F of X such that χ(F, X) ≤ ω. Observe that if
F ∈ E then χ(F, bX) ≤ ω since X is dense in bX . The next three statements are obvious from
our assumptions.

(C1) |E | ≤ ω1.
(C2)


E = X .

(C3) There exists an increasing ω1-sequence {Fα : α < ω1} of members of E such that
α<ω1

Fα = X .

For each α < ω1 we fix a decreasing sequence {Wα,n : n < ω} of open neighborhoods of
Fα in bX which is a base at Fα in bX . Fix a continuous function gα,n : bX → I satisfying the
following conditions for α < ω1 and n < ω:

(s1) gα,n(Fα) = {0}.
(s2) gα,n(bX \ Wα,n) = {1}.

For every α < ω1, put

Hα = {pα · gα,n : n < ω}

and let

H =


α<ω1

Hα.

Let f : bX → IH denote the diagonal map of the family H . That is, f (p)h = h(p) for every
p ∈ bX and h ∈ H . We claim that Z = f (bX) and f are as required.

Claim 1. For every α < ω1, f (Fα) is metrizable and f −1( f (Fα)) = Fα .

Pick g ∈ Hβ for some β > α. Then for some n, g = pβ · gβ,n . But then g(Fα) = {0} since gβ,n
is identically 0 on Fα . So we conclude that

f (Fα) ⊆


q ∈ IH : qh = 0 for all h ∈


β>α

Hβ


.

Hence f (Fα) is metrizable since


β≤α Hβ is countable.
We will now show that f −1( f (Fα)) = Fα . To prove this, pick an arbitrary p ∈ bX \ Fα , and

let n < ω be so large that p ∉ Wα,n . Put h = pα · gα,n . Then

f (p)h = h(p) = pα · gα,n(p) = pα(p) ≥
1
2
,

and

f (x)h = h(x) = pα · gα,n(x) = 0

for every x ∈ Fα . This completes the proof of the claim.
Hence for every α < ω1 we have that f (Fα) is a metrizable closed Gδ-subset of the compact

space Z . Hence Z is first-countable at all points of f (X).
It also follows from the claim that f (Y ) ∩ f (X) = ∅.
We now claim that f � Y is one-to-one. Indeed, if y(0) and y(1) are distinct elements of Y ,

then we may pick α < ω1 such that y(0)α ≠ y(1)α . Fix n so that y(0), y(1) ∉ Wα,n . Then

pα · gα,n(y(0)) = pα(y(0)) = y(0)α

and, similarly, pα · gα,n(y(1)) = y(1)α , so we are done.
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From this we get that for every y ∈ Y we have f −1( f (y)) = {y}. Hence f restricts to a
homeomorphism on Y . �

Observe that in order to be in a position to apply Theorem 3.1, we need a nowhere locally
compact space X which has a compactification bX such that w(bX) ≤ 2ω while moreover
bX \ X is strongly ω-bounded and of countable type. Then Theorem 3.1 tells us that bX \ X can
be replaced by a first-countable remainder.

Corollary 3.2 (CH ). If Y is a nowhere locally compact Lindelöf space with a strongly ω-
bounded remainder and w(Y ) ≤ 2ω, then Y has a compactification with a first-countable
remainder. Even more is true: for every compactification of Y , there exists a smaller
compactification with a first-countable remainder.

Proof. Simply use the fact that βY \ Y has countable type by the Henriksen and Isbell Theorem
from [13]. �

Corollary 3.3 (CH ). Every strongly ω-bounded space X of countable type such that w(X) ≤ 2ω

can be mapped onto a first-countable space R by a perfect mapping (then automatically R is
strongly ω-bounded and w(R) ≤ 2ω).

We will now discuss the assumptions in Theorem 3.1. We will first show that CH is essential.
Let Seq denote the set of all finite sequences of elements from ω. Moreover, let p be a free

ultrafilter on ω. Define a topology T on Seq by the rule: V ⊆ Seq is open iff for every s ∈ V ,
the set {n < ω : s ⌢n ∈ V } ∈ p. Here s ⌢n denotes the concatenation of s by n. It is easy
to verify that Seq with this topology is Tychonoff, zero-dimensional, perfect and extremally
disconnected. For details and variations, see Arhangel’skii and Franklin [5] and Dow, Gubbi and
Szymański [10].

Let [ω]
<ω be the set of all finite subsets of ω. Clearly, the symmetric difference operator △

makes [ω]
<ω a Boolean group. For a free ultrafilter p on ω, define a topology Tp on [ω]

<ω as
follows:

U ∈ Tp ⇐⇒ (∀ F ∈ U )({n < ω : F△n ∈ U } ∈ p).

It is not difficult to see that Tp is extremally disconnected.
This topology is due to Louveau [15] who proved that if p is selective, then Tp is compatible

with the group structure on [ω]
<ω. The topological group thus obtained is denoted by L(p) and

hence is an example of a non-discrete extremally disconnected topological group.
It was shown by Vaughan [23] that L(p) and Seq (for the same ultrafilter p) are homeomor-

phic.

Theorem 3.4. If p is a selective ultrafilter on ω of character greater than ω1, then Seq is a
countable non-discrete topological group whose Čech–Stone remainder is strongly ω-bounded
but none of its remainders is first-countable.

Proof. That Seq∗ is strongly ω-bounded was proved in [10, Remark 1]. It is easy to see that the
character of Seq is greater than ω1. Just observe that the space ω∪{p} is a subspace of Seq. Hence
Seq does not have a first-countable remainder since any topological group with a first-countable
remainder has character ω1 by Arhangel’skii and van Mill [7, Theorem 2.1]. �

Hence in Theorem 3.1 CH is indeed essential since for example under MA +¬CH there exist
selective ultrafilters on ω and they have character 2ω > ω1 [18].
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The question of whether the assumption on strong ω-boundedness is essential in Theorem 3.1
is very natural. We will answer it in the negative by using a powerful recent result of Dow [9].
For basic facts on Čech–Stone compactifications, see van Mill [22].

Theorem 3.5 (�). There are a σ -compact nowhere locally compact space X and a
compactification bX of X such that bX \ X is ω-bounded (and clearly of countable type) while
moreover every compactification cX of X such that cX ≤ bX has the property that cX \ X is
not first-countable.

Proof. Put K = ω × ω∗, and for every n, let Kn = {n} × ω∗. Dow [9] recently proved that
under �, K has a remote point p which is simultaneously a P-point of K ∗. Put S = βK \ {p}.
Since countable subsets of K are nowhere dense, it clearly follows that S is ω-bounded. It is not
strongly ω-bounded though since it is not compact and contains a dense σ -compact subspace. We
now put X = (βK )ω \ Sω and bX = (βK )ω. We claim that X and bX are as required. Clearly,
bX \ X = Sω is ω-bounded. We let △ denote the diagonal in the product (βK )ω and, by abuse
of notation, identify it with βK . Hence we consider p to also be a point of X . Assume that cX is
a compactification of X such that cX ≤ bX and assume, striving for a contradiction, that cX \ X
is first-countable. Let f : bX → cX be a continuous surjection that restricts to the identity on X .

Fix n for a while, and let gn = f � Kn : Kn → cX \ X . Since f (Kn) is first-countable, the
fibers of the map gn are all closed Gδ-subsets of Kn . But every closed Gδ-subset of ω∗ has a
dense interior. For every s ∈ f (Kn), let U n

s denote the dense interior of g−1
n ({s}). Let Fn be the

complement in Kn of the union of the disjoint family {U n
s : s ∈ f (Kn)}. Then Fn is a closed

nowhere dense subset of Kn .
Since p is a remote point of K , p is not in the closure of the nowhere dense set F =


n<ω Fn .

Hence there is a clopen set C in K which contains p in its closure and is contained in the com-
plement of F . The compact set Cn = C ∩ Kn is covered by {U n

s : s ∈ f (Kn)}. Hence there
is a finite subset Gn of f (Kn) such that Cn ⊆


s∈Gn

U n
s . Since p is in the closure (in cX ) of

f (C), we conclude that p is in the closure of the countable subset


n<ω Gn of cX \ X . Since
X is nowhere locally compact, the remainder cX \ X is dense in cX . Since it is first-countable,
this implies that p has countable π -character in X . Since the restriction to X of the projection
(βK )ω → βK onto the first factor space is open, this shows that p has countable π -character in
βK , which is absurd. �

Problem 3.6. Is there in ZFC a nowhere locally compact Lindelöf space X having no first-
countable remainder while X∗ is ω-bounded? What if X in addition is a topological group?

4. Applications to topological groups

For topological groups with special properties, the property of having a first-countable
remainder can be characterized as follows under CH:

Theorem 4.1 (CH ). Suppose that G is a Lindelöf non-locally compact topological group with a
strongly ω-bounded remainder. Then the following conditions are equivalent:

(i) G has a first-countable remainder.
(ii) The weight of G equals ω1.

Proof. The implication (ii) ⇒ (i) is a consequence of Corollary 3.2. For (i) ⇒ (ii), we first
use Arhangel’skii and van Mill [7] to conclude that the character of G is ω1. But a Lindelöf
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topological group with character ω1 clearly has weight ω1. (Observe that G does not have
countable weight since it has a strongly ω-bounded remainder.) �

The first topological group with a first-countable remainder which is countable and not
metrizable, was constructed by the authors under CH in [8]. This example is not a familiar
topological group. The results in this paper allow us to conclude that many familiar topological
groups have the same property.

Corollary 4.2 (CH ). If G is the free (Abelian) topological group over any infinite separable
compactum, then G has a first-countable remainder (clearly, G is not metrizable).

Proof. It is known that G is a kω-space, see e.g. Ordman [17] and Arhangel’skii and Tkachenko
[6, Theorem 7.4.1]. Moreover, by an unpublished result of van Douwen (see [14, Proposi-
tion 5.3]), the Čech–Stone remainder of any kω-space is strongly ω-bounded. (This was inde-
pendently and unaware of van Douwen’s result also established in Arhangel’skii [2].) Hence G∗

is strongly ω-bounded and of countable type since G is Lindelöf being σ -compact. Since G has
weight 2ω, being separable, we are done by Theorem 4.1. �

We finish this section by answering the first part of Questions 6.4 and 6.5 in Juhász, van Mill
and Weiss [14] in the negative.

Corollary 4.3 (CH ). There is a first-countable strongly ω-bounded space which has a dense
hereditarily Lindelöf subspace and is neither ccc-bounded nor compact.

Proof. Let Y be the remainder of the compactification bG that was constructed in Corollary 4.2.
It is clear that Y is not compact, G being nowhere locally compact. But Y is strongly ω-bounded
and hence a Baire space. Since Y has weight 2ω, as bG is separable, it follows that Y has a dense
Luzin (hence hereditarily Lindelöf) subspace by van Douwen, Tall and Weiss [21]. Since both G
and Y are dense in bG, we conclude that Y is ccc. �

5. Rajkov completeness

A topological group G is called Rajkov complete if all of its Cauchy filters (with respect to
the two-sided uniformity) converge. It is known that a closed subgroup of a Rajkov complete
topological group is Rajkov complete, that every Čech-complete topological group is Rajkov
complete and that a metrizable group is Rajkov complete if and only if it is Čech-complete.
It is also known that for every topological group G there exists a unique (up to topological
isomorphism) Rajkov complete topological group ρG containing (a topologically isomorphic
copy of) G as a dense subgroup. For this and more information about Rajkov completeness, see
Arhangel’skii and Tkachenko [6, Sections 3.6 and 4.3].

Observe that every Rajkov complete subgroup G of a topological group H is closed in H .
Let us call a topological group G (a space X ) TOG-closed, if for every topological group H and
every subgroup A of H which is homeomorphic to G (homeomorphic to X ) we have that A is
closed in H . This property can easily be characterized, as follows:

Proposition 5.1. A topological group G is TOG-closed if and only if every topological group H
which is homeomorphic to G is Rajkov complete.

Proof. Simply observe that if G is homeomorphic to H and H is not Rajkov complete, then it is
not closed in ρH . �
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Hence there are many such groups. For example, every Čech complete topological group is
TOG-closed.

It is not true that a topological group is Rajkov complete if and only if it is TOG-closed:
there are many examples of homeomorphic topological groups G and H such that G is Rajkov
complete, but H is not. We will prove in Proposition 5.2 below that every topological group G
has the property that its free topological group F(G) is homeomorphic to the product of G and a
nontrivial group N (similarly for A(G)). Hence the topological group A(Q) is homeomorphic to
Q × N , for some topological group N . Here Q denotes the space of rational numbers. But A(Q)

is Rajkov complete (Arhangel’skii and Tkachenko [6, 7.9.7]), and the topological group Q × N
is not since Q is not Čech complete.

Proposition 5.2. Let G be a topological group. Then its free topological group F(G) is
homeomorphic to G × N, where N is a nontrivial topological group (similarly for A(G)).

Proof. There is clearly a retraction r : F(G) → G which is also a homomorphism. Let N denotes
its kernel. The function f : F(G) → G × N defined by

f (p) = (r(p), p · r(p)−1)

is a homeomorphism. �

This suggests the following interesting problem.

Problem 5.3. Characterize the topological spaces X for which A(X) and X × A(X) are
homeomorphic. Similarly for F(X).

It is not true that for all spaces X the product X × F(X) is homogeneous. For example, let
X = βω. Indeed, the projection mapping from X × F(X) to X is open and continuous. Since the
cardinality of X is greater than 2ω, it follows from Theorem 4.1(a) of van Douwen’s paper [20]
that no power of the space X × F(X) is homogeneous. Similarly for X × A(X). Of particular
interest in Problem 5.3 is the case when X is (compact) metrizable.

A topological group G will be called Rajkov countably complete, if every countable subset of
G is contained in a Rajkov complete subgroup of G.

Theorem 5.4. Suppose that G is a topological group with an ω-bounded remainder. Then G is
Rajkov countably complete.

Proof. Fix a countable subset A of G and consider the Rajkov completion ρG of G. Let ⟨⟨A⟩⟩ be
the countable subgroup of G algebraically generated by A in G. Fix any compactification B of
the space ρG. Then B is also a compactification of G, since G is a dense subspace of ρG. So we
put bG = B and Y = bG \ G. Let H denote the closure of ⟨⟨A⟩⟩ in ρG. Suppose that there exists
an element p ∈ H \ G. Then p⟨⟨A⟩⟩ is a countable dense subset of H which is entirely contained
in Y . But this disproves the fact that Y is ω-bounded. As a consequence, the Rajkov complete
subgroup H of ρG is contained in G and hence we are done. �

Since a separable topological group is Rajkov countably complete if and only if it is Rajkov
complete, the following corollary is obvious.

Corollary 5.5. Suppose that G is a separable topological group with an ω-bounded remainder.
Then G is TOG-closed. If moreover G is countable, then every closed subgroup (subspace) of G
is TOG-closed.
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Thus, we have a dichotomy:

Theorem 5.6. If G is a separable topological group with a first-countable remainder, then either
G is metrizable, or G is TOG-closed.

Proof. If G is not metrizable, then G has an ω-bounded remainder by Arhangel’skii [2]. �

Not every countable Rajkov complete topological group has a first-countable remainder, as
the following result shows.

Example 5.7. The topological group A(Q) does not have a first-countable remainder.

Proof. Note that Q is closed in G. Assume, striving for a contradiction, that G has a first-
countable remainder Y in some compactification bG of G. Let bQ be the closure of Q in bG.
Put Z = bQ \ Q. Clearly, Z is a closed subspace of Y , since Q is closed in G. Since Q is not
locally compact, Q is not open in bQ. Since Q is first-countable, we conclude that the closure
of some countable subset of Z intersects Q. Hence, neither Z , nor Y is ω-bounded. However, Y
is ω-bounded, since G is not metrizable and Y is dense in bG and first-countable [2]. This is a
contradiction. �

This is also true for the free topological group F(Q) over Q since F(Q) is Rajkov complete
as well [19].

It follows from this and Corollary 4.2 that, under CH, Q does not embed in the free Abelian
group A(S) over a nontrivial convergent sequence S as a closed subset. However, more is true.
We claim that Q cannot be embedded in A(S). Indeed, the ‘layers’ of A(S) are countable
compact spaces of finite Cantor–Bendixson height. Hence every compact subspace of A(S)

has finite Cantor–Bendixson height. But Q contains compacta of arbitrarily large (countable)
Cantor–Bendixson height.

This last observation implies that every metrizable subspace of A(S) is scattered. Indeed, if it
were not scattered then it would contain a topological copy of Q.

These results suggest the following problems.

Problem 5.8. Is every closed subgroup of a separable topological group with an ω-bounded
remainder TOG-closed?

Problem 5.9. Is there in ZFC a countable Rajkov complete topological group with an ω-bounded
remainder and no first-countable remainder?

The following problems are also quite interesting.

Problem 5.10. Is there a non-metrizable topological group with a first countable but not strongly
ω-bounded remainder?

Problem 5.11. Does there exist, under CH, a countable topological group with an ω-bounded
but not a strongly ω-bounded remainder?
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