HOMOGENEITY AND GENERALIZATIONS OF 2-POINT SETS

WILL BRIAN, JAN VAN MILL, AND ROLF SUABEDISSEN
Communicated by Yasunao Hattori

Abstract

We prove the existence of homogeneous κ-point sets in the plane for every finite $\kappa \geq 3$. We also show that for every zero-dimensional subset A of the real line there is a subset X of the plane such that every line intersects X in a topological copy of A.

1. Introduction

A two-point set is a subset X of the plane which meets every line in precisely 2 points. Since the first proof of the existence of two-point sets in [8], these rather strange geometric objects have received considerable interest.

Of course the notion has been generalized to κ-point sets (subsets of the plane meeting every line in precisely κ many points) and a wide variety of κ-point sets with some extra topological or geometric properties have been constructed for various values of κ. Typically, if one can obtain a two-point set satisfying some property \mathcal{P}, it is possible to construct κ-point sets satisfying property \mathcal{P} (at least for finite κ). Curiously, [4] (for $\kappa=2$) and [2] (for infinite $\kappa<\mathfrak{c}$) have constructed κ-point sets which are multiplicative subgroups of $\mathbb{C} \backslash\{0\}$ and in particular homogeneous. However, neither of these approaches generalizes directly to give a homogeneous κ-point set for $3 \leq \kappa<\aleph_{0}$.

In the first part of the paper we give a proof that homogeneous κ-point sets exist for finite $\kappa \geq 3$. This relies on a lemma showing that for zero-dimensional, firstcountable topological spaces the notions of homogeneity and almost homogeneity coincide. We note, however, that although the κ-point sets so constructed are homogenous as topological spaces, they are not homogeneously embedded in the plane.

[^0]Noting that the generalization to κ-point sets (for infinite values of κ) is rather coarse, we give a much finer more topological generalization in the second part of the paper: the idea is that if \mathcal{P} is a topological property, we say that $X \subseteq \mathbb{R}^{2}$ is a \mathcal{P}-slice set if and only if for every line L the subspace $X \cap L$ satisfies \mathcal{P}. Of particular interest to us is the case when \mathcal{P} is simply 'homeomorphic to A ' for some fixed subset A of \mathbb{R}. In this case we simply talk about ' A-slice sets'. We show that if $1 \neq|A|<\mathfrak{c}$ or $1 \neq|\mathbb{R} \backslash A|<\mathfrak{c}$, then there is an A-slice set. We also observe that no $[0,1]$-slice set exists and give some further results concerning slice sets. In the final section we prove that, for any zero-dimensional subset A of \mathbb{R}, there is an A-slice set.

2. Notation

We use the following notation, common in work on κ-point sets: We use both \mathbb{R}^{2} and \mathbb{C} to denote the plane. The set of lines in the plane is denoted by \mathcal{L} and usually well-ordered as $\left\{L_{\alpha}: \alpha<\mathfrak{c}\right\}$. If $A \subseteq \mathbb{R}^{2}$, the set of lines spanned by points of A is denoted by $\langle A\rangle=\{L \in \mathcal{L}:|L \cap A| \geq 2\}$. If A is infinite then $|\langle A\rangle|=|A|$. By a partial κ-point set we mean a subset X of the plane such that X meets every line in at most κ many points.

If G is a group acting on \mathbb{C} and maps lines to lines then there is a natural induced action of G on \mathcal{L}. Typically we will not distinguish between these and no misunderstanding should arise. If G is a multiplicative subgroup of $\mathbb{C} \backslash\{0\}$ then the action of G on \mathbb{C} will always be given by multiplication $(g, z) \mapsto g z$.

3. Homogeneous n-point sets

Theorem 3.1 ([9]). If X is a zero-dimensional, first-countable topological space which is almost homogeneous (i.e. for any $x, y \in X$ and any open $U \ni x, V \ni y$ there are clopen W, Z with $x \in W \subseteq U$ and $y \in Z \subseteq V$ such that W and Z are homeomorphic), then X is homogeneous.

Theorem 3.2. Suppose G is a countable, dense, partial two-point multiplicative subgroup of $\mathbb{C} \backslash\{0\}$ and $n \in \mathbb{N}, n \geq 3$. If the natural action of G on the lines in \mathbb{C} is faithful (i.e. for every line L and every $g \in G \backslash\{1\}$ we have $g L \neq L$) then there is a zero-dimensional n-point subset X of \mathbb{C} such X is invariant under G, i.e. $G X=X$.

For those familiar with the construction of two points sets, we give a sketch proof before embarking on the formal construction:

Sketch. The standard construction will be applied with the following modifications:

- for each n we will cover \mathbb{C} by countably many closed disks of size $1 / n$. Writing C for the union of their boundaries, we note that C intersects each line in at most countably many points and that $G C$ does so as well, as each $g \in G$ maps circles to circles and G is countable. We will ensure that $X \cap G C=\emptyset$ so that X is zero-dimensional. This excludes only a small number of points on each line.
- when adding a point on a line L we will of course add $G x$ to X. We will choose x such that $G x$ is disjoint from any line in a different G-coset with at least 2 points on it already. Since G and hence $G x$ is a partial twopoint set, this will ensure that the new X will still be a partial n-point set. As there are only a small number of lines with at least 2 points on it and G is countable, this excludes only a small number of points on the given line. Note that 2 may be replaced by $n-1$.
- when adding a point on a line L with $n-1$ points already on that line, then by the faithfulness of the action (and countability of G) there are only countably many $x \in L$ with $G x \cap L \neq\{x\}$. We will not add one of these small number of points to X.

Proof. For each $n \in \mathbb{N}$, use Lindeloefness of \mathbb{C} to find $\left\{x_{m}^{n} \in \mathbb{C}: m \in \omega\right\}$ be such that $\bigcup_{m} B_{1 / n}\left(x_{m}^{n}\right)$ covers \mathbb{C}. Let

$$
C=\left\{x \in \mathbb{C}: \exists n \in \mathbb{N}, m \in \omega\left|x-x_{m}^{n}\right|=1 / n\right\}
$$

be the union of the bounding circles of the $B_{1 / n}\left(x_{m}^{n}\right)$. Since C is a union of countably many circles, it meets every line in at most countably many points. Since G is countable and maps lines to lines we have that $G C$ meets every line L in at most countably many points Z_{L}.

We will now construct an n-point way modifying the familiar inductive construction.

Let $\left\{L_{\alpha}: \alpha<\mathfrak{c}\right\}$ be an enumeration of the lines of \mathbb{C}. We will construct sets $X_{\alpha} \subset \mathbb{C}$ and write $T_{\alpha}=\bigcup_{\beta \leq \alpha} X_{\beta}$ such that for each $\alpha<\mathfrak{c}$:
(1) $\left|X_{\alpha}\right| \leq \aleph_{0}$;
(2) $X_{\alpha} \subset \mathbb{C} \backslash G C$;
(3) $G X_{\alpha}=X_{\alpha}$, i.e. X_{α} is invariant under G;
(4) T_{α} is a partial n-point set;
(5) $\left|T_{\alpha} \cap L_{\alpha}\right|=n$.

Once we have achieved this, we let $X=\bigcup_{\alpha<\mathfrak{c}} X_{\alpha}=\bigcup_{\alpha<\mathfrak{c}} T_{\alpha}$. Clearly X is an n-point set invariant under G. Also $X \subseteq \mathbb{C} \backslash C$ so is zero-dimensional.

So, suppose we have constructed X_{β} (and T_{β}) for $\beta<\alpha$ satisfying the above properties. Set $T_{\alpha}^{\prime}=\bigcup_{\beta<\alpha} X_{\beta}$ which has cardinality $<\mathfrak{c}$. Note that T_{α}^{\prime} and hence $\left\langle T_{\alpha}^{\prime}\right\rangle$ is invariant under G since all $X_{\beta}, \beta<\alpha$ are. There are two cases to consider:

If $k=\left|T_{\alpha}^{\prime} \cap L_{\alpha}\right|=n$ we set $X_{\alpha}=\emptyset$ and note that $X_{\alpha}\left(\right.$ and $\left.T_{\alpha}=T_{\alpha}^{\prime} \cup X_{\alpha}\right)$ satisfies all the inductive conditions.

Assume otherwise, i.e. $k<n$. We will show how to obtain a countable $X_{\alpha}^{\prime} \subset \mathbb{C} \backslash G C$ invariant under G such that $T_{\alpha}^{\prime} \cup X_{\alpha}^{\prime}$ is a partial n-point set and $\left|T_{\alpha}^{\prime} \cup X_{\alpha}^{\prime} \cap L_{\alpha}\right|>k$. Iterating this construction (with $T_{\alpha}^{\prime} \cup X_{\alpha}^{\prime}$ in place of T_{α}^{\prime}) finitely often (up to n times) and taking the union of the obtained X_{α}^{\prime} will clearly produce a set X_{α} as required.

For $L \in\left\langle T_{\alpha}^{\prime}\right\rangle \backslash G L_{\alpha}$ we set

$$
F_{L}=\bigcup_{g \in G} g^{-1} L \cap L_{\alpha}
$$

Note that since $g \in G$ maps lines to lines and $L \neq g L_{\alpha}$ we have $\left|g^{-1} L \cap L_{\alpha}\right| \leq 1$ so that $\left|F_{L}\right| \leq|G|=\aleph_{0}$. So the set

$$
F=\bigcup_{L \in\left\langle T_{\alpha}^{\prime}\right\rangle \backslash G L_{\alpha}} F_{L}
$$

has cardinality $\aleph_{0} .\left|T_{\alpha}^{\prime}\right|<\mathbf{c}$.
Next note that for $g \in G, g \neq 1$ there is at most one $x \in L_{\alpha}$ with $g x \in L_{\alpha}$: if $x, y \in L_{\alpha}$ were distinct with $g x, g y \in L_{\alpha}$ then, since g maps lines to lines, g would map L_{α} to itself. But by assumption G acts faithfully on lines, so we must have $g=1$, a contradiction. We thus see that

$$
S=\left\{x \in L_{\alpha}: \exists g \in G \backslash\{1\} g x \in L_{\alpha}\right\}
$$

has cardinality $\leq|G|=\aleph_{0}$.
Finally, as noted above $G C \cap L_{\alpha}$ is countable and that $T_{\alpha}^{\prime} \cap L_{\alpha}$ is finite.
We can therefore find $x \in L_{\alpha} \backslash\left(F \cup S \cup G C \cup T_{\alpha}^{\prime}\right)$ and claim that $X_{\alpha}^{\prime}=G x$ is as desired. Clearly X_{α}^{\prime} is countable and $T_{\alpha}^{\prime} \cup X_{\alpha}^{\prime}$ meets L_{α} in at least the additional point x compared to T_{α}^{\prime}. It remains to show that $T_{\alpha}^{\prime} \cup X_{\alpha}^{\prime}$ is a partial n-point set.

To this end, assume not and let $L \in \mathcal{L}$ witness this fact. Note that T_{α}^{\prime} is a partial n-point set and that G and hence $G x=X_{\alpha}^{\prime}$ is a partial 2-point set. Hence T_{α}^{\prime} must meet L in at least $n-1$ points and since $n \geq 3$, we must have $L \in\left\langle T_{\alpha}^{\prime}\right\rangle$. If $L \notin G L_{\alpha}$ then $x \notin F_{L}$ and thus for every $g \in G, g x \notin L$. But as $X_{\alpha}^{\prime}=G x$
we then must have $X_{\alpha}^{\prime} \cap L=\emptyset$, implying that T_{α}^{\prime} is not a partial n-point set, a contradiction. Thus there is $g \in G$ such that $g L_{\alpha}=L$. As T_{α}^{\prime} and X_{α}^{\prime} are G-invariant this implies that L_{α} meets $T_{\alpha}^{\prime} \cup X_{\alpha}^{\prime}$ in at least $n+1$ points. Since by assumption T_{α}^{\prime} meets L_{α} in at most $n-1$ points, we must have that there is $h \in G$ with $x \neq h x \in L_{\alpha}$. But then $h \neq 1$ so that $x \in S$, a contradiction again. Hence $T_{\alpha}^{\prime} \cup X_{\alpha}^{\prime}$ is indeed a partial n-point set.

We remark that the above proof is not subtle in its exclusion of points from L_{α}. We note for example that it is sufficient to define

$$
F=\bigcup\left\{F_{L}: L \in \mathcal{L} \backslash G L_{\alpha},\left|L \cap T_{\alpha}^{\prime}\right| \geq n-1\right\}
$$

This might be exploited when one wishes to construct homogeneous n-point sets with additional properties (or in fact homogeneous A-slice sets).

Corollary 3.3. Under the same assumptions as in 3.2 there is a homogeneous n-point subset of \mathbb{C}.

Proof. Taking the n-point set from Theorem 3.2 we will show that it satisfies the conditions of Theorem 3.1. Clearly X is first-countable and zero-dimensional. Now suppose that $x, y \in X$ and $\epsilon>0$. Without loss of generality $\epsilon<|y| / 2$. Note that if $\delta<\epsilon$ and $g \in G$ satisfies $|g x-y|<\delta$ then $0<m=\frac{|y|}{2|x|}<|g|<\frac{3|y|}{2|x|}=$ $M=3 m$.

Since G is dense in \mathbb{C} we have that $G x$ is dense in \mathbb{C} so there is $g \in G$ with $g x \in B_{\epsilon m / 4 M}(y) \subseteq B_{\epsilon / 2}(y)$ so that $g^{-1} y \in B_{\epsilon / 4 M}(x)$. Since X is Lindeloef it is strongly zero-dimensional and hence we can find an X-clopen W with $\overline{B_{\epsilon / 4 M}(x)} \subseteq$ $W \subseteq B_{\epsilon / 2 M}(x)$ so that $g W \subseteq B_{\epsilon / 2}(g x)$. We then have $y \in g W \subseteq B_{\epsilon}(y)$. By Theorem 3.1 X is homogeneous.

From [4] we will use the following lemma to construct the partial two-point group required in the above results.

Lemma 3.4. Let X be a partial two-point set such that $|X|<\mathfrak{c}$, let $L=$ $\left\{r e^{i \theta_{0}}: r \in \mathbb{R}\right\}, \theta_{0} \notin \pi \mathbb{Q}$ such that $X \cap L=\emptyset$. Then there are fewer than \mathfrak{c} many $g \in L$ such that $\bigcup_{n \in \mathbb{Z}} g^{n}(X)$ is not a partial two-point set.

Lemma 3.5. There is a countable, dense, partial two-point multiplicative subgroup of $\mathbb{C} \backslash\{0\}$ such that the action of G on the lines in \mathbb{C} is faithful.

Proof. Let $\left\{B_{n}: n \in \omega\right\}$ be a countable basis of \mathbb{C}. By induction on n we will construct $g_{n} \in \mathbb{C} \backslash\{0\}$ and write G_{n} for the smallest multiplicative subgroup of $\mathbb{C} \backslash\{0\}$ containing $\left\{g_{m}: m \leq n\right\}$. In general, if $A \subset \mathbb{C} \backslash\{0\}$ we will write $[A]$ for
the group generated by A, i.e. the smallest multiplicative subgroup of $\mathbb{C} \backslash\{0\}$ containing A. We will construct the g_{n} such that
(1) $g_{n} \in B_{n}$;
(2) G_{n} is a partial two-point set;
(3) G_{n} acts faithfully on lines.

Note that unless $g \in \mathbb{C} \backslash\{0\}$ has $\arg (g)=q \pi$ for some $q \in \mathbb{Q}$ we have that for every line $L \in \mathcal{L} g L \neq L$. Thus to satisfy 3 it is sufficient that $1, \arg \left(g_{0}\right), \ldots, \arg \left(g_{n}\right)$ are linearly independent over $\pi \mathbb{Q}$.

We define $g_{0}=1$. Suppose we have obtained g_{k} and G_{k} for $k \leq n$ satisfying the above conditions. Let

$$
\mathcal{L}_{F}=\left\{L \in \mathcal{L}: 0 \in L, \exists g \in L\left[G_{k} \cup\{g\}\right] \text { does not act faithfully on lines }\right\} .
$$

By the comment above \mathcal{L}_{F} is a countable set. We can thus find a line $L=$ $\left\{r e^{i \theta_{0}}: r \in \mathbb{R}\right\}$ such that $L \notin \mathcal{L}_{F}, L \cap G_{n}=\emptyset, L \cap B_{n} \neq \emptyset$ (and $\theta_{0} \notin \pi \mathbb{Q}$ which would follow anyway from $L \notin \mathcal{L}_{F}$). By Lemma 3.4 and the fact that $\left|L \cap B_{n} \backslash\{0\}\right|=\mathfrak{c}$ as well as $\left|G_{k}\right|<\mathfrak{c}$, we can find $g_{n+1} \in L \cap B_{n}$ such that $\left[G_{k} \cup\left\{g_{n+1}\right\}\right]=\bigcup_{n \in \mathbb{Z}} g^{n}\left(G_{k}\right)$ is a partial two-point set, as required.

Finally, let $G=\left[\left\{g_{n}: n \in \omega\right\}\right]=\bigcup_{n \in \omega} G_{n}$ and observe that G is as required.

Corollary 3.6. There are homogeneous n-point sets for $3 \leq n<\aleph_{0}$.
As remarked in the introduction, it is known that for $\kappa=2$ and $\aleph_{0} \leq \kappa<\mathfrak{c}$ there are κ-point sets which are homogeneously embedded in the plane (which are in fact multiplicative subgroups of \mathbb{C}). It is easy to see that for $3 \leq \kappa<\aleph_{0}$ there is no multiplicative subgroup of \mathbb{C} which is a κ-point set. However, the following is open:

Question 3.7. For $3 \leq \kappa<\aleph_{0}$, are there κ-point sets which are homogeneously embedded in the plane?

4. Slice sets

Definition 1. Let A be a subset of $\mathbb{R} . X \subseteq \mathbb{R}^{2}$ is an A-slice set (or a slice set for A) if, for every line L in \mathbb{R}^{2}, the intersection $X \cap L$ is homeomorphic to A. More generally, if \mathcal{P} is a topological property then we say that $X \subseteq \mathbb{R}$ is a \mathcal{P}-slice set whenever $X \cap L$ has property \mathcal{P} for every line L.

Now that we are interested in the topological structure of $X \cap L$, we can't simply add points in an inductive construction. The following lemma is the key to solve this problem.

Lemma 4.1. Suppose that A and B are subsets of \mathbb{R} with $2 \leq|A|<\mathfrak{c}$ and $|B|<\mathfrak{c}$, and suppose that $x_{1}, x_{2} \in \mathbb{R} \backslash B$. There is a homeomorphism $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f[A] \cap B=\emptyset$ and $x_{1}, x_{2} \in f[A]$. Moreover, f can be taken to be C^{∞}.

Proof. Assume that $x_{1}, x_{2} \in A$ (if not, we can dilate and translate \mathbb{R} so that this becomes true). Consider the three intervals $\left(-\infty, x_{1}\right),\left(x_{1}, x_{2}\right)$, and $\left(x_{2}, \infty\right)$. We will find three C^{∞} automorphisms of \mathbb{R}, each of which is the identity off of one of these intervals, and, on the interval where it is not the identity, maps points of A to $\mathbb{R} \backslash B$.

There is a C^{∞} bump function ψ on \mathbb{R} with the following properties:

- $\psi(x)=0$ for all $x \notin\left(x_{1}, x_{2}\right)$.
- $\psi(x)>0$ for all $x \in\left(x_{1}, x_{2}\right)$.
- There is a positive constant h_{0} such that, for $0<h<h_{0},\left|\frac{d(h \psi)}{d x}\right|<1$ at every point in \mathbb{R}.
If $0<h<h_{0}$ then the map $\phi_{h}(x)=x+h \psi(x)$ is a C^{∞} automorphism of \mathbb{R}. We claim that there is a constant h_{1} such that $0<h_{1}<h_{0}$ and, for all $x \in A \cap\left(x_{1}, x_{2}\right)$, $\phi_{h_{1}}(x) \notin B$. Suppose that this is not the case. Then, for every $h \in\left(0, h_{0}\right)$, there is (at least one) pair $\left(a_{h}, b_{h}\right) \in A \times B$ such that $a_{h} \in\left(x_{1}, x_{2}\right)$ and $\phi_{h}\left(a_{h}\right)=b_{h}$. If $h<h^{\prime}$ and $a_{h}=a_{h^{\prime}}$ then, since $\psi\left(a_{h}\right)>0$,

$$
b_{h}=a_{h}+h \psi\left(a_{h}\right)<a_{h}+h^{\prime} \psi\left(a_{h}\right)=b_{h^{\prime}}
$$

It follows that $\left(a_{h}, b_{h}\right) \neq\left(a_{h^{\prime}}, b_{h^{\prime}}\right)$ whenever $h \neq h^{\prime}$. This is impossible since $|A \times B|<\mathfrak{c}$. Thus some such h_{1} exists. $f_{1}=\phi_{h_{1}}$ is a C^{∞} automorphism of \mathbb{R} which is the identity on $\mathbb{R} \backslash\left(x_{1}, x_{2}\right)$ and which maps all $x \in A \cap\left(x_{1}, x_{2}\right)$ into $\mathbb{R} \backslash B$.

Similarly, there is a C^{∞} automorphism f_{2} of \mathbb{R} which is the identity on $\mathbb{R} \backslash$ $\left(-\infty, x_{1}\right)$ and which maps all $x \in A \cap\left(-\infty, x_{1}\right)$ into $\mathbb{R} \backslash B$, and there is a C^{∞} automorphism f_{3} of \mathbb{R} which is the identity on $\mathbb{R} \backslash\left(x_{2}, \infty\right)$ and which maps all $x \in A \cap\left(x_{2}, \infty\right)$ into $\mathbb{R} \backslash B$. Set $f=f_{3} \circ f_{2} \circ f_{1}$.

Using this lemma, we can do 'the usual' inductive reconstruction, being careful never to put more than two points onto a line L before we are at the appropriate stage (when $L_{\alpha}=L$) in the recursion.

Theorem 4.2. If $A \subseteq \mathbb{R}$ and $2 \leq|A|<\mathfrak{c}$, then there is a slice set for A.
Proof. Let $\left\langle L_{\alpha}: \alpha<\mathfrak{c}\right\rangle$ be an enumeration of all lines in \mathbb{R}^{2}. As above, we build X by transfinite recursion. Let $X^{0}=\emptyset$. Let $\alpha<\mathfrak{c}$ and assume that we have constructed $\left\langle X^{\beta}: \beta<\alpha\right\rangle$ such that

- For $\gamma<\beta<\alpha, X^{\beta} \cap L_{\gamma}$ is homeomorphic to A
- For $\gamma \geq \beta<\alpha,\left|X^{\beta} \cap L_{\gamma}\right| \leq 2$
- If $\gamma<\beta<\alpha$ then $X^{\gamma} \subseteq X^{\beta}$

If α is a limit ordinal, take $X^{\alpha}=\bigcup_{\beta<\alpha} X^{\beta}$. If $\alpha=\beta+1$ then, by assumption, $X^{\beta} \cap L_{\beta}$ contains at most two points, say x_{1} and x_{2}. Let

$$
\begin{gathered}
B=\left\{x \in L_{\beta}: x \notin X^{\beta} \text { but } x \in L_{\gamma} \text { for some } \gamma<\beta\right\} \\
B^{\prime}=\left\{x \in L_{\beta}: \text { for some } \gamma>\beta,\left|L_{\gamma} \cap X^{\beta}\right|=2 \text { and } x \in L_{\gamma}\right\}
\end{gathered}
$$

It is straightforward to show that $|B|<\mathfrak{c}$ and $\left|B^{\prime}\right|<\mathfrak{c}$. By Lemma 4.1, there is a subset Y of L_{β} which is homeomorphic to A, which includes both x_{1} and x_{2}, and which is disjoint from $B \cup B^{\prime}$. Setting $X^{\alpha}=X^{\beta} \cup Y$, it is clear that X^{α} satisfies the inductive hypotheses, so this completes the induction. $X=\bigcup_{\alpha<\mathfrak{c}} X^{\alpha}$ is the desired slice set.

Corollary 4.3. If $A \subseteq \mathbb{R}$ and $2 \leq|\mathbb{R} \backslash A|<\mathfrak{c}$, then there is a slice set for A.
Proof. By Theorem 4.2 there is a slice set X for $\mathbb{R} \backslash A$. Furthermore, because of our use of Lemma 4.1 in the induction step, X has the additional property that for every line L in \mathbb{R}^{2} there is a homeomorphism $\mathbb{R} \rightarrow L$ which restricts to a homeomorphism from $\mathbb{R} \backslash A$ onto $X \cap L$. Taking complements, it follows that for every line L in \mathbb{R}^{2} there is a homeomorphism $\mathbb{R} \rightarrow L$ which restricts to a homeomorphism from A onto $L \backslash(X \cap L)=L \cap\left(\mathbb{R}^{2} \backslash X\right)$. Thus $\mathbb{R}^{2} \backslash X$ is a slice set for A.

Using the techniques of section 3 in the case that $3 \leq|A|<\mathfrak{c}$, we may take our A-slice sets to be homogeneous.
Corollary 4.4. If $A \subseteq \mathbb{R}$ and $3 \leq|A|<\mathfrak{c}$, then there is a homogeneous subset of \mathbb{R}^{2} which is a slice set for A.

Proof. The proof follows closely the proof of Theorem 3.2. The only extra tool that is needed is a modification of Lemma 4.1: Suppose that A and B are subsets of \mathbb{R} with $3 \leq|A|<\mathfrak{c}$ and $|B|<\mathfrak{c}$, and suppose that $x_{1}, x_{2}, x_{3} \in \mathbb{R} \backslash B$; then there is a homeomorphism $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\phi[A] \cap B=\emptyset$ and $x_{1}, x_{2}, x_{3} \in \phi[A]$. The proof of this lemma is similar to the original proof of Lemma 4.1.

Corollary 4.5. It is consistent with ZFC that there is a homogeneous subset X of \mathbb{R}^{2} such that, for every line $L, X \cap L$ is rigid.

Proof. It is shown in [1] that there is a generic extension in which there is a rigid subset of \mathbb{R} of cardinality less than \boldsymbol{c}. Applying Corollary 4.4, we obtain the desired result.

Unlike Theorem 4.2, Corollary 4.4 does not extend via complementation to the case $3 \leq|\mathbb{R} \backslash A|<\mathfrak{c}$, and it remains unknown whether homogeneous A-slice sets exist for such A.

It is obvious that there are slice sets for \emptyset and \mathbb{R} and that there is not a slice set for a singleton. This observation, together with Theorem 4.2 and Corollary 4.3, nearly answers the question of the existence of slice sets for small and co-small subsets of \mathbb{R} (the one case which remains unsolved is $|\mathbb{R} \backslash A|=1$, i.e., a subset of the plane which meets every line in exactly two open intervals). The next natural question to ask is: for which subsets A of \mathbb{R} with $|A|=|\mathbb{R} \backslash A|=\mathfrak{c}$ do A-slice sets exist? A general characterization has not been found, but in the next section we will show that any totally disconnected subset of \mathbb{R} has a slice set. The following theorem summarizes a few results for various subsets of \mathbb{R} which are not totally disconnected:

Theorem 4.6.

(i) There is no slice set for $[0,1]$ or for $[0,1)$.
(ii) There are slice sets for a countable sum of closed intervals and for a countable sum of open intervals.
(iii) If $A \subseteq \mathbb{R}$ is such that $A=-A$ and, for any $r \in \mathbb{R}, A$ is homeomorphic to the image of A in the quotient space $\mathbb{R} /[-r, r]$, then there is a slice set for A. Note that this property is not topological, so it is sufficient for A to be homeomorphic to such a space.

Proof.

(i) Suppose that X is a slice set for $[0,1]$ or for $[0,1)$. Since either of $[0,1]$ or $[0,1)$ is connected, X is convex. For each line L in \mathbb{R}^{2}, there is an open ray in L which does not belong to X, i.e., some $p \in L$ such that every point of L on one side of p does not belong to X; without loss of generality, we may take the origin to be in X and, using polar coordinates, take the open ray $\{(r, \pi): r>0\}$ to be a subset of $\mathbb{R}^{2} \backslash X$. Let $\theta_{1} \leq \pi$ be the smallest and $\theta_{2} \geq \pi$ the largest values for which $\mathbb{R}^{2} \backslash X$ contains the open wedge

$$
W=\left\{(r, \theta): r>0, \theta_{1}<\theta<\theta_{2}\right\}
$$

If $\theta_{2}-\theta_{1}<\pi$, consider the open ray $R=\left\{\left(r, \frac{\theta_{1}+\theta_{2}}{2}\right): r>0\right\}$; even in the degenerate case $\theta_{1}=\theta_{2}=\pi$, we have $R \subseteq \mathbb{R}^{2} \backslash X$. Let

$$
\begin{aligned}
& A=\left\{(r, \theta): r>0, \frac{\theta_{1}+\theta_{2}}{2}-\frac{\pi}{2}<\theta<\frac{\theta_{1}+\theta_{2}}{2}\right\} \\
& B=\left\{(r, \theta): r>0, \frac{\theta_{1}+\theta_{2}}{2}<\theta<\frac{\theta_{1}+\theta_{2}}{2}+\frac{\pi}{2}\right\}
\end{aligned}
$$

These are the two quadrants on either side of R. It must be that either $A \subseteq \mathbb{R}^{2} \backslash X$ or $B \subseteq \mathbb{R}^{2} \backslash X$; otherwise, by the convexity of X, we can find a point of R which is in X. This contradicts either the minimality of θ_{1} or the maximality of θ_{2}; thus we have $\theta_{2}-\theta_{1} \geq \pi$. However, if $\theta_{2}-\theta_{1} \geq \pi$, then there is a line in \mathbb{R}^{2} which is completely contained in $\mathbb{R}^{2} \backslash X$, contradicting the assumption that X is a slice set for a nonempty set.
(ii) Consider the hexagonal honeycomb packing of circles of radius 1 in the plane. Keeping the centers of the circles fixed, shrink the radius of each circle by some constant $\frac{2-\sqrt{3}}{2}<c<1$. Now remove the interiors of the circles. The set which remains meets every line in a countable sum of closed intervals. The complement of this set meets every line in a countable sum of open intervals.
(iii) For each $r>0$, let C_{r} denote the circle of radius r centered at the origin and let $C_{0}=\{(0,0)\}$. Take $X=\bigcup_{a \in A \cap[0, \infty)} C_{a}$.

Many open questions remain concerning slice sets for $A \subseteq \mathbb{R},|A|=|\mathbb{R} \backslash A|=\mathfrak{c}$. For instance, it is unknown whether there is a slice set for $[0,1] \times\{0,1\},[0,1] \times n$, or, more generally, whether there is a subset of \mathbb{R}^{2} which meets every line in a finite union of closed intervals. Similarly, it is unknown whether there is a slice set for $(0,1) \times\{0,1\}$ (Corollary 4.3 covers the case of larger sums of open intervals).

Alternatively, we can ask for a subset of the plane which meets every line in a unique way:

Lemma 4.7. The number of distinct homeomorphism classes of countable subsets of \mathbb{R} is \mathbf{c}.

Proof. Every countable subset of \mathbb{R} can be embedded in \mathbb{Q}, so the number of distinct homeomorphism classes of countable subsets of \mathbb{R} is at most $|\mathcal{P}(\mathbb{Q})|=\mathfrak{c}$.

Let $X \subseteq \mathbb{R}$. Let P be the largest dense-in-itself subset of X and let $S=X \backslash P$ be the scattered part of X. We define the scattered signature $H(X)$ of X as follows. $H(X)$ is a set of ordinals, and $\alpha \in H(X)$ if and only if there is some $p \in P$ such that p has Cantor-Bendixson rank α in $S \cup\{p\}$.

Let $A=\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ be a countable subset of ω_{1}. We show that there is a countable subset of \mathbb{R} with scattered signature A. On the interval $\left[n+\frac{1}{4}, n+\frac{1}{2}\right]$, embed $\omega^{\alpha_{n}}+1$, making sure that the point $\omega^{\alpha_{n}}$ maps to the point $n+\frac{1}{2}$. Include the points $\mathbb{Q} \cap\left[n+\frac{1}{2}, n+\frac{3}{4}\right]$ and call the resulting set X. It is a routine exercise to show that $H(X)=A$.

As there are \mathfrak{c}-many countable subsets of ω_{1}, this proves that the number of distinct homeomorphism classes of countable subsets of \mathbb{R} is at least \mathfrak{c}.

Theorem 4.8. There is a subset of the plane whose intersection with each line has unique homeomorphism type, i.e., no two such intersections are homeomorphic.

Proof. Let $\left\langle A_{\alpha}: \alpha<\mathfrak{c}\right\rangle$ be a sequence of countable subsets of \mathbb{R} such that if $\alpha \neq \beta$ then A_{α} is not homeomorphic to A_{β}.

We now construct the desired set X by transfinite induction. The construction is exactly the same as in Theorem 4.2 except that, at the successor step $\alpha+1$, we use Lemma 4.1 to guarantee that $L_{\alpha} \cap X$ is homeomorphic to A_{α}.

5. Zero-dimensional subsets of \mathbb{R}

In this section we will use algebraically independent Cantor subsets of \mathbb{R} to construct a Cantor-slice set. We then use this to show that for any zero-dimensional subset A of \mathbb{R} an A-slice set exists. The use of algebraic independence is interesting for the following reason:

When one wants to construct a Cantor-slice set, the fundamental problem with an inductive construction is that there are Cantor sets $C \subseteq \mathbb{R}$ such that $C-C$ contains an interval. If one wants to carry out an inductive construction, then for each $\alpha \geq 3$ one has \mathfrak{c} many lines already containing two points. But since C is compact the moment one has chosen to include infinitely many points on a particular line L, one must have its closure in the eventual slice-set, which may of course cause problems. So a simple counting argument will not work for the construction of Cantor-slice sets.

To get around this problem, the first author replaced the notion of 'smallness' as '< \mathfrak{c} many' by 'null set'. However, as the inductive construction may be longer than \aleph_{1} (depending on whether or not CH holds) one needs to ensure that the ideal of null subsets of \mathbb{R} is $<\mathfrak{c}$-complete, e.g. by Martin's Axiom. Choosing the Cantor sets carefully then yields a construction of a Cantor-slice set which is consistent relative to ZFC.

By again replacing the notion of 'smallness' by \mathbb{R} having a \mathfrak{c}-transcendence degree over the Cantor set, we were finally able to achieve a ZFC-construction of a Cantor-slice set. We note that this is reminiscent of the improvement of the construction of a 2-point set contained in the union of countably many concentric circles from a consistency result (in this case [5] needed CH) to a ZFC-result by [11] which also used algebraic independence in an essential way.

We briefly review some of the necessary terminology from algebra and only consider subfields of \mathbb{C}. If A is a subset of \mathbb{C} the field generated by A is the smallest subfield of \mathbb{C} containing $\mathbb{Q} \cup A$ (which can be obtained by intersecting all subfields of \mathbb{C} containing $\mathbb{Q} \cup A$). A subfield F of \mathbb{C} is algebraically
closed if for every polynomial p with coefficients in F and every $z \in \mathbb{C}$ with $p(z)=0$ we have $z \in F$. The algebraic closure of A is the smallest algebraically closed subfield containing $\mathbb{Q} \cup A$ (again obtained by taking intersections over all algebraically closed subfields containing $\mathbb{Q} \cup A$). We say that A is algebraically independent if and only if no $x \in A$ belongs to the algebraic closure of $A \backslash\{x\}$. The transcendence degree of some field F over some field F^{\prime} is $\min \left\{|B|: B \subseteq F\right.$ and F is contained in the algebraic closure of $\left.F^{\prime} \cup B\right\}$. We relativize these notions to \mathbb{R} in the obvious way (i.e. replacing \mathbb{C} by \mathbb{R} in the above constructions). For more details, we refer the reader to [10].

For the construction, let us first note that there are algebraically independent Cantor subsets of \mathbb{R} (see for example [6], Lemma 3.9). By partitioning such a subset into two Cantor subsets (for example) we have that there is a Cantor subset C of \mathbb{R} such that the transcendence degree of \mathbb{R} over the (relative to \mathbb{R}) algebraic closure of C is \mathfrak{c} ([10] Theorem VIII.1.1).

Theorem 5.1. Suppose C is a subset of \mathbb{R} such that the transcendence degree of \mathbb{R} over the (relative to \mathbb{R}) algebraic closure of C is \mathfrak{c} and such that the union of two copies of C in \mathbb{R} is homeomorphic to C. Then there is a subset X of the plane such that for every line L the set $L \cap X$ is homeomorphic to C. In particular there is a Cantor-slice set.

Proof. As always, we will well order the lines in the plane as $\left\langle L_{\alpha}: \alpha<\mathfrak{c}\right\rangle$ and we will parametrize a line L_{α} as

$$
L_{\alpha}(t)=r_{\alpha} e^{i \theta_{\alpha}}+t e^{i\left(\theta_{\alpha}+\frac{\pi}{2}\right)}=r_{\alpha}\left(\cos \theta_{\alpha}, \sin \theta_{\alpha}\right)+t\left(-\sin \theta_{\alpha}, \cos \theta_{\alpha}\right)
$$

for $r_{\alpha} \in \mathbb{R}_{0}^{+}$and $\theta_{\alpha} \in[0, \pi)$ such that $r_{\alpha} e^{i \theta_{\alpha}}$ is the closest point of L to 0 . We identify L_{α} with \mathbb{R} by the parametrization given above, so that if we talk about a real number t (resp. a set A of real numbers) 'interpreted as a an element (resp. subset) of L_{α} ' we mean the point $L_{\alpha}(t) \in \mathbb{R}^{2}$ (resp. the set $\left\{L_{\alpha}(a): a \in A\right\} \subseteq$ $L_{\alpha} \subset \mathbb{R}^{2}$) whereas if we consider t (resp. A) 'interpreted as an element (resp. subset) of \mathbb{R}^{\prime} we mean the actual real number (resp. set of real numbers). Let us note that the two coordinates of $L_{\alpha}(t)$ are given by an algebraic equation in $\left\{r_{\alpha}, \cos \theta_{\alpha}, \sin \theta_{\alpha}, t\right\}$. For each α, we will write $D_{\alpha}=\left\{r_{\alpha}, \cos \theta_{\alpha}, \sin \theta_{\alpha}\right\}$.

Fix some $i_{0} \in C$.
We will construct sequences $a_{\alpha}, b_{\alpha}, t_{\alpha} \in \mathbb{R}, \alpha<\mathfrak{c}$ by transfinite induction. Having constructed $a_{\beta}, b_{\beta}, t_{\beta}$ for $\beta<\alpha$ we will write $C_{\beta}=\left(a_{\beta}+t_{\beta}\left(C-i_{0}\right)\right) \cup$ $\left(b_{\beta}+t_{\beta}\left(C-i_{0}\right)\right)$ (interpreted as a subset of $\left.L_{\beta}\right)$ and $P_{\alpha}=\bigcup_{\beta<\alpha} C_{\beta}$ (interpreted as a subset of $\left.\mathbb{R}^{2}\right)$. The conditions of our transfinite induction are:
(1) $P_{\alpha} \cap L_{\alpha} \subseteq\left\{L_{\alpha}\left(a_{\alpha}\right), L_{\alpha}\left(b_{\alpha}\right)\right\}$
(2) If $L_{\alpha}\left(a_{\alpha}\right) \notin \bigcup_{\beta<\alpha} L_{\beta}$ then $L_{\alpha}\left(a_{\alpha}\right) \notin\left\langle P_{\alpha}\right\rangle$ and similarly for b_{α}.
(3) t_{α} is not in the algebraic closure of

$$
C \cup \bigcup_{\beta \leq \alpha} D_{\beta} \cup\left\{t_{\beta}: \beta<\alpha\right\} \cup\left\{a_{\beta}, b_{\beta}: \beta \leq \alpha\right\}
$$

(4) For $\gamma>\alpha$ we have $\left|P_{\alpha+1} \cap L_{\gamma}\right| \leq 2$.

So suppose we are at stage α in our construction (if $\alpha=0$ then of course $P_{\alpha}=\emptyset$, $\bigcup_{\beta<\alpha} L_{\beta}=\emptyset$ etc):

The key fact is that the (relative to \mathbb{R}) algebraic closure of $\left\langle P_{\alpha}\right\rangle \cap L_{\alpha}$ in \mathbb{R} (after identifying L_{α} with \mathbb{R}) is still small, in the sense that \mathbb{R} has transcendence degree \mathfrak{c} over it. For suppose $t \in L_{\alpha}$ (identified with \mathbb{R}) is in $\left\langle P_{\alpha}\right\rangle$. Then there are $\beta_{i}<\alpha, i=1,2$ with $t_{i} \in C_{\beta_{i}}$ (interpreted as a subset of \mathbb{R}) such that t, t_{1}, t_{2} are collinear (this time interpreting t, t_{1}, and t_{2} as points on $L_{\alpha}, L_{\beta_{1}}$ and $L_{\beta_{2}}$ respectively). But collinearity of these points can be expressed as an algebraic equation in their coordinates and hence as an algebraic equation over $D_{\alpha} \cup D_{\beta_{1}} \cup D_{\beta_{2}} \cup\left\{t, t_{1}, t_{2}\right\}$ (where again t, t_{1}, t_{2} are interpreted as real numbers). But each $t_{i} \in C_{\beta_{i}}$ so is given by an algebraic equation over $C \cup\left\{t_{\beta_{i}}, i_{0}, a_{\beta_{i}}, b_{\beta_{i}}\right\}$. Hence $\left\{t \in L_{\alpha}: t \in\left\langle P_{\alpha}\right\rangle\right\}$ is contained in the (relative to \mathbb{R}) algebraic closure A_{α} of $C \cup\left\{t_{\beta}, a_{\beta}, b_{\beta}: \beta<\alpha\right\} \cup \bigcup_{\beta<\alpha} D_{\beta}$. Since \mathbb{R} has transcendence degree \mathfrak{c} over C and $\left\{t_{\beta}, a_{\beta}, b_{\beta}: \beta<\alpha\right\} \cup \bigcup_{\beta \leq \alpha}^{-\alpha} D_{\beta}$ has size $<\mathfrak{c}$, this means that \mathbb{R} has transcendence degree \mathfrak{c} over A_{α}. In particular $\mathbb{R} \backslash A_{\alpha} \neq \emptyset$ and if F is any finite subset of \mathbb{R} then \mathbb{R} still has transcendence degree \mathfrak{c} over the algebraic closure of $A_{\alpha} \cup F$.

Next note that P_{α} will meet L_{α} in at most two points: if α is a successor then this follows from condition 4 from the previous step of the induction; if on the other hand α is a limit and P_{α} would meet L_{α} in three points, then there is $\beta<\alpha$ such that $P_{\beta+1}$ already meets L_{α} in three points, a contradiction to condition 4 at inductive stage β again.

If the intersection $P_{\alpha} \cap L_{\alpha}$ has exactly two points, we choose a_{α}, b_{α} so that $L_{\alpha}\left(a_{\alpha}\right), L_{\alpha}\left(b_{\alpha}\right)$ are precisely those two points. If it only meets L_{α} in one point, then we choose $a_{\alpha}=b_{\alpha}$ to be that point. Finally, if the intersection is empty, then we choose $a_{\alpha}=b_{\alpha}$ outside A_{α}.

Lastly, since \mathbb{R} had transcendence degree \mathfrak{c} over A_{α}, it will have transcendence degree \mathfrak{c} over the algebraic closure of $A_{\alpha} \cup\left\{a_{\alpha}, b_{\alpha}\right\}$ so we can choose t_{α} such that condition 3 is satisfied. Note that by this choice and an argument as in the first paragraph, this means that the set C_{α} will meet $\left\langle P_{\alpha}\right\rangle$ in at most those points in
which it already meets P_{α}. Hence the fourth inductive condition continues to be satisfied.

The construction of X is now clear: simply take $X=\bigcup_{\alpha<\mathfrak{c}} C_{\alpha}$.
Corollary 5.2. If $A \subseteq \mathbb{R}$ is zero-dimensional then there is a slice set for A.
Proof. A can be embedded in a Cantor set in such a way that any two preassigned points are in the image of A. We can follow the construction of the previous theorem (Theorem 5), but instead of choosing a Cantor set C_{α} at stage α of the construction, we embed A into C_{α}, such that $L_{\alpha}\left(a_{\alpha}\right)$ and $L_{\alpha}\left(b_{\alpha}\right)$ both belong to the image of A under the embedding.

References

[1] W. R. Brian, "Topics in general and set-theoretic topology," doctoral thesis, University of Oxford (2012).
[2] B. Chad, Doctoral Thesis, University of Oxford, (2011).
[3] B. Chad and R. Suabedissen, Symmetries of two-point sets, Topology Appl. 155 (2008), 1213-1220.
[4] B. Chad and R. Suabedissen, On affine groups admitting invariant two-point sets, Topology Appl. 156 (2009), 2209-2213
[5] B. Chad, R. W. Knight and R. Suabedissen, Set-theoretic constructions of 2-point sets, Fund. Math. 203 (2009) 179-189
[6] J. J. Dijkstra, K. Kunen and J. van Mill, Hausdorff measures and two point set extensions, Fund. Math. 157 (1998) 44-60
[7] Kunen, K. Set Theory. Studies in Logic and the Foundations of Mathematics, vol. 102. (1980), Elsevier, Amsterdam, The Netherlands.
[8] S. Mazurkiewicz, On a certain planar set that has precisely two points in common with each straight line, C. R. Acad. Sci. Lettres Varsovie 7 (1914), 382-384 (in Polish).
[9] J. van Mill, Homogeneous subsets of the real line, Comp. Math. 45 (1982), 3-13.
[10] S. Lang, Algebra, 3rd ed., Addison-Wesley, Reading, 1993
[11] J. H. Schmerl, Some 2-point sets, Fund. Math. 208 (2010), 87-91
Received February 1, 2012
Revised version received May 8, 2012
William R. Brian, Department of Mathematics, Tulane University
E-mail address: wbrian.math@gmail.com
Jan van Mill Korteweg-de Vries Institute for Mathematics, University of AmsterDAM

E-mail address: j.vanMill@uva.nl
Rolf Suabedissen, Department of Mathematics, University of Oxford
E-mail address: suabedis@maths.ox.ac.uk

[^0]: 2010 Mathematics Subject Classification. 54G99,54H15.
 Key words and phrases. two-point set, homogeneity, slice set.

