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ON UNIQUELY HOMOGENEOUS SPACES, II

ALEXANDER ARHANGEL’SKII AND JAN VAN MILL

Abstract. It is shown that there is an example of a uniquely homogeneous

separable metrizable space that is Abelian but not Boolean. It is also shown

that such an example cannot be a Baire space. This answers several problems

on (unique) homogeneity.

1. Introduction

All spaces under discussion are Tychonoff. By a homeomorphism of X we

will always mean a homeomorphism of X onto itself. For a function f : X → Y

such that f : X → f(X) is a homeomorphism and f(X) 6= Y , we use the term

embedding.

A space X is called uniquely homogeneous provided that for all x, y ∈ X there

is a unique homeomorphism of X that takes x onto y. This concept is due to

Burgess [9] who asked in 1955 whether there exists a non-trivial uniquely ho-

mogeneous metrizable continuum. Ungar [19] showed in 1975 that there are no

such finite-dimensional metrizable continua and a few years later, Barit and Re-

naud [5] showed that the assumption on finite-dimensionality is superfluous. A

somewhat different argument was given by Keesling and Wilson [13]. A nontrivial

uniquely homogeneous Baire space of countable weight was constructed by van

Mill [16]. This example is a topological group. There are also uniquely homoge-

neous spaces that do not admit the structure of a topological group, [17]. It is

unknown whether there is a non-trivial Polish uniquely homogeneous space.

In Arhangel′skii and van Mill [2], the authors identified two properties of topo-

logical spaces called skew-2-flexibility and 2-flexibility respectively that are useful

in studying unique homogeneity. It was shown among other things that every lo-

cally compact homogeneous metrizable space is both skew-2-flexible and 2-flexible
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and that there is an example of a homogeneous Polish space that is skew-2-flexible

but not 2-flexible. In addition, in the presence of unique homogeneity, 2-flexibility

for X is equivalent to X being Abelian, i.e., all homeomorphisms of X commute.

Moreover, in the presence of unique homogeneity, skew 2-flexibility for X implies

2-flexibility and is equivalent to X being Boolean, i.e., all homeomorphisms on X

are involutions. This left open the question whether in the class of uniquely homo-

geneous spaces, 2-flexibility and skew 2-flexibility are equivalent notions. The aim

of this paper is to answer this question in the negative by constructing a uniquely

homogeneous (separable metrizable) space X that is Abelian but not Boolean. In

fact, no homeomorphism on X except for the identity is an involution.

Our example is not a Baire space. We will also prove that such an example

cannot be a Baire space so that what we have seems to be optimal.

2. Preliminaries

(A) Groups. A semitopological group (respectively, paratopological group) is a

group endowed with a topology for which the product is separately (respectively,

jointly) continuous. See Bouziad [8], Arhangel’skii and Choban [1], and [4] for

conditions guaranteeing that a semitopological group (respectively, paratopolog-

ical group) is a topological group.

For an Abelian group G and A ⊆ G we let 〈〈A〉〉 denote the subgroup of G

generated by A. Moreover, for a subgroup A of G we let [[A]] denote the subgroup

{x ∈ G : (∃n ∈ Z)(nx ∈ A)}

of G. Observe that if G is a torsion-free Abelian group and A ⊆ G is a countable

subgroup, then [[A]] is countable as well.

Let G be a torsion-free Abelian group. A subset A of G \ {0} is algebraically

independent if for all pairwise distinct a1, . . . , an ∈ A and m1, . . . ,mn ∈ Z such

that
∑n
i=1miai = 0 we have m1 = · · · = mn = 0. Observe that every uncountable

set A in a torsion-free Abelian group G contains an uncountable algebraically

independent subset. For if B ⊆ A is countable, then so are C = 〈〈B〉〉 and

D = [[C]]. Hence no maximal algebraically independent subset of A is countable.

If X is uniquely homogeneous, for all x, y ∈ X we let fxy denote the unique

homeomorphism of X that sends x to y. For a fixed e ∈ X, define a binary

operation X ×X → X by x·y = fex(y). This is a group operation on X having

the property that all left translations of X are homeomorphisms of X. That is,

X is a left topological group. For details, see [2, Proposition 4.1]. This group

operation is called the standard group operation on X.
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(B) Topology. We will need van Douwen’s [10, 4.2] generalization of a clas-

sical result due to Souslin ([15, p. 437]).

Theorem 2.1. Let X and Y be Polish spaces, and let F be a countable family of

continuous functions from X to Y such that:

for every countable A ⊆ Y : {f−1(A) : f ∈ F} does not cover X.

Then there exists a Cantor set K ⊆ X such that f�K is injective for every f ∈ F .

Let X be a space. We say that a subset A of X is a bi-Bernstein set (abbrevi-

ated: BB-set) in X if A as well as X \A intersects every Cantor set in X. Observe

that a BB-set in X intersects every Cantor set in a set of size c, since we can split

every Cantor set in a family consisting of c pairwise disjoint Cantor sets.

We let K denote the standard Cantor set in I.
(C) Measurable functions. We let I denote the closed unit interval [0, 1].

Let X be a space. A function f : I → X is said to be measurable if f−1(U) is a

Borel subset of I for every open subset U of X. We are particularly interested in

countable spaces. Observe that if X is countable, then f : I → X is measurable

if and only if f−1(x) is Borel for every x ∈ X. Measurable functions f, g : I→ X

are said to be equivalent provided that

λ({t ∈ I : f(t) 6= g(t)}) = 0,

where λ denotes Lebesgue measure on R.

Let F denote the collection of all measurable functions from I to R.

The sequence (fn)n in F converges to zero in measure if for every ε > 0,

lim
n→∞

λ({t ∈ I : |fn(t)| ≥ ε}) = 0.

Let (fn)n be a sequence in F . Then (fn)n converges to zero almost everywhere

if there exists a set E of measure zero such that for every x not in E and ε > 0

there exists n0 such that |fn(x)| < ε for every n ≥ n0.

These concepts are known to be related as follows. For completeness sake, we

provide a sketch of proof of it below.

Lemma 2.2. A sequence of functions (fn)n in F converges to zero in measure

if and only if every subsequence of (fn)n contains a subsequence which converges

to zero almost everywhere.

Proof. Indeed, first assume that (fn)n converges to zero in measure. Every

subsequence of (fn)n converges to zero in measure, hence is fundamental in mea-

sure by [12, Theorem C on page 92]. Hence some subsequence of it is almost
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uniformly fundamental in measure by [12, Theorem D on page 93]. But then this

subsequence converges to zero almost everywhere by [12, Theorem B on page 89].

Conversely, assume that every subsequence of (fn)n contains a subsequence

which converges to zero almost everywhere. If (fn)n does not converge to zero in

measure, then there exist ε > 0, a subsequence (fnk
)k of (fn)n and δ > 0 such

that for every k,

λ({t ∈ I : |fnk
(t)| ≥ ε}) ≥ δ.

But this subsequence clearly does not have a subsequence that converges to zero

almost everywhere. �

(D) The spaces FMX .

By MX we denote the space consisting of all equivalence classes of measurable

functions from I into X endowed with the topology of convergence in measure.

For a measurable function f we let [f ] denote its equivalence class.

The topology on MX is induced by the metric

(1) d̂([f ], [g]) =

√∫ 1

0

d(f(t), g(t))2dt,

where d is any admissible bounded metric on X. The topology on the space MX

is independent of the (bounded) metric that is chosen to induce its topology. For

completeness sake and for later use, we repeat the argument in [6, p. 192].

Lemma 2.3. For a sequence ([f ]n)n in MX and an element [f ] in MX , the

following statements are equivalent:

(1) ([f ]n)n converges to [f ],

(2) every subsequence of the sequence (fn)n contains a subsequence that con-

verges pointwise to f almost everywhere.

Proof. Simply observe that limn→∞ d̂([f ]n, [f ]) = 0 if and only if the sequence

of functions
(
ξn : t 7→ d(fn(t), f(t))

)
n

converges to zero in measure if and only if

every subsequence of (ξn)n contains a subsequence that converges to zero almost

everywhere (Lemma 2.2). But this is equivalent to the statement that every

subsequence of (fn)n contains a subsequence that converges pointwise to f almost

everywhere. �

Since the Lemma 2.3(2) does not mention metrics, we see that indeed the

topology on MX is independent of the chosen (bounded) metric on X.

Corollary 2.4. Let ϕ : X → Y be a homeomorphism. Then the function ϕ̄ : MX →
MY defined by ϕ̄([f ]) = [ϕ ◦ f ] is a homeomorphism.
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Our main interest is in the subspace

FMX = {[f ] ∈MX : (∃ g ∈ [f ])(range(g) is finite)}

of MX .

The function x 7→ [fx], where fx : I → X is the constant function with value

x, maps X isometrically onto a closed subset of MX . For this we only need

to prove that the set {[fx] : x ∈ X} is closed in MX . But this is easy. For

suppose that for f : I → X we have that [f ] is not the equivalence class of a

constant (function). Then there are two distinct elements x, y ∈ X such that

δx = λ(f−1(x)) > 0 and δy = λ(f−1(y)) > 0. Any measurable g : I → X such

that d̂([f ], [g]) < min{ 12d(x, y)·δx, 12d(x, y)·δy} is not equivalent to a constant

function, which does the job.

Bessaga and Pe lczyński proved the following fundamental fact about these

spaces.

Theorem 2.5 (Bessaga and Pe lczyński [6, Theorem 7.1]). The space MX is

homeomorphic to the separable Hilbert space `2 if and only if X is Polish and

contains more than one point.

3. The group

Let G be the subgroup of R consisting of all rational numbers, i.e., G = Q.

We endow G with the Sorgenfrey topology. That is, we take the collection of all

intervals of the form [x, y), where x, y ∈ G and x < y, as an open base. Observe

that G with this topology is an Abelian paratopological group, but that inversion

is (badly) discontinuous. Moreover, the Sorgenfrey base is countable since G is,

hence G is metrizable.

Since G is obviously dense in itself, G is homeomorphic to Q, but the homeo-

morphism cannot be chosen to have really nice algebraic properties.

Let d be a metric bounded by 1 generating the topology on G.

We now consider the space MG. For [f ], [g] ∈MG, define [f + g] ∈MX by the

rule

(f + g)(t) = f(t) + g(t) (t ∈ I).
Clearly, f + g is measurable, and + is an Abelian group operation on MX .

Lemma 3.1. MG is a paratopological group.

Proof. Fix [f ], [g] ∈ MG, and let ([fn])n and ([gn])n be sequences converging

to [f ] respectively [g] in MG. We have to show that [fn + gn] → [f + g] in

MG. By Lemma 2.3, every subsequence of (fn)n contains a subsequence that
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converges pointwise to f almost everywhere. Similarly for g. But then since G is

a paratopological group, every subsequence of (fn + gn)n contains a subsequence

that converges pointwise to f + g almost everywhere. Hence we are done by

Lemma 2.3. �

The constant functions form a closed subgroup of MG which is isometric to G.

We write G∗ for this closed subgroup of MG. Hence inversion on MG is as badly

discontinuous on MG as it is on G. Observe that FMG is a subgroup of MG that

obviously contains G∗.

Since MG contains a closed copy of the rational numbers, it is not Polish.

In fact, the closed copy of Q gives us that MG is not hereditarily Baire. It

can be shown that MG is Borel, hence Čech-analytic. From this it follows from

Bouzhiad [8] that MG is not a Baire space since MG is not a topological group.

We do not present the details of this since the group we are after is a subgroup

of FMG, and for that space it is obvious that it is not a Baire space, as we will

now show.

Write G as
⋃
n<ω Gn, where each Gn is finite and Gn ⊆ Gn+1 for every n. For

every n, put

FMn = {[f ] ∈ FMG : (∃ g ∈ [f ])(g(I) ⊆ Gn)}.
Clearly, FMn is naturally homeomorphic to MGn

, FMn ⊆ FMn+1 for every n,

and FMG =
⋃
n<ω FMn.

Lemma 3.2. For every n, FMn is a nowhere dense closed subspace of FMG

which is homeomorphic to `2.

Proof. That FMn is homeomorphic to `2 follows from Theorem 2.5. To prove

it is closed, take any [f ] ∈ FMG\FMn. Then there is an element x ∈ G\Gn such

that λ(f−1(x)) > 0. Assume that ([fi])i is a sequence in FMn converging to [f ].

We assume without loss of generality that fi(I) ⊆ Gn for every i. By Lemma 2.3

we may assume that (fi)i converges to f almost everywhere. So there exists

p ∈ f−1(x) such that fi(p) → f(p). Hence there exists i such that fi(p) 6∈ Gn,

which is a contradiction. To prove it is nowhere dense, take any [f ] ∈ FMG. Pick

x ∈ G such that λ(f−1(x)) > 0. Split f−1(x) into two Borel sets, each of positive

measure, say A and B. Define a function g : I → G by g�(I \ B) = f�I \ B, and

g�B is the constant function with value a, where a is an element of G \Gn with

very small distance towards x. Then [f ] and [g] are very close, and [g] does not

belong to FMn. �

We conclude from the previous lemma, that FMG is strongly σ-complete, i.e., a

countable union of closed Polish subspaces. Hence FMG is Borel, but not Baire.
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Inversion on FMG is badly discontinuous, but not if we consider inversion on

one of its building blocks FMn.

Lemma 3.3. For a fixed n define i : FMn → FMG by i([f ]) = [−f ]. Then i is

an embedding.

Proof. Put H = {−s : s ∈ Gn}. Since Gn and H are finite, the function

ϕ : Gn → H defined by ϕ(s) = −s is a homeomorphism. Hence we are done by

Corollary 2.4 since the homeomorphism ϕ̄ : MGn
→MH defined there is identical

to i. �

Lemma 3.4. MG is torsion-free.

Proof. Take [f ] ∈ FMG and assume that nf is the constant function with value

0 for some n ∈ Z\{0}. Let x ∈ range(f). For p ∈ f−1(x) we have that nf(p) = 0,

hence x = f(p) = 0 since G is torsion-free. We conclude that f is the constant

function with value 0. �

Hence we almost completed the proof of the following result.

Theorem 3.5. There is a separable metrizable torsion-free Abelian paratopolog-

ical group H that can be written as
⋃
n<ωHn such that Hn ⊆ Hn+1 for every n,

while moreover:

(1) H contains a countable subgroup G on which inversion is discontinuous,

(2) every Hn is closed in H and homeomorphic to Hilbert space `2,

(3) for every n there exists m ≥ n such that Hn +Hn and Hn −Hn are both

contained in Hm,

(4) for every n the function i : Hn → H defined by i(x) = −x is an embedding.

Proof. Of course, we set H = FMG and Hn = FMn for all n. By Theorem 2.5,

and Lemmas 3.1, 3.2, 3.3 and 3.4, the only thing left to prove is (3). But this is

trivial, since for given n, we may take m so large that Gm contains both Gn+Gn
and Gn −Gn, and then m is as required. �

Corollary 3.6. For given n and m ≥ n, let f : S → Hm be continuous, where

S ⊆ Hn. Then the functions ξ, η : S → H defined by ξ(x) = x+f(x) and η(x) =

x−f(x) are continuous. Moreover, there exists k such that the ranges of both ξ

and η are contained in Hk.

Proof. Simply apply Theorem 3.5(4) and (3) and the fact that H is a paratopo-

logical group. �



562 ALEXANDER ARHANGEL’SKII AND JAN VAN MILL

We finish this section by the following technical result, which we will need in

the forthcoming §4.

Lemma 3.7. Let L ⊆ H be any Cantor set. Then L contains an algebraically

independent Cantor set.

Proof. In this proof we will say that a subset A of H \ {0} is k-algebraically

independent for some k ≥ 1 if for all pairwise distinct a1, . . . , an ∈ A and

m1, . . . ,mn ∈ [−k, k] such that
∑n
i=1miai = 0 we have m1 = · · · = mn = 0.

Claim 1. Let the pairwise distinct a1, . . . , am in Hn be k-algebraically indepen-

dent. Then there are pairwise disjoint neighborhoods U1, . . . , Um of a1, . . . , am
in Hn such that for any choice b1 ∈ U1, . . . , bm ∈ Um we have that b1, . . . , bm is

k-algebraically independent.

If this is not true, then there are sequences (aji )j such that aji → ai for every

i ≤ m and aj1, . . . , a
j
m is not k-algebraically independent for every j. This means

that there is a linear combination
∑m
i=1 kia

j
i , where k1, . . . , km ∈ [−k, k], which

is 0 while yet some ki0 6= 0. But then infinitely often we have that the k1, . . . , km
and the ki0 are the same. So we may assume without loss of generality that

they are always equal to say k1, . . . , km and ki0 . Observe that by Theorem 3.5(3)

and (4) the function Hm
n → H defined by (t1, . . . , tm) 7→

∑m
i=1 kiti is continuous.

Hence
∑m
i=1 kiai = 0, and hence ki0 6= 0 contradicts the k-algebraic independence

of a1, . . . , am.

Since L =
⋃
n<ω L ∩ Hn, the Baire Category Theorem implies that we may

assume without loss of generality that L ⊆ Hn for some n. Since L is uncountable

and H is torsion-free, it contains an uncountable algebraically independent subset,

say E. By the Cantor-Bendixson Theorem, [11, 1.7.11], we may assume that E is

dense-in-itself. By using disjoint balls about points of E, we may now construct a

Cantor set in the standard manner. A little extra care made possible by Claim 1

will ensure that it will be k-algebraically independent for every k, i.e., it will be

algebraically independent. �

4. Unique homogeneity

Let H be the group from Theorem 3.5. We now closely follow the construction

in van Mill [18], but considerable extra care is needed. As in §3, let K be the

Cantor set in I. Consider the collection

K = {〈f, g〉 : f, g : K → H are embeddings and the functions

f+g and f−g are one-to-one}.
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Observe that if 〈f, g〉 ∈ K, then also 〈g, f〉 ∈ K. For every 〈f, g〉 ∈ K we would

like to ‘kill’ the homeomorphism g ◦ f−1 : f(K)→ g(K) or, if this is not possible,

the homeomorphism f ◦ g−1 : g(K) → f(K). It is clear that |K| ≤ c, hence we

may enumerate K as {〈fα, gα〉 : α < c} (repetitions permitted).

By transfinite induction on α < c, we will pick a point xα ∈ K and points

pα, qα ∈ H \ {0} such that

(1) {pα, qα} = {fα(xα), gα(xα)},
(2) 〈〈{pβ : β ≤ α} ∪G〉〉 ∩ {qβ : β ≤ α} = ∅.

Assume that we picked xβ , pβ and qβ for every β < α, where α < c (possibly

α = 0). Put A = 〈〈{pβ : β < α} ∪ G〉〉 and V = {qβ : β ≤ α}, respectively.

Then max{|A|, |V |} ≤ |α|·ω < c, and A ∩ V = ∅. For convenience, put f = fα
respectively g = gα.

Lemma 4.1. Ef = {x ∈ K : 〈〈{f(x)} ∪A〉〉 ∩ V 6= ∅} has cardinality less than c.

Proof. For every x ∈ Ef there exists nx ∈ Z such that nx·f(x) ∈ V −A. Since

A∩V = ∅, V −A ⊆ H \{0}, so always nx 6= 0. Suppose that |Ef | = c. Then since

|V − A| < c, there are distinct x, y ∈ Ef and n ∈ Z \ {0} such that n = nx = ny
and n·f(x) = n·f(y). But then f(x) = f(y) since H is torsion free, which violates

f being injective. �

By precisely the same argument, we obtain:

Lemma 4.2. Eg = {x ∈ K : 〈〈{g(x)} ∪A〉〉 ∩ V 6= ∅} has cardinality less than c.

We now come to the crucial step in our argumentation.

Lemma 4.3. If F ⊆ K has cardinality c, then there exists x ∈ F such that

f(x) 6∈ 〈〈{g(x)} ∪A〉〉 or g(x) 6∈ 〈〈{f(x)} ∪A〉〉.

Proof. Let F ⊆ K have size c, and assume that for every x ∈ F we have

that f(x) ∈ 〈〈{g(x)} ∪ A〉〉 and g(x) ∈ 〈〈{f(x)} ∪ A〉〉. Let κ = |A|·ω. Then

|Z×A| = κ < c, so there are n ∈ Z, a ∈ A and F̂ ⊆ F of cardinality greater than

κ such that for every x ∈ F̂ , f(x) = n·g(x)+a. Since the functions f+g and f−g
are both one-to-one and |A| ≤ κ, we get n 6∈ {1,−1}. By the same argumentation,

there exist a subset F̃ of F̂ of size bigger than κ, m ∈ Z \ {1,−1} and ā ∈ A such

that for every x ∈ F̃ , g(x) = m·f(x) + ā. For x ∈ F̃ we consequently have

f(x) = n·g(x) + a = nm·f(x) + (n·ā) + a,

hence

(nm− 1)·f(x) = ã,
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where ã = (n·ā) + a. Since nm− 1 6= 0, H is torsion free and f is one-to-one, we

reached a contradiction. �

Now let Ef and Eg be as in Lemmas 4.1 and 4.2, and put F = K \ (Ef ∪Eg).
By Lemma 4.3 we may assume without loss of generality that there exists x ∈ F
such that f(x) 6∈ 〈〈{g(x)} ∪A〉〉. Now put xα = x, pα = g(xα) and qα = f(xα). It

is clear that our choices are as required. This completes the transfinite induction.

Put X = 〈〈{pα : α < c} ∪ G〉〉. We claim that X has no homeomorphisms

other than translations. This will show that X is uniquely homogeneous and

Abelian, but not Boolean. If fact, no nontrivial translation is an involution since

X is torsion-free, hence X does not have any involution other than the identity

function.

Lemma 4.4. For every n < ω, X ∩Hn is a BB-set in Hn.

Proof. Let L ⊆ Hn be a Cantor set. By Lemma 3.7 we may assume without

loss of generality that L is algebraically independent. Now let L0 and L1 be

disjoint Cantor sets in L, and let α : K → L0 and β : K → L1 be arbitrary home-

omorphisms. Then 〈α, β〉 ∈ K, hence X intersects L0 ∪ L1 ⊆ L by construction.

Similarly, L intersects Hn \X. �

We now formulate and prove a curious property of X.

Lemma 4.5. Let f : X → X be a homeomorphism. Then there is a countable

subgroup A of X such that for every x ∈ X there exists a ∈ A such that f(x) =

x+ a or f(x) = −x+ a.

Proof. Let E ⊆ X be maximal with respect to the properties that the functions

ξ, η : E → X defined by

ξ(x) = x+f(x), η(x) = x−f(x)

are one-to-one.

We will prove that E is countable. Striving for a contradiction, assume that

E is uncountable. We have to do some thinning out first. Since H =
⋃
n<ωHn,

we may fix an integer n such that E0 = E ∩ Hn is uncountable. Since f�E0

is one-to-one, its range is uncountable. Hence there is k ≥ n such that the set

E1 = {x ∈ E0 : f(x) ∈ Hk} is uncountable. Pick m ≥ k such that Hk + Hk

and Hk−Hk are both contained in Hm. Observe that the ranges of the functions

f�E1, ξ�E1 and η�E1 are all contained in Hm. Since Hn and Hk are Polish,

being homeomorphic to `2, there are Gδ-subsets S of Hn and T of Hk such that

E1 is dense in S and f�E1 can be extended to a homeomorphism f̄ : S → T
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([11, Theorem 4.3.21]). Define ξ̄ : S → Hm by ξ̄(x) = x+f̄(x), and, similarly,

η̄ : S → Hm by η̄(x) = x−f̄(x). Then ξ̄ and η̄ are continuous by Corollary 3.6.

Since the functions ξ̄, η̄ and f̄ are one-to-one on E1, there is by Theorem 2.1 a

Cantor set L in S such that ξ̄, η̄ and f̄ are all one-to-one on L. Let α : K → L be

an arbitrary homeomorphism. Consider the pair of functions 〈α, f̄�L ◦ α〉 ∈ K.

By construction there exists x ∈ L such that either x ∈ X and f̄(x) 6∈ X, or

f̄(x) ∈ X and x 6∈ X. Suppose first that x ∈ X and f̄(x) 6∈ X. Then since f̄

extends f , we get f̄(x) = f(x) ∈ X which is a contradiction. Suppose next that

f̄(x) ∈ X and x 6∈ X. Since E1 is dense in S ⊇ L, there is a sequence (pi)i in E1

which converges to x. Hence f̄(pi)→ f̄(x). But f̄ extends f , hence f(pi)→ f̄(x).

There exists p ∈ X such that f(p) = f̄(x) since f is a homeomorphism. Hence

f(pi)→ f(p) which means that pi → p. We conclude that x = p ∈ X, which is a

contradiction. This completes the proof of our claim.

So we conclude that E is indeed countable. Let A = 〈〈E∪f(E)〉〉. If x ∈ E, then

f(x)−x ∈ A so there is nothing to prove. Assume that x 6∈ E. By maximality of

E, ξ�E∪{x} or η�E∪{x} is not one-to-one. Suppose first that there exists e ∈ E
such that ξ(e) = ξ(x). Then e+f(e) = x+f(x) ∈ A and hence we are done. If

η�E ∪ {x} is not one-to-one, then we can argue similarly. �

We now come to our main result.

Theorem 4.6. Every homeomorphism of X is a translation.

Proof. Let f : X → X be a homeomorphism, and let A be the subgroup of X

we get from Lemma 4.5. For every a ∈ A and ε ∈ {−1, 1} we put

Sεa = {x ∈ X : f(x) = ε·x+ a}.

We claim that at most one element of the cover S = {Sεa : ε ∈ {−1, 1}, a ∈ A}
of X is uncountable. Striving for a contradiction, assume that there are at least

two elements of S that are uncountable. Pick n such that at least two elements

of S intersect X ∩Hn in an uncountable set, say Sε0a0 and Sε1a1 .

For every a ∈ A and ε ∈ {−1, 1} put Sεn,a = Sεa ∩Hn.

Claim 1. For every a ∈ A and ε ∈ {−1, 1}, Sεn,a is closed in X ∩Hn.

This is easy. Let (xi)i be a sequence in Sεn,a converging to some element

x ∈ X ∩ Hn. Then f(xi) = ε·xi + a for every i. But ε·xi + a → ε·x + a by

Theorem 3.5(4) and (3) and the fact that H is a paratopological group. Hence

f(x) = ε·x+ a.

For every a ∈ A and ε ∈ {−1, 1}, let T εn,a be the closure of Sεn,a in Hn.
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Claim 2. T = Hn \
⋃
{T εn,a : ε ∈ {−1, 1}, a ∈ A} is countable

This is clear since T is a Gδ-subset of Hn that misses X ∩ Hn. Hence it has

to be countable since if it were uncountable, then it would contains a Cantor set

which would intersect X ∩Hn (Lemma 4.4).

Claim 3. If a, a′ ∈ A are distinct, then T δn,a ∩ T εn,a′ is countable for all δ, ε ∈
{−1, 1}.

Striving for a contradiction, assume that for certain distinct a, a′ ∈ A and

δ, ε ∈ {−1, 1} we have that T δn,a∩T εn,a′ is uncountable. Then T δn,a∩T εn,a′ contains

a Cantor set which consequently intersects X ∩Hn in a set of size c (Lemma 4.4).

So we may pick x ∈ X \ [[A]] such that f(x) = ε·x + a = δ·x + a′. If ε = δ, then

a = a′. Hence ε 6= δ which implies that 2x ∈ A, which is a contradiction.

Now consider the countable subset

S = T ∪
⋃{

T δn,a ∩ T εn,a′ : a, a′ ∈ A, a 6= a′, δ, ε,∈ {−1, 1}
}

of Hn. Since Hn ≈ `2, Hn \ S is path-connected ([6, Theorem 6.4 on Page 166]).

Pick arbitrary x ∈ Sε0a0 \ S and y ∈ Sε1a1 \ S. There is an arc J in Hn \ S which

contains both x and y. Then the collection{
T εn,a ∩ J : a ∈ A, ε ∈ {−1, 1}

}
is a partition of J in at least two nonempty and at most countably many nonempty

closed sets. But this violates the Sierpiński Theorem, [11, Theorem 6.1.27].

This means that at most one element of the closed cover S of X is uncountable.

But X is locally of cardinality c by Lemma 4.4. As a consequence, since S is

countable, there is exactly one element of S that is nonempty, and hence is equal

to X. There are two cases to consider. First assume that S−1a = X for some

a ∈ A. Then f(x) = −x + a for every x ∈ X. But H contains the countable

group G, the paratopological group we started with. There is a sequence (xi)i in

G such that xi → 0 but (−xi)i is closed and discrete in G and hence in H and

hence in X. Since the translation x 7→ x+a is a homeomorphism of X, this implies

that the sequence (−xi +a)i is closed and discrete in X. But this contradicts the

continuity of f . Hence there is a unique a ∈ A such that f(x) = x + a for every

x ∈ X, i.e., f is a translation. �

5. Baire uniquely homogeneous spaces

The example constructed in the previous section is not a Baire space. Here we

prove that it cannot be a Baire space.
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Theorem 5.1. Let X be a metrizable Baire space that is uniquely homogeneous.

If X is Abelian, then X is an Abelian topological group.

Proof. There are several ways we can arrive at the desired conclusion.

For example, by [2, Theorem 5.4], the standard group operation on X is semi-

topological and Abelian. However, every metrizable semitopological group with

the Baire property is a paratopological group, by Bouziad [7, Corollary 5]. But ev-

ery symmetrizable paratopological group with the Baire property is a topological

group, as was shown by Arhangel′skii and Reznichenko [3, Theorem 1.4].

Another route is to use Theorem 2 in Kenderov, Kortezov, and Moors [14]. �
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