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Abstract. We prove the existence of homogeneous κ-point sets in the plane

for every finite κ ≥ 3. We also show that for every zero-dimensional subset A

of the real line there is a subset X of the plane such that every line intersects

X in a topological copy of A.

1. Introduction

A two-point set is a subset X of the plane which meets every line in precisely 2

points. Since the first proof of the existence of two-point sets in [8], these rather

strange geometric objects have received considerable interest.

Of course the notion has been generalized to κ-point sets (subsets of the plane

meeting every line in precisely κ many points) and a wide variety of κ-point

sets with some extra topological or geometric properties have been constructed

for various values of κ. Typically, if one can obtain a two-point set satisfying

some property P, it is possible to construct κ-point sets satisfying property P
(at least for finite κ). Curiously, [4] (for κ = 2) and [2] (for infinite κ < c) have

constructed κ-point sets which are multiplicative subgroups of C \ {0} and in

particular homogeneous. However, neither of these approaches generalizes directly

to give a homogeneous κ-point set for 3 ≤ κ < ℵ0.

In the first part of the paper we give a proof that homogeneous κ-point sets exist

for finite κ ≥ 3. This relies on a lemma showing that for zero-dimensional, first-

countable topological spaces the notions of homogeneity and almost homogeneity

coincide. We note, however, that although the κ-point sets so constructed are

homogenous as topological spaces, they are not homogeneously embedded in the

plane.
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Noting that the generalization to κ-point sets (for infinite values of κ) is rather

coarse, we give a much finer more topological generalization in the second part

of the paper: the idea is that if P is a topological property, we say that X ⊆ R2

is a P-slice set if and only if for every line L the subspace X ∩ L satisfies P. Of

particular interest to us is the case when P is simply ‘homeomorphic to A’ for

some fixed subset A of R. In this case we simply talk about ‘A-slice sets’. We

show that if 1 6= |A| < c or 1 6= |R \A| < c, then there is an A-slice set. We also

observe that no [0, 1]-slice set exists and give some further results concerning slice

sets. In the final section we prove that, for any zero-dimensional subset A of R,

there is an A-slice set.

2. Notation

We use the following notation, common in work on κ-point sets: We use both

R2 and C to denote the plane. The set of lines in the plane is denoted by L and

usually well-ordered as {Lα : α < c}. If A ⊆ R2, the set of lines spanned by points

of A is denoted by 〈A〉 = {L ∈ L : |L ∩A| ≥ 2}. If A is infinite then |〈A〉| = |A|.
By a partial κ-point set we mean a subset X of the plane such that X meets every

line in at most κ many points.

If G is a group acting on C and maps lines to lines then there is a natural

induced action of G on L. Typically we will not distinguish between these and no

misunderstanding should arise. If G is a multiplicative subgroup of C \ {0} then

the action of G on C will always be given by multiplication (g, z) 7→ gz.

3. Homogeneous n-point sets

Theorem 3.1 ([9]). If X is a zero-dimensional, first-countable topological space

which is almost homogeneous (i.e. for any x, y ∈ X and any open U 3 x, V 3 y
there are clopen W,Z with x ∈ W ⊆ U and y ∈ Z ⊆ V such that W and Z are

homeomorphic), then X is homogeneous.

Theorem 3.2. Suppose G is a countable, dense, partial two-point multiplicative

subgroup of C \ {0} and n ∈ N, n ≥ 3. If the natural action of G on the lines in

C is faithful (i.e. for every line L and every g ∈ G \ {1} we have gL 6= L) then

there is a zero-dimensional n-point subset X of C such X is invariant under G,

i.e. GX = X.

For those familiar with the construction of two points sets, we give a sketch

proof before embarking on the formal construction:
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Sketch. The standard construction will be applied with the following modifica-

tions:

• for each n we will cover C by countably many closed disks of size 1/n.

Writing C for the union of their boundaries, we note that C intersects

each line in at most countably many points and that GC does so as well,

as each g ∈ G maps circles to circles and G is countable. We will ensure

that X ∩ GC = ∅ so that X is zero-dimensional. This excludes only a

small number of points on each line.

• when adding a point on a line L we will of course add Gx to X. We will

choose x such that Gx is disjoint from any line in a different G-coset with

at least 2 points on it already. Since G and hence Gx is a partial two-

point set, this will ensure that the new X will still be a partial n-point

set. As there are only a small number of lines with at least 2 points on

it and G is countable, this excludes only a small number of points on the

given line. Note that 2 may be replaced by n− 1.

• when adding a point on a line L with n − 1 points already on that line,

then by the faithfulness of the action (and countability of G) there are

only countably many x ∈ L with Gx ∩ L 6= {x}. We will not add one of

these small number of points to X.

�

Proof. For each n ∈ N, use Lindeloefness of C to find {xnm ∈ C : m ∈ ω} be such

that
⋃
mB1/n(xnm) covers C. Let

C = {x ∈ C : ∃n ∈ N,m ∈ ω |x− xnm| = 1/n}

be the union of the bounding circles of the B1/n(xnm). Since C is a union of

countably many circles, it meets every line in at most countably many points.

Since G is countable and maps lines to lines we have that GC meets every line L

in at most countably many points ZL.

We will now construct an n-point way modifying the familiar inductive con-

struction.

Let {Lα : α < c} be an enumeration of the lines of C. We will construct sets

Xα ⊂ C and write Tα =
⋃
β≤αXβ such that for each α < c:

(1) |Xα| ≤ ℵ0;

(2) Xα ⊂ C \GC;

(3) GXα = Xα, i.e. Xα is invariant under G;

(4) Tα is a partial n-point set;

(5) |Tα ∩ Lα| = n.



888 WILL BRIAN, JAN VAN MILL, AND ROLF SUABEDISSEN

Once we have achieved this, we let X =
⋃
α<cXα =

⋃
α<c Tα. Clearly X is an

n-point set invariant under G. Also X ⊆ C \ C so is zero-dimensional.

So, suppose we have constructed Xβ (and Tβ) for β < α satisfying the above

properties. Set T ′α =
⋃
β<αXβ which has cardinality < c. Note that T ′α and

hence 〈T ′α〉 is invariant under G since all Xβ , β < α are. There are two cases to

consider:

If k = |T ′α ∩ Lα| = n we set Xα = ∅ and note that Xα (and Tα = T ′α ∪ Xα)

satisfies all the inductive conditions.

Assume otherwise, i.e. k < n. We will show how to obtain a countable

X ′α ⊂ C \ GC invariant under G such that T ′α ∪ X ′α is a partial n-point set

and |T ′α ∪X ′α ∩ Lα| > k. Iterating this construction (with T ′α ∪ X ′α in place of

T ′α) finitely often (up to n times) and taking the union of the obtained X ′α will

clearly produce a set Xα as required.

For L ∈ 〈T ′α〉 \GLα we set

FL =
⋃
g∈G

g−1L ∩ Lα.

Note that since g ∈ G maps lines to lines and L 6= gLα we have
∣∣g−1L ∩ Lα∣∣ ≤ 1

so that |FL| ≤ |G| = ℵ0. So the set

F =
⋃

L∈〈T ′
α〉\GLα

FL

has cardinality ℵ0. |T ′α| < c.

Next note that for g ∈ G, g 6= 1 there is at most one x ∈ Lα with gx ∈ Lα: if

x, y ∈ Lα were distinct with gx, gy ∈ Lα then, since g maps lines to lines, g would

map Lα to itself. But by assumption G acts faithfully on lines, so we must have

g = 1, a contradiction. We thus see that

S = {x ∈ Lα : ∃g ∈ G \ {1} gx ∈ Lα}

has cardinality ≤ |G| = ℵ0.

Finally, as noted above GC ∩ Lα is countable and that T ′α ∩ Lα is finite.

We can therefore find x ∈ Lα \ (F ∪ S ∪GC ∪ T ′α) and claim that X ′α = Gx

is as desired. Clearly X ′α is countable and T ′α ∪ X ′α meets Lα in at least the

additional point x compared to T ′α. It remains to show that T ′α ∪X ′α is a partial

n-point set.

To this end, assume not and let L ∈ L witness this fact. Note that T ′α is a

partial n-point set and that G and hence Gx = X ′α is a partial 2-point set. Hence

T ′α must meet L in at least n− 1 points and since n ≥ 3, we must have L ∈ 〈T ′α〉.
If L /∈ GLα then x /∈ FL and thus for every g ∈ G, gx /∈ L. But as X ′α = Gx
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we then must have X ′α ∩ L = ∅, implying that T ′α is not a partial n-point set,

a contradiction. Thus there is g ∈ G such that gLα = L. As T ′α and X ′α are

G-invariant this implies that Lα meets T ′α ∪ X ′α in at least n + 1 points. Since

by assumption T ′α meets Lα in at most n− 1 points, we must have that there is

h ∈ G with x 6= hx ∈ Lα. But then h 6= 1 so that x ∈ S, a contradiction again.

Hence T ′α ∪X ′α is indeed a partial n-point set. �

We remark that the above proof is not subtle in its exclusion of points from

Lα. We note for example that it is sufficient to define

F =
⋃
{FL : L ∈ L \GLα, |L ∩ T ′α| ≥ n− 1} .

This might be exploited when one wishes to construct homogeneous n-point sets

with additional properties (or in fact homogeneous A-slice sets).

Corollary 3.3. Under the same assumptions as in 3.2 there is a homogeneous

n-point subset of C.

Proof. Taking the n-point set from Theorem 3.2 we will show that it satisfies

the conditions of Theorem 3.1. Clearly X is first-countable and zero-dimensional.

Now suppose that x, y ∈ X and ε > 0. Without loss of generality ε < |y| /2. Note

that if δ < ε and g ∈ G satisfies |gx− y| < δ then 0 < m = |y|
2|x| < |g| <

3|y|
2|x| =

M = 3m.

Since G is dense in C we have that Gx is dense in C so there is g ∈ G with

gx ∈ Bεm/4M (y) ⊆ Bε/2(y) so that g−1y ∈ Bε/4M (x). Since X is Lindeloef it is

strongly zero-dimensional and hence we can find an X-clopen W with Bε/4M (x) ⊆
W ⊆ Bε/2M (x) so that gW ⊆ Bε/2(gx). We then have y ∈ gW ⊆ Bε(y). By

Theorem 3.1 X is homogeneous. �

From [4] we will use the following lemma to construct the partial two-point

group required in the above results.

Lemma 3.4. Let X be a partial two-point set such that |X| < c, let L ={
reiθ0 : r ∈ R

}
, θ0 6∈ πQ such that X ∩ L = ∅. Then there are fewer than c

many g ∈ L such that
⋃
n∈Z g

n(X) is not a partial two-point set.

Lemma 3.5. There is a countable, dense, partial two-point multiplicative sub-

group of C \ {0} such that the action of G on the lines in C is faithful.

Proof. Let {Bn : n ∈ ω} be a countable basis of C. By induction on n we will

construct gn ∈ C \ {0} and write Gn for the smallest multiplicative subgroup of

C \ {0} containing {gm : m ≤ n}. In general, if A ⊂ C \ {0} we will write [A] for
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the group generated by A, i.e. the smallest multiplicative subgroup of C \ {0}
containing A. We will construct the gn such that

(1) gn ∈ Bn;

(2) Gn is a partial two-point set;

(3) Gn acts faithfully on lines.

Note that unless g ∈ C\{0} has arg(g) = qπ for some q ∈ Q we have that for every

line L ∈ L gL 6= L. Thus to satisfy 3 it is sufficient that 1, arg(g0), . . . , arg(gn)

are linearly independent over πQ.

We define g0 = 1. Suppose we have obtained gk and Gk for k ≤ n satisfying

the above conditions. Let

LF = {L ∈ L : 0 ∈ L,∃g ∈ L [Gk ∪ {g}] does not act faithfully on lines} .

By the comment above LF is a countable set. We can thus find a line L ={
reiθ0 : r ∈ R

}
such that L 6∈ LF , L ∩ Gn = ∅, L ∩ Bn 6= ∅ (and θ0 6∈ πQ

which would follow anyway from L 6∈ LF ). By Lemma 3.4 and the fact that

|L ∩Bn \ {0}| = c as well as |Gk| < c, we can find gn+1 ∈ L ∩ Bn such that

[Gk ∪ {gn+1}] =
⋃
n∈Z g

n(Gk) is a partial two-point set, as required.

Finally, let G = [{gn : n ∈ ω}] =
⋃
n∈ω Gn and observe that G is as required.

�

Corollary 3.6. There are homogeneous n-point sets for 3 ≤ n < ℵ0.

As remarked in the introduction, it is known that for κ = 2 and ℵ0 ≤ κ < c

there are κ-point sets which are homogeneously embedded in the plane (which are

in fact multiplicative subgroups of C). It is easy to see that for 3 ≤ κ < ℵ0 there

is no multiplicative subgroup of C which is a κ-point set. However, the following

is open:

Question 3.7. For 3 ≤ κ < ℵ0, are there κ-point sets which are homogeneously

embedded in the plane?

4. Slice sets

Definition 1. Let A be a subset of R. X ⊆ R2 is an A-slice set (or a slice set

for A) if, for every line L in R2, the intersection X ∩ L is homeomorphic to A.

More generally, if P is a topological property then we say that X ⊆ R is a P-slice

set whenever X ∩ L has property P for every line L.

Now that we are interested in the topological structure of X ∩ L, we can’t

simply add points in an inductive construction. The following lemma is the key

to solve this problem.
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Lemma 4.1. Suppose that A and B are subsets of R with 2 ≤ |A| < c and

|B| < c, and suppose that x1, x2 ∈ R \ B. There is a homeomorphism f : R→ R
such that f [A] ∩B = ∅ and x1, x2 ∈ f [A]. Moreover, f can be taken to be C∞.

Proof. Assume that x1, x2 ∈ A (if not, we can dilate and translate R so that

this becomes true). Consider the three intervals (−∞, x1), (x1, x2), and (x2,∞).

We will find three C∞ automorphisms of R, each of which is the identity off of one

of these intervals, and, on the interval where it is not the identity, maps points of

A to R \B.

There is a C∞ bump function ψ on R with the following properties:

• ψ(x) = 0 for all x /∈ (x1, x2).

• ψ(x) > 0 for all x ∈ (x1, x2).

• There is a positive constant h0 such that, for 0 < h < h0,
∣∣∣d(hψ)dx

∣∣∣ < 1 at

every point in R.

If 0 < h < h0 then the map φh(x) = x+ hψ(x) is a C∞ automorphism of R. We

claim that there is a constant h1 such that 0 < h1 < h0 and, for all x ∈ A∩(x1, x2),

φh1
(x) /∈ B. Suppose that this is not the case. Then, for every h ∈ (0, h0), there

is (at least one) pair (ah, bh) ∈ A × B such that ah ∈ (x1, x2) and φh(ah) = bh.

If h < h′ and ah = ah′ then, since ψ(ah) > 0,

bh = ah + hψ(ah) < ah + h′ψ(ah) = bh′

It follows that (ah, bh) 6= (ah′ , bh′) whenever h 6= h′. This is impossible since

|A×B| < c. Thus some such h1 exists. f1 = φh1
is a C∞ automorphism of R

which is the identity on R \ (x1, x2) and which maps all x ∈ A ∩ (x1, x2) into

R \B.

Similarly, there is a C∞ automorphism f2 of R which is the identity on R \
(−∞, x1) and which maps all x ∈ A ∩ (−∞, x1) into R \ B, and there is a C∞

automorphism f3 of R which is the identity on R \ (x2,∞) and which maps all

x ∈ A ∩ (x2,∞) into R \B. Set f = f3 ◦ f2 ◦ f1. �

Using this lemma, we can do ‘the usual’ inductive reconstruction, being careful

never to put more than two points onto a line L before we are at the appropriate

stage (when Lα = L) in the recursion.

Theorem 4.2. If A ⊆ R and 2 ≤ |A| < c, then there is a slice set for A.

Proof. Let 〈Lα : α < c〉 be an enumeration of all lines in R2. As above, we

build X by transfinite recursion. Let X0 = ∅. Let α < c and assume that we

have constructed 〈Xβ : β < α〉 such that
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• For γ < β < α, Xβ ∩ Lγ is homeomorphic to A

• For γ ≥ β < α, |Xβ ∩ Lγ | ≤ 2

• If γ < β < α then Xγ ⊆ Xβ

If α is a limit ordinal, take Xα =
⋃
β<αX

β . If α = β + 1 then, by assumption,

Xβ ∩ Lβ contains at most two points, say x1 and x2. Let

B = {x ∈ Lβ : x /∈ Xβ but x ∈ Lγ for some γ < β}

B′ = {x ∈ Lβ : for some γ > β,
∣∣Lγ ∩Xβ

∣∣ = 2 and x ∈ Lγ}
It is straightforward to show that |B| < c and |B′| < c. By Lemma 4.1, there is a

subset Y of Lβ which is homeomorphic to A, which includes both x1 and x2, and

which is disjoint from B ∪B′. Setting Xα = Xβ ∪ Y , it is clear that Xα satisfies

the inductive hypotheses, so this completes the induction. X =
⋃
α<cX

α is the

desired slice set. �

Corollary 4.3. If A ⊆ R and 2 ≤ |R \A| < c, then there is a slice set for A.

Proof. By Theorem 4.2 there is a slice set X for R \ A. Furthermore, because

of our use of Lemma 4.1 in the induction step, X has the additional property

that for every line L in R2 there is a homeomorphism R → L which restricts to

a homeomorphism from R \ A onto X ∩ L. Taking complements, it follows that

for every line L in R2 there is a homeomorphism R → L which restricts to a

homeomorphism from A onto L \ (X ∩L) = L ∩ (R2 \X). Thus R2 \X is a slice

set for A. �

Using the techniques of section 3 in the case that 3 ≤ |A| < c, we may take

our A-slice sets to be homogeneous.

Corollary 4.4. If A ⊆ R and 3 ≤ |A| < c, then there is a homogeneous subset of

R2 which is a slice set for A.

Proof. The proof follows closely the proof of Theorem 3.2. The only extra tool

that is needed is a modification of Lemma 4.1: Suppose that A and B are subsets

of R with 3 ≤ |A| < c and |B| < c, and suppose that x1, x2, x3 ∈ R\B; then there

is a homeomorphism f : R → R such that φ[A] ∩ B = ∅ and x1, x2, x3 ∈ φ[A].

The proof of this lemma is similar to the original proof of Lemma 4.1. �

Corollary 4.5. It is consistent with ZFC that there is a homogeneous subset X

of R2 such that, for every line L, X ∩ L is rigid.

Proof. It is shown in [1] that there is a generic extension in which there is a

rigid subset of R of cardinality less than c. Applying Corollary 4.4, we obtain the

desired result. �
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Unlike Theorem 4.2, Corollary 4.4 does not extend via complementation to the

case 3 ≤ |R \ A| < c, and it remains unknown whether homogeneous A-slice sets

exist for such A.

It is obvious that there are slice sets for ∅ and R and that there is not a slice set

for a singleton. This observation, together with Theorem 4.2 and Corollary 4.3,

nearly answers the question of the existence of slice sets for small and co-small

subsets of R (the one case which remains unsolved is |R \A| = 1, i.e., a subset of

the plane which meets every line in exactly two open intervals). The next natural

question to ask is: for which subsets A of R with |A| = |R \A| = c do A-slice sets

exist? A general characterization has not been found, but in the next section we

will show that any totally disconnected subset of R has a slice set. The following

theorem summarizes a few results for various subsets of R which are not totally

disconnected:

Theorem 4.6.

(i) There is no slice set for [0, 1] or for [0, 1).

(ii) There are slice sets for a countable sum of closed intervals and for a countable

sum of open intervals.

(iii) If A ⊆ R is such that A = −A and, for any r ∈ R, A is homeomorphic to the

image of A in the quotient space R/[−r, r], then there is a slice set for A. Note

that this property is not topological, so it is sufficient for A to be homeomorphic

to such a space.

Proof.

(i) Suppose that X is a slice set for [0, 1] or for [0, 1). Since either of [0, 1] or [0, 1)

is connected, X is convex. For each line L in R2, there is an open ray in L which

does not belong to X, i.e., some p ∈ L such that every point of L on one side of p

does not belong to X; without loss of generality, we may take the origin to be in

X and, using polar coordinates, take the open ray {(r, π) : r > 0} to be a subset

of R2 \ X. Let θ1 ≤ π be the smallest and θ2 ≥ π the largest values for which

R2 \X contains the open wedge

W = {(r, θ) : r > 0, θ1 < θ < θ2}

If θ2 − θ1 < π, consider the open ray R =
{

(r, θ1+θ22 ) : r > 0
}

; even in the degen-

erate case θ1 = θ2 = π, we have R ⊆ R2 \X. Let

A =

{
(r, θ) : r > 0,

θ1 + θ2
2

− π

2
< θ <

θ1 + θ2
2

}
B =

{
(r, θ) : r > 0,

θ1 + θ2
2

< θ <
θ1 + θ2

2
+
π

2

}
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These are the two quadrants on either side of R. It must be that either A ⊆ R2\X
or B ⊆ R2 \X; otherwise, by the convexity of X, we can find a point of R which

is in X. This contradicts either the minimality of θ1 or the maximality of θ2; thus

we have θ2 − θ1 ≥ π. However, if θ2 − θ1 ≥ π, then there is a line in R2 which

is completely contained in R2 \X, contradicting the assumption that X is a slice

set for a nonempty set.

(ii) Consider the hexagonal honeycomb packing of circles of radius 1 in the plane.

Keeping the centers of the circles fixed, shrink the radius of each circle by some

constant 2−
√
3

2 < c < 1. Now remove the interiors of the circles. The set which

remains meets every line in a countable sum of closed intervals. The complement

of this set meets every line in a countable sum of open intervals.

(iii) For each r > 0, let Cr denote the circle of radius r centered at the origin and

let C0 = {(0, 0)}. Take X =
⋃
a∈A∩[0,∞) Ca. �

Many open questions remain concerning slice sets for A ⊆ R, |A| = |R\A| = c.

For instance, it is unknown whether there is a slice set for [0, 1]×{0, 1}, [0, 1]×n,

or, more generally, whether there is a subset of R2 which meets every line in a

finite union of closed intervals. Similarly, it is unknown whether there is a slice set

for (0, 1)× {0, 1} (Corollary 4.3 covers the case of larger sums of open intervals).

Alternatively, we can ask for a subset of the plane which meets every line in a

unique way:

Lemma 4.7. The number of distinct homeomorphism classes of countable subsets

of R is c.

Proof. Every countable subset of R can be embedded in Q, so the number of

distinct homeomorphism classes of countable subsets of R is at most |P(Q)| = c.

Let X ⊆ R. Let P be the largest dense-in-itself subset of X and let S = X \P
be the scattered part of X. We define the scattered signature H(X) of X as

follows. H(X) is a set of ordinals, and α ∈ H(X) if and only if there is some

p ∈ P such that p has Cantor-Bendixson rank α in S ∪ {p}.
Let A = {αn}n∈N be a countable subset of ω1. We show that there is a

countable subset of R with scattered signature A. On the interval [n+ 1
4 , n+ 1

2 ],

embed ωαn + 1, making sure that the point ωαn maps to the point n+ 1
2 . Include

the points Q ∩ [n+ 1
2 , n+ 3

4 ] and call the resulting set X. It is a routine exercise

to show that H(X) = A.

As there are c-many countable subsets of ω1, this proves that the number of

distinct homeomorphism classes of countable subsets of R is at least c. �
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Theorem 4.8. There is a subset of the plane whose intersection with each line has

unique homeomorphism type, i.e., no two such intersections are homeomorphic.

Proof. Let 〈Aα : α < c〉 be a sequence of countable subsets of R such that if

α 6= β then Aα is not homeomorphic to Aβ .

We now construct the desired set X by transfinite induction. The construction

is exactly the same as in Theorem 4.2 except that, at the successor step α + 1,

we use Lemma 4.1 to guarantee that Lα ∩X is homeomorphic to Aα. �

5. Zero-dimensional subsets of R

In this section we will use algebraically independent Cantor subsets of R to con-

struct a Cantor-slice set. We then use this to show that for any zero-dimensional

subset A of R an A-slice set exists. The use of algebraic independence is interest-

ing for the following reason:

When one wants to construct a Cantor-slice set, the fundamental problem with

an inductive construction is that there are Cantor sets C ⊆ R such that C − C
contains an interval. If one wants to carry out an inductive construction, then

for each α ≥ 3 one has c many lines already containing two points. But since

C is compact the moment one has chosen to include infinitely many points on a

particular line L, one must have its closure in the eventual slice-set, which may

of course cause problems. So a simple counting argument will not work for the

construction of Cantor-slice sets.

To get around this problem, the first author replaced the notion of ‘smallness’

as ‘< c many’ by ‘null set’. However, as the inductive construction may be longer

than ℵ1 (depending on whether or not CH holds) one needs to ensure that the

ideal of null subsets of R is < c-complete, e.g. by Martin’s Axiom. Choosing

the Cantor sets carefully then yields a construction of a Cantor-slice set which is

consistent relative to ZFC.

By again replacing the notion of ‘smallness’ by R having a c-transcendence

degree over the Cantor set, we were finally able to achieve a ZFC-construction of

a Cantor-slice set. We note that this is reminiscent of the improvement of the

construction of a 2-point set contained in the union of countably many concentric

circles from a consistency result (in this case [5] needed CH) to a ZFC-result by

[11] which also used algebraic independence in an essential way.

We briefly review some of the necessary terminology from algebra and only

consider subfields of C. If A is a subset of C the field generated by A is the

smallest subfield of C containing Q ∪ A (which can be obtained by intersect-

ing all subfields of C containing Q ∪ A). A subfield F of C is algebraically
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closed if for every polynomial p with coefficients in F and every z ∈ C with

p(z) = 0 we have z ∈ F . The algebraic closure of A is the smallest alge-

braically closed subfield containing Q ∪ A (again obtained by taking intersec-

tions over all algebraically closed subfields containing Q ∪ A). We say that A is

algebraically independent if and only if no x ∈ A belongs to the algebraic clo-

sure of A \ {x}. The transcendence degree of some field F over some field F ′ is

min {|B| : B ⊆ F and F is contained in the algebraic closure of F ′ ∪B} .We rel-

ativize these notions to R in the obvious way (i.e. replacing C by R in the above

constructions). For more details, we refer the reader to [10].

For the construction, let us first note that there are algebraically independent

Cantor subsets of R (see for example [6], Lemma 3.9). By partitioning such a

subset into two Cantor subsets (for example) we have that there is a Cantor

subset C of R such that the transcendence degree of R over the (relative to R)

algebraic closure of C is c ([10] Theorem VIII.1.1).

Theorem 5.1. Suppose C is a subset of R such that the transcendence degree

of R over the (relative to R) algebraic closure of C is c and such that the union

of two copies of C in R is homeomorphic to C. Then there is a subset X of the

plane such that for every line L the set L∩X is homeomorphic to C. In particular

there is a Cantor-slice set.

Proof. As always, we will well order the lines in the plane as 〈Lα : α < c〉 and

we will parametrize a line Lα as

Lα(t) = rαe
iθα + tei(θα+

π
2 ) = rα(cos θα, sin θα) + t(− sin θα, cos θα)

for rα ∈ R+
0 and θα ∈ [0, π) such that rαe

iθα is the closest point of L to 0. We

identify Lα with R by the parametrization given above, so that if we talk about a

real number t (resp. a set A of real numbers) ‘interpreted as a an element (resp.

subset) of Lα’ we mean the point Lα(t) ∈ R2 (resp. the set {Lα(a) : a ∈ A} ⊆
Lα ⊂ R2) whereas if we consider t (resp. A) ‘interpreted as an element (resp.

subset) of R’ we mean the actual real number (resp. set of real numbers). Let

us note that the two coordinates of Lα(t) are given by an algebraic equation in

{rα, cos θα, sin θα, t}. For each α, we will write Dα = {rα, cos θα, sin θα}.
Fix some i0 ∈ C.

We will construct sequences aα, bα, tα ∈ R, α < c by transfinite induction.

Having constructed aβ , bβ , tβ for β < α we will write Cβ = (aβ + tβ(C − i0)) ∪
(bβ + tβ(C − i0)) (interpreted as a subset of Lβ) and Pα =

⋃
β<α Cβ (interpreted

as a subset of R2). The conditions of our transfinite induction are:
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(1) Pα ∩ Lα ⊆ {Lα(aα), Lα(bα)}
(2) If Lα(aα) 6∈

⋃
β<α Lβ then Lα(aα) 6∈ 〈Pα〉 and similarly for bα.

(3) tα is not in the algebraic closure of

C ∪
⋃
β≤α

Dβ ∪ {tβ : β < α} ∪ {aβ , bβ : β ≤ α} .

(4) For γ > α we have |Pα+1 ∩ Lγ | ≤ 2.

So suppose we are at stage α in our construction (if α = 0 then of course Pα = ∅,⋃
β<α Lβ = ∅ etc):

The key fact is that the (relative to R) algebraic closure of 〈Pα〉 ∩ Lα in R
(after identifying Lα with R) is still small, in the sense that R has transcendence

degree c over it. For suppose t ∈ Lα (identified with R) is in 〈Pα〉. Then there

are βi < α, i = 1, 2 with ti ∈ Cβi (interpreted as a subset of R) such that

t, t1, t2 are collinear (this time interpreting t,t1, and t2 as points on Lα, Lβ1

and Lβ2
respectively). But collinearity of these points can be expressed as an

algebraic equation in their coordinates and hence as an algebraic equation over

Dα ∪Dβ1
∪Dβ2

∪{t, t1, t2} (where again t, t1, t2 are interpreted as real numbers).

But each ti ∈ Cβi so is given by an algebraic equation over C ∪ {tβi , i0, aβi , bβi}.
Hence {t ∈ Lα : t ∈ 〈Pα〉} is contained in the (relative to R) algebraic closure

Aα of C ∪ {tβ , aβ , bβ : β < α} ∪
⋃
β≤αDβ . Since R has transcendence degree c

over C and {tβ , aβ , bβ : β < α} ∪
⋃
β≤αDβ has size < c, this means that R has

transcendence degree c over Aα. In particular R \ Aα 6= ∅ and if F is any finite

subset of R then R still has transcendence degree c over the algebraic closure of

Aα ∪ F .

Next note that Pα will meet Lα in at most two points: if α is a successor then

this follows from condition 4 from the previous step of the induction; if on the

other hand α is a limit and Pα would meet Lα in three points, then there is β < α

such that Pβ+1 already meets Lα in three points, a contradiction to condition 4

at inductive stage β again.

If the intersection Pα ∩ Lα has exactly two points, we choose aα, bα so that

Lα(aα), Lα(bα) are precisely those two points. If it only meets Lα in one point,

then we choose aα = bα to be that point. Finally, if the intersection is empty,

then we choose aα = bα outside Aα.

Lastly, since R had transcendence degree c over Aα, it will have transcendence

degree c over the algebraic closure of Aα ∪{aα, bα} so we can choose tα such that

condition 3 is satisfied. Note that by this choice and an argument as in the first

paragraph, this means that the set Cα will meet 〈Pα〉 in at most those points in
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which it already meets Pα. Hence the fourth inductive condition continues to be

satisfied.

The construction of X is now clear: simply take X =
⋃
α<c Cα. �

Corollary 5.2. If A ⊆ R is zero-dimensional then there is a slice set for A.

Proof. A can be embedded in a Cantor set in such a way that any two pre-

assigned points are in the image of A. We can follow the construction of the

previous theorem (Theorem 5), but instead of choosing a Cantor set Cα at stage

α of the construction, we embed A into Cα, such that Lα(aα) and Lα(bα) both

belong to the image of A under the embedding. �
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