HOMOGENEITY AND GENERALIZATIONS OF 2-POINT SETS

WILL BRIAN, JAN VAN MILL, AND ROLF SUABEDISSEN

Communicated by Yasunao Hattori

ABSTRACT. We prove the existence of homogeneous κ -point sets in the plane for every finite $\kappa \geq 3$. We also show that for every zero-dimensional subset Aof the real line there is a subset X of the plane such that every line intersects X in a topological copy of A.

1. INTRODUCTION

A two-point set is a subset X of the plane which meets every line in precisely 2 points. Since the first proof of the existence of two-point sets in [8], these rather strange geometric objects have received considerable interest.

Of course the notion has been generalized to κ -point sets (subsets of the plane meeting every line in precisely κ many points) and a wide variety of κ -point sets with some extra topological or geometric properties have been constructed for various values of κ . Typically, if one can obtain a two-point set satisfying some property \mathcal{P} , it is possible to construct κ -point sets satisfying property \mathcal{P} (at least for finite κ). Curiously, [4] (for $\kappa = 2$) and [2] (for infinite $\kappa < \mathfrak{c}$) have constructed κ -point sets which are multiplicative subgroups of $\mathbb{C} \setminus \{0\}$ and in particular homogeneous. However, neither of these approaches generalizes directly to give a homogeneous κ -point set for $3 \leq \kappa < \aleph_0$.

In the first part of the paper we give a proof that homogeneous κ -point sets exist for finite $\kappa \geq 3$. This relies on a lemma showing that for zero-dimensional, firstcountable topological spaces the notions of homogeneity and almost homogeneity coincide. We note, however, that although the κ -point sets so constructed are homogeneous as topological spaces, they are not homogeneously embedded in the plane.

²⁰¹⁰ Mathematics Subject Classification. 54G99,54H15.

Key words and phrases. two-point set, homogeneity, slice set.

⁸⁸⁵

Noting that the generalization to κ -point sets (for infinite values of κ) is rather coarse, we give a much finer more topological generalization in the second part of the paper: the idea is that if \mathcal{P} is a topological property, we say that $X \subseteq \mathbb{R}^2$ is a \mathcal{P} -slice set if and only if for every line L the subspace $X \cap L$ satisfies \mathcal{P} . Of particular interest to us is the case when \mathcal{P} is simply 'homeomorphic to A' for some fixed subset A of \mathbb{R} . In this case we simply talk about 'A-slice sets'. We show that if $1 \neq |A| < \mathfrak{c}$ or $1 \neq |\mathbb{R} \setminus A| < \mathfrak{c}$, then there is an A-slice set. We also observe that no [0, 1]-slice set exists and give some further results concerning slice sets. In the final section we prove that, for any zero-dimensional subset A of \mathbb{R} , there is an A-slice set.

2. NOTATION

We use the following notation, common in work on κ -point sets: We use both \mathbb{R}^2 and \mathbb{C} to denote the plane. The set of lines in the plane is denoted by \mathcal{L} and usually well-ordered as $\{L_{\alpha}: \alpha < \mathfrak{c}\}$. If $A \subseteq \mathbb{R}^2$, the set of lines spanned by points of A is denoted by $\langle A \rangle = \{L \in \mathcal{L}: |L \cap A| \geq 2\}$. If A is infinite then $|\langle A \rangle| = |A|$. By a partial κ -point set we mean a subset X of the plane such that X meets every line in at most κ many points.

If G is a group acting on \mathbb{C} and maps lines to lines then there is a natural induced action of G on \mathcal{L} . Typically we will not distinguish between these and no misunderstanding should arise. If G is a multiplicative subgroup of $\mathbb{C} \setminus \{0\}$ then the action of G on \mathbb{C} will always be given by multiplication $(g, z) \mapsto gz$.

3. Homogeneous n-point sets

Theorem 3.1 ([9]). If X is a zero-dimensional, first-countable topological space which is almost homogeneous (i.e. for any $x, y \in X$ and any open $U \ni x, V \ni y$ there are clopen W, Z with $x \in W \subseteq U$ and $y \in Z \subseteq V$ such that W and Z are homeomorphic), then X is homogeneous.

Theorem 3.2. Suppose G is a countable, dense, partial two-point multiplicative subgroup of $\mathbb{C} \setminus \{0\}$ and $n \in \mathbb{N}$, $n \geq 3$. If the natural action of G on the lines in \mathbb{C} is faithful (i.e. for every line L and every $g \in G \setminus \{1\}$ we have $gL \neq L$) then there is a zero-dimensional n-point subset X of \mathbb{C} such X is invariant under G, i.e. GX = X.

For those familiar with the construction of two points sets, we give a sketch proof before embarking on the formal construction:

SKETCH. The standard construction will be applied with the following modifications:

- for each n we will cover \mathbb{C} by countably many closed disks of size 1/n. Writing C for the union of their boundaries, we note that C intersects each line in at most countably many points and that GC does so as well, as each $g \in G$ maps circles to circles and G is countable. We will ensure that $X \cap GC = \emptyset$ so that X is zero-dimensional. This excludes only a small number of points on each line.
- when adding a point on a line L we will of course add Gx to X. We will choose x such that Gx is disjoint from any line in a different G-coset with at least 2 points on it already. Since G and hence Gx is a partial two-point set, this will ensure that the new X will still be a partial n-point set. As there are only a small number of lines with at least 2 points on it and G is countable, this excludes only a small number of points on the given line. Note that 2 may be replaced by n 1.
- when adding a point on a line L with n-1 points already on that line, then by the faithfulness of the action (and countability of G) there are only countably many $x \in L$ with $Gx \cap L \neq \{x\}$. We will not add one of these small number of points to X.

PROOF. For each $n \in \mathbb{N}$, use Lindeloefness of \mathbb{C} to find $\{x_m^n \in \mathbb{C} : m \in \omega\}$ be such that $\bigcup_m B_{1/n}(x_m^n)$ covers \mathbb{C} . Let

$$C = \{ x \in \mathbb{C} \colon \exists n \in \mathbb{N}, m \in \omega \ |x - x_m^n| = 1/n \}$$

be the union of the bounding circles of the $B_{1/n}(x_m^n)$. Since C is a union of countably many circles, it meets every line in at most countably many points. Since G is countable and maps lines to lines we have that GC meets every line L in at most countably many points Z_L .

We will now construct an n-point way modifying the familiar inductive construction.

Let $\{L_{\alpha} : \alpha < \mathfrak{c}\}$ be an enumeration of the lines of \mathbb{C} . We will construct sets $X_{\alpha} \subset \mathbb{C}$ and write $T_{\alpha} = \bigcup_{\beta < \alpha} X_{\beta}$ such that for each $\alpha < \mathfrak{c}$:

- (1) $|X_{\alpha}| \leq \aleph_0;$
- (2) $X_{\alpha} \subset \mathbb{C} \setminus GC;$
- (3) $GX_{\alpha} = X_{\alpha}$, i.e. X_{α} is invariant under G;
- (4) T_{α} is a partial *n*-point set;
- (5) $|T_{\alpha} \cap L_{\alpha}| = n.$

Once we have achieved this, we let $X = \bigcup_{\alpha < \mathfrak{c}} X_{\alpha} = \bigcup_{\alpha < \mathfrak{c}} T_{\alpha}$. Clearly X is an *n*-point set invariant under G. Also $X \subseteq \mathbb{C} \setminus C$ so is zero-dimensional.

So, suppose we have constructed X_{β} (and T_{β}) for $\beta < \alpha$ satisfying the above properties. Set $T'_{\alpha} = \bigcup_{\beta < \alpha} X_{\beta}$ which has cardinality $< \mathfrak{c}$. Note that T'_{α} and hence $\langle T'_{\alpha} \rangle$ is invariant under G since all $X_{\beta}, \beta < \alpha$ are. There are two cases to consider:

If $k = |T'_{\alpha} \cap L_{\alpha}| = n$ we set $X_{\alpha} = \emptyset$ and note that X_{α} (and $T_{\alpha} = T'_{\alpha} \cup X_{\alpha}$) satisfies all the inductive conditions.

Assume otherwise, i.e. k < n. We will show how to obtain a countable $X'_{\alpha} \subset \mathbb{C} \setminus GC$ invariant under G such that $T'_{\alpha} \cup X'_{\alpha}$ is a partial *n*-point set and $|T'_{\alpha} \cup X'_{\alpha} \cap L_{\alpha}| > k$. Iterating this construction (with $T'_{\alpha} \cup X'_{\alpha}$ in place of T'_{α}) finitely often (up to *n* times) and taking the union of the obtained X'_{α} will clearly produce a set X_{α} as required.

For $L \in \langle T'_{\alpha} \rangle \setminus GL_{\alpha}$ we set

$$F_L = \bigcup_{g \in G} g^{-1}L \cap L_\alpha.$$

Note that since $g \in G$ maps lines to lines and $L \neq gL_{\alpha}$ we have $|g^{-1}L \cap L_{\alpha}| \leq 1$ so that $|F_L| \leq |G| = \aleph_0$. So the set

$$F = \bigcup_{L \in \langle T'_{\alpha} \rangle \backslash GL_{\alpha}} F_L$$

has cardinality \aleph_0 . $|T'_{\alpha}| < \mathfrak{c}$.

Next note that for $g \in G, g \neq 1$ there is at most one $x \in L_{\alpha}$ with $gx \in L_{\alpha}$: if $x, y \in L_{\alpha}$ were distinct with $gx, gy \in L_{\alpha}$ then, since g maps lines to lines, g would map L_{α} to itself. But by assumption G acts faithfully on lines, so we must have g = 1, a contradiction. We thus see that

$$S = \{ x \in L_{\alpha} \colon \exists g \in G \setminus \{1\} \ gx \in L_{\alpha} \}$$

has cardinality $\leq |G| = \aleph_0$.

Finally, as noted above $GC \cap L_{\alpha}$ is countable and that $T'_{\alpha} \cap L_{\alpha}$ is finite.

We can therefore find $x \in L_{\alpha} \setminus (F \cup S \cup GC \cup T'_{\alpha})$ and claim that $X'_{\alpha} = Gx$ is as desired. Clearly X'_{α} is countable and $T'_{\alpha} \cup X'_{\alpha}$ meets L_{α} in at least the additional point x compared to T'_{α} . It remains to show that $T'_{\alpha} \cup X'_{\alpha}$ is a partial *n*-point set.

To this end, assume not and let $L \in \mathcal{L}$ witness this fact. Note that T'_{α} is a partial *n*-point set and that G and hence $Gx = X'_{\alpha}$ is a partial 2-point set. Hence T'_{α} must meet L in at least n-1 points and since $n \geq 3$, we must have $L \in \langle T'_{\alpha} \rangle$. If $L \notin GL_{\alpha}$ then $x \notin F_L$ and thus for every $g \in G$, $gx \notin L$. But as $X'_{\alpha} = Gx$

we then must have $X'_{\alpha} \cap L = \emptyset$, implying that T'_{α} is not a partial *n*-point set, a contradiction. Thus there is $g \in G$ such that $gL_{\alpha} = L$. As T'_{α} and X'_{α} are *G*-invariant this implies that L_{α} meets $T'_{\alpha} \cup X'_{\alpha}$ in at least n + 1 points. Since by assumption T'_{α} meets L_{α} in at most n - 1 points, we must have that there is $h \in G$ with $x \neq hx \in L_{\alpha}$. But then $h \neq 1$ so that $x \in S$, a contradiction again. Hence $T'_{\alpha} \cup X'_{\alpha}$ is indeed a partial *n*-point set. \Box

We remark that the above proof is not subtle in its exclusion of points from L_{α} . We note for example that it is sufficient to define

$$F = \bigcup \{F_L \colon L \in \mathcal{L} \setminus GL_\alpha, |L \cap T'_\alpha| \ge n-1 \}.$$

This might be exploited when one wishes to construct homogeneous n-point sets with additional properties (or in fact homogeneous A-slice sets).

Corollary 3.3. Under the same assumptions as in 3.2 there is a homogeneous n-point subset of \mathbb{C} .

PROOF. Taking the *n*-point set from Theorem 3.2 we will show that it satisfies the conditions of Theorem 3.1. Clearly X is first-countable and zero-dimensional. Now suppose that $x, y \in X$ and $\epsilon > 0$. Without loss of generality $\epsilon < |y|/2$. Note that if $\delta < \epsilon$ and $g \in G$ satisfies $|gx - y| < \delta$ then $0 < m = \frac{|y|}{2|x|} < |g| < \frac{3|y|}{2|x|} = M = 3m$.

Since G is dense in \mathbb{C} we have that Gx is dense in \mathbb{C} so there is $g \in G$ with $gx \in B_{\epsilon m/4M}(y) \subseteq B_{\epsilon/2}(y)$ so that $g^{-1}y \in B_{\epsilon/4M}(x)$. Since X is Lindeloef it is strongly zero-dimensional and hence we can find an X-clopen W with $\overline{B_{\epsilon/4M}(x)} \subseteq W \subseteq B_{\epsilon/2M}(x)$ so that $gW \subseteq B_{\epsilon/2}(gx)$. We then have $y \in gW \subseteq B_{\epsilon}(y)$. By Theorem 3.1 X is homogeneous.

From [4] we will use the following lemma to construct the partial two-point group required in the above results.

Lemma 3.4. Let X be a partial two-point set such that $|X| < \mathfrak{c}$, let $L = \{re^{i\theta_0} : r \in \mathbb{R}\}, \theta_0 \notin \pi \mathbb{Q}$ such that $X \cap L = \emptyset$. Then there are fewer than \mathfrak{c} many $g \in L$ such that $\bigcup_{n \in \mathbb{Z}} g^n(X)$ is not a partial two-point set.

Lemma 3.5. There is a countable, dense, partial two-point multiplicative subgroup of $\mathbb{C} \setminus \{0\}$ such that the action of G on the lines in \mathbb{C} is faithful.

PROOF. Let $\{B_n : n \in \omega\}$ be a countable basis of \mathbb{C} . By induction on n we will construct $g_n \in \mathbb{C} \setminus \{0\}$ and write G_n for the smallest multiplicative subgroup of $\mathbb{C} \setminus \{0\}$ containing $\{g_m : m \leq n\}$. In general, if $A \subset \mathbb{C} \setminus \{0\}$ we will write [A] for

the group generated by A, i.e. the smallest multiplicative subgroup of $\mathbb{C} \setminus \{0\}$ containing A. We will construct the g_n such that

- (1) $g_n \in B_n$;
- (2) G_n is a partial two-point set;
- (3) G_n acts faithfully on lines.

Note that unless $g \in \mathbb{C} \setminus \{0\}$ has $\arg(g) = q\pi$ for some $q \in \mathbb{Q}$ we have that for every line $L \in \mathcal{L}$ $gL \neq L$. Thus to satisfy 3 it is sufficient that $1, \arg(g_0), \ldots, \arg(g_n)$ are linearly independent over $\pi \mathbb{Q}$.

We define $g_0 = 1$. Suppose we have obtained g_k and G_k for $k \leq n$ satisfying the above conditions. Let

 $\mathcal{L}_F = \{ L \in \mathcal{L} \colon 0 \in L, \exists g \in L \ [G_k \cup \{g\}] \text{ does not act faithfully on lines} \}.$

By the comment above \mathcal{L}_F is a countable set. We can thus find a line $L = \{re^{i\theta_0} : r \in \mathbb{R}\}$ such that $L \notin \mathcal{L}_F$, $L \cap G_n = \emptyset$, $L \cap B_n \neq \emptyset$ (and $\theta_0 \notin \pi \mathbb{Q}$ which would follow anyway from $L \notin \mathcal{L}_F$). By Lemma 3.4 and the fact that $|L \cap B_n \setminus \{0\}| = \mathfrak{c}$ as well as $|G_k| < \mathfrak{c}$, we can find $g_{n+1} \in L \cap B_n$ such that $[G_k \cup \{g_{n+1}\}] = \bigcup_{n \in \mathbb{Z}} g^n(G_k)$ is a partial two-point set, as required.

Finally, let $G = [\{g_n : n \in \omega\}] = \bigcup_{n \in \omega} G_n$ and observe that G is as required.

Corollary 3.6. There are homogeneous n-point sets for $3 \le n < \aleph_0$.

As remarked in the introduction, it is known that for $\kappa = 2$ and $\aleph_0 \leq \kappa < \mathfrak{c}$ there are κ -point sets which are homogeneously embedded in the plane (which are in fact multiplicative subgroups of \mathbb{C}). It is easy to see that for $3 \leq \kappa < \aleph_0$ there is no multiplicative subgroup of \mathbb{C} which is a κ -point set. However, the following is open:

Question 3.7. For $3 \leq \kappa < \aleph_0$, are there κ -point sets which are homogeneously embedded in the plane?

4. Slice sets

Definition 1. Let A be a subset of \mathbb{R} . $X \subseteq \mathbb{R}^2$ is an A-slice set (or a slice set for A) if, for every line L in \mathbb{R}^2 , the intersection $X \cap L$ is homeomorphic to A. More generally, if \mathcal{P} is a topological property then we say that $X \subseteq \mathbb{R}$ is a \mathcal{P} -slice set whenever $X \cap L$ has property \mathcal{P} for every line L.

Now that we are interested in the topological structure of $X \cap L$, we can't simply add points in an inductive construction. The following lemma is the key to solve this problem.

890

Lemma 4.1. Suppose that A and B are subsets of \mathbb{R} with $2 \leq |A| < \mathfrak{c}$ and $|B| < \mathfrak{c}$, and suppose that $x_1, x_2 \in \mathbb{R} \setminus B$. There is a homeomorphism $f : \mathbb{R} \to \mathbb{R}$ such that $f[A] \cap B = \emptyset$ and $x_1, x_2 \in f[A]$. Moreover, f can be taken to be C^{∞} .

PROOF. Assume that $x_1, x_2 \in A$ (if not, we can dilate and translate \mathbb{R} so that this becomes true). Consider the three intervals $(-\infty, x_1)$, (x_1, x_2) , and (x_2, ∞) . We will find three C^{∞} automorphisms of \mathbb{R} , each of which is the identity off of one of these intervals, and, on the interval where it is not the identity, maps points of A to $\mathbb{R} \setminus B$.

There is a C^{∞} bump function ψ on \mathbb{R} with the following properties:

- $\psi(x) = 0$ for all $x \notin (x_1, x_2)$.
- $\psi(x) > 0$ for all $x \in (x_1, x_2)$.
- There is a positive constant h_0 such that, for $0 < h < h_0$, $\left| \frac{d(h\psi)}{dx} \right| < 1$ at every point in \mathbb{R} .

If $0 < h < h_0$ then the map $\phi_h(x) = x + h\psi(x)$ is a C^{∞} automorphism of \mathbb{R} . We claim that there is a constant h_1 such that $0 < h_1 < h_0$ and, for all $x \in A \cap (x_1, x_2)$, $\phi_{h_1}(x) \notin B$. Suppose that this is not the case. Then, for every $h \in (0, h_0)$, there is (at least one) pair $(a_h, b_h) \in A \times B$ such that $a_h \in (x_1, x_2)$ and $\phi_h(a_h) = b_h$. If h < h' and $a_h = a_{h'}$ then, since $\psi(a_h) > 0$,

$$b_h = a_h + h\psi(a_h) < a_h + h'\psi(a_h) = b_h$$

It follows that $(a_h, b_h) \neq (a_{h'}, b_{h'})$ whenever $h \neq h'$. This is impossible since $|A \times B| < \mathfrak{c}$. Thus some such h_1 exists. $f_1 = \phi_{h_1}$ is a C^{∞} automorphism of \mathbb{R} which is the identity on $\mathbb{R} \setminus (x_1, x_2)$ and which maps all $x \in A \cap (x_1, x_2)$ into $\mathbb{R} \setminus B$.

Similarly, there is a C^{∞} automorphism f_2 of \mathbb{R} which is the identity on $\mathbb{R} \setminus (-\infty, x_1)$ and which maps all $x \in A \cap (-\infty, x_1)$ into $\mathbb{R} \setminus B$, and there is a C^{∞} automorphism f_3 of \mathbb{R} which is the identity on $\mathbb{R} \setminus (x_2, \infty)$ and which maps all $x \in A \cap (x_2, \infty)$ into $\mathbb{R} \setminus B$. Set $f = f_3 \circ f_2 \circ f_1$. \Box

Using this lemma, we can do 'the usual' inductive reconstruction, being careful never to put more than two points onto a line L before we are at the appropriate stage (when $L_{\alpha} = L$) in the recursion.

Theorem 4.2. If $A \subseteq \mathbb{R}$ and $2 \leq |A| < \mathfrak{c}$, then there is a slice set for A.

PROOF. Let $\langle L_{\alpha} : \alpha < \mathfrak{c} \rangle$ be an enumeration of all lines in \mathbb{R}^2 . As above, we build X by transfinite recursion. Let $X^0 = \emptyset$. Let $\alpha < \mathfrak{c}$ and assume that we have constructed $\langle X^{\beta} : \beta < \alpha \rangle$ such that

- For $\gamma < \beta < \alpha$, $X^{\beta} \cap L_{\gamma}$ is homeomorphic to A
- For $\gamma \geq \beta < \alpha$, $|X^{\beta} \cap L_{\gamma}| \leq 2$
- If $\gamma < \beta < \alpha$ then $X^{\gamma} \subseteq X^{\beta}$

If α is a limit ordinal, take $X^{\alpha} = \bigcup_{\beta < \alpha} X^{\beta}$. If $\alpha = \beta + 1$ then, by assumption, $X^{\beta} \cap L_{\beta}$ contains at most two points, say x_1 and x_2 . Let

$$B = \{ x \in L_{\beta} : x \notin X^{\beta} \text{ but } x \in L_{\gamma} \text{ for some } \gamma < \beta \}$$

 $B' = \{x \in L_{\beta} : \text{ for some } \gamma > \beta, |L_{\gamma} \cap X^{\beta}| = 2 \text{ and } x \in L_{\gamma}\}$

It is straightforward to show that $|B| < \mathfrak{c}$ and $|B'| < \mathfrak{c}$. By Lemma 4.1, there is a subset Y of L_{β} which is homeomorphic to A, which includes both x_1 and x_2 , and which is disjoint from $B \cup B'$. Setting $X^{\alpha} = X^{\beta} \cup Y$, it is clear that X^{α} satisfies the inductive hypotheses, so this completes the induction. $X = \bigcup_{\alpha < \mathfrak{c}} X^{\alpha}$ is the desired slice set.

Corollary 4.3. If $A \subseteq \mathbb{R}$ and $2 \leq |\mathbb{R} \setminus A| < \mathfrak{c}$, then there is a slice set for A.

PROOF. By Theorem 4.2 there is a slice set X for $\mathbb{R} \setminus A$. Furthermore, because of our use of Lemma 4.1 in the induction step, X has the additional property that for every line L in \mathbb{R}^2 there is a homeomorphism $\mathbb{R} \to L$ which restricts to a homeomorphism from $\mathbb{R} \setminus A$ onto $X \cap L$. Taking complements, it follows that for every line L in \mathbb{R}^2 there is a homeomorphism $\mathbb{R} \to L$ which restricts to a homeomorphism from A onto $L \setminus (X \cap L) = L \cap (\mathbb{R}^2 \setminus X)$. Thus $\mathbb{R}^2 \setminus X$ is a slice set for A.

Using the techniques of section 3 in the case that $3 \le |A| < \mathfrak{c}$, we may take our A-slice sets to be homogeneous.

Corollary 4.4. If $A \subseteq \mathbb{R}$ and $3 \leq |A| < \mathfrak{c}$, then there is a homogeneous subset of \mathbb{R}^2 which is a slice set for A.

PROOF. The proof follows closely the proof of Theorem 3.2. The only extra tool that is needed is a modification of Lemma 4.1: Suppose that A and B are subsets of \mathbb{R} with $3 \leq |A| < \mathfrak{c}$ and $|B| < \mathfrak{c}$, and suppose that $x_1, x_2, x_3 \in \mathbb{R} \setminus B$; then there is a homeomorphism $f : \mathbb{R} \to \mathbb{R}$ such that $\phi[A] \cap B = \emptyset$ and $x_1, x_2, x_3 \in \phi[A]$. The proof of this lemma is similar to the original proof of Lemma 4.1.

Corollary 4.5. It is consistent with ZFC that there is a homogeneous subset X of \mathbb{R}^2 such that, for every line $L, X \cap L$ is rigid.

PROOF. It is shown in [1] that there is a generic extension in which there is a rigid subset of \mathbb{R} of cardinality less than \mathfrak{c} . Applying Corollary 4.4, we obtain the desired result.

892

Unlike Theorem 4.2, Corollary 4.4 does not extend via complementation to the case $3 \leq |\mathbb{R} \setminus A| < \mathfrak{c}$, and it remains unknown whether homogeneous A-slice sets exist for such A.

It is obvious that there are slice sets for \emptyset and \mathbb{R} and that there is not a slice set for a singleton. This observation, together with Theorem 4.2 and Corollary 4.3, nearly answers the question of the existence of slice sets for small and co-small subsets of \mathbb{R} (the one case which remains unsolved is $|\mathbb{R} \setminus A| = 1$, i.e., a subset of the plane which meets every line in exactly two open intervals). The next natural question to ask is: for which subsets A of \mathbb{R} with $|A| = |\mathbb{R} \setminus A| = \mathfrak{c}$ do A-slice sets exist? A general characterization has not been found, but in the next section we will show that any totally disconnected subset of \mathbb{R} has a slice set. The following theorem summarizes a few results for various subsets of \mathbb{R} which are not totally disconnected:

Theorem 4.6.

(i) There is no slice set for [0,1] or for [0,1).

(*ii*) There are slice sets for a countable sum of closed intervals and for a countable sum of open intervals.

(iii) If $A \subseteq \mathbb{R}$ is such that A = -A and, for any $r \in \mathbb{R}$, A is homeomorphic to the image of A in the quotient space $\mathbb{R}/[-r,r]$, then there is a slice set for A. Note that this property is not topological, so it is sufficient for A to be homeomorphic to such a space.

Proof.

(i) Suppose that X is a slice set for [0, 1] or for [0, 1). Since either of [0, 1] or [0, 1) is connected, X is convex. For each line L in \mathbb{R}^2 , there is an open ray in L which does not belong to X, i.e., some $p \in L$ such that every point of L on one side of p does not belong to X; without loss of generality, we may take the origin to be in X and, using polar coordinates, take the open ray $\{(r, \pi): r > 0\}$ to be a subset of $\mathbb{R}^2 \setminus X$. Let $\theta_1 \leq \pi$ be the smallest and $\theta_2 \geq \pi$ the largest values for which $\mathbb{R}^2 \setminus X$ contains the open wedge

$$W = \{ (r, \theta) \colon r > 0, \theta_1 < \theta < \theta_2 \}$$

If $\theta_2 - \theta_1 < \pi$, consider the open ray $R = \{(r, \frac{\theta_1 + \theta_2}{2}) : r > 0\}$; even in the degenerate case $\theta_1 = \theta_2 = \pi$, we have $R \subseteq \mathbb{R}^2 \setminus X$. Let

$$A = \left\{ (r,\theta) \colon r > 0, \frac{\theta_1 + \theta_2}{2} - \frac{\pi}{2} < \theta < \frac{\theta_1 + \theta_2}{2} \right\}$$
$$B = \left\{ (r,\theta) \colon r > 0, \frac{\theta_1 + \theta_2}{2} < \theta < \frac{\theta_1 + \theta_2}{2} + \frac{\pi}{2} \right\}$$

These are the two quadrants on either side of R. It must be that either $A \subseteq \mathbb{R}^2 \setminus X$ or $B \subseteq \mathbb{R}^2 \setminus X$; otherwise, by the convexity of X, we can find a point of R which is in X. This contradicts either the minimality of θ_1 or the maximality of θ_2 ; thus we have $\theta_2 - \theta_1 \ge \pi$. However, if $\theta_2 - \theta_1 \ge \pi$, then there is a line in \mathbb{R}^2 which is completely contained in $\mathbb{R}^2 \setminus X$, contradicting the assumption that X is a slice set for a nonempty set.

(ii) Consider the hexagonal honeycomb packing of circles of radius 1 in the plane. Keeping the centers of the circles fixed, shrink the radius of each circle by some constant $\frac{2-\sqrt{3}}{2} < c < 1$. Now remove the interiors of the circles. The set which remains meets every line in a countable sum of closed intervals. The complement of this set meets every line in a countable sum of open intervals.

(iii) For each r > 0, let C_r denote the circle of radius r centered at the origin and let $C_0 = \{(0,0)\}$. Take $X = \bigcup_{a \in A \cap [0,\infty)} C_a$.

Many open questions remain concerning slice sets for $A \subseteq \mathbb{R}$, $|A| = |\mathbb{R} \setminus A| = \mathfrak{c}$. For instance, it is unknown whether there is a slice set for $[0, 1] \times \{0, 1\}$, $[0, 1] \times n$, or, more generally, whether there is a subset of \mathbb{R}^2 which meets every line in a finite union of closed intervals. Similarly, it is unknown whether there is a slice set for $(0, 1) \times \{0, 1\}$ (Corollary 4.3 covers the case of larger sums of open intervals).

Alternatively, we can ask for a subset of the plane which meets every line in a unique way:

Lemma 4.7. The number of distinct homeomorphism classes of countable subsets of \mathbb{R} is \mathfrak{c} .

PROOF. Every countable subset of \mathbb{R} can be embedded in \mathbb{Q} , so the number of distinct homeomorphism classes of countable subsets of \mathbb{R} is at most $|\mathcal{P}(\mathbb{Q})| = \mathfrak{c}$.

Let $X \subseteq \mathbb{R}$. Let *P* be the largest dense-in-itself subset of *X* and let $S = X \setminus P$ be the scattered part of *X*. We define the **scattered signature** H(X) of *X* as follows. H(X) is a set of ordinals, and $\alpha \in H(X)$ if and only if there is some $p \in P$ such that *p* has Cantor-Bendixson rank α in $S \cup \{p\}$.

Let $A = \{\alpha_n\}_{n \in \mathbb{N}}$ be a countable subset of ω_1 . We show that there is a countable subset of \mathbb{R} with scattered signature A. On the interval $[n + \frac{1}{4}, n + \frac{1}{2}]$, embed $\omega^{\alpha_n} + 1$, making sure that the point ω^{α_n} maps to the point $n + \frac{1}{2}$. Include the points $\mathbb{Q} \cap [n + \frac{1}{2}, n + \frac{3}{4}]$ and call the resulting set X. It is a routine exercise to show that H(X) = A.

As there are \mathfrak{c} -many countable subsets of ω_1 , this proves that the number of distinct homeomorphism classes of countable subsets of \mathbb{R} is at least \mathfrak{c} . \Box

Theorem 4.8. There is a subset of the plane whose intersection with each line has unique homeomorphism type, i.e., no two such intersections are homeomorphic.

PROOF. Let $\langle A_{\alpha} : \alpha < \mathfrak{c} \rangle$ be a sequence of countable subsets of \mathbb{R} such that if $\alpha \neq \beta$ then A_{α} is not homeomorphic to A_{β} .

We now construct the desired set X by transfinite induction. The construction is exactly the same as in Theorem 4.2 except that, at the successor step $\alpha + 1$, we use Lemma 4.1 to guarantee that $L_{\alpha} \cap X$ is homeomorphic to A_{α} .

5. Zero-dimensional subsets of \mathbb{R}

In this section we will use algebraically independent Cantor subsets of \mathbb{R} to construct a Cantor-slice set. We then use this to show that for any zero-dimensional subset A of \mathbb{R} an A-slice set exists. The use of algebraic independence is interesting for the following reason:

When one wants to construct a Cantor-slice set, the fundamental problem with an inductive construction is that there are Cantor sets $C \subseteq \mathbb{R}$ such that C - Ccontains an interval. If one wants to carry out an inductive construction, then for each $\alpha \geq 3$ one has \mathfrak{c} many lines already containing two points. But since C is compact the moment one has chosen to include infinitely many points on a particular line L, one must have its closure in the eventual slice-set, which may of course cause problems. So a simple counting argument will not work for the construction of Cantor-slice sets.

To get around this problem, the first author replaced the notion of 'smallness' as '< \mathfrak{c} many' by 'null set'. However, as the inductive construction may be longer than \aleph_1 (depending on whether or not CH holds) one needs to ensure that the ideal of null subsets of \mathbb{R} is < \mathfrak{c} -complete, e.g. by Martin's Axiom. Choosing the Cantor sets carefully then yields a construction of a Cantor-slice set which is consistent relative to ZFC.

By again replacing the notion of 'smallness' by \mathbb{R} having a c-transcendence degree over the Cantor set, we were finally able to achieve a ZFC-construction of a Cantor-slice set. We note that this is reminiscent of the improvement of the construction of a 2-point set contained in the union of countably many concentric circles from a consistency result (in this case [5] needed CH) to a ZFC-result by [11] which also used algebraic independence in an essential way.

We briefly review some of the necessary terminology from algebra and only consider subfields of \mathbb{C} . If A is a subset of \mathbb{C} the field generated by A is the smallest subfield of \mathbb{C} containing $\mathbb{Q} \cup A$ (which can be obtained by intersecting all subfields of \mathbb{C} containing $\mathbb{Q} \cup A$). A subfield F of \mathbb{C} is algebraically closed if for every polynomial p with coefficients in F and every $z \in \mathbb{C}$ with p(z) = 0 we have $z \in F$. The algebraic closure of A is the smallest algebraically closed subfield containing $\mathbb{Q} \cup A$ (again obtained by taking intersections over all algebraically closed subfields containing $\mathbb{Q} \cup A$). We say that A is algebraically independent if and only if no $x \in A$ belongs to the algebraic closure of $A \setminus \{x\}$. The transcendence degree of some field F over some field F' is min $\{|B| : B \subseteq F \text{ and } F \text{ is contained in the algebraic closure of <math>F' \cup B\}$. We relativize these notions to \mathbb{R} in the obvious way (i.e. replacing \mathbb{C} by \mathbb{R} in the above constructions). For more details, we refer the reader to [10].

For the construction, let us first note that there are algebraically independent Cantor subsets of \mathbb{R} (see for example [6], Lemma 3.9). By partitioning such a subset into two Cantor subsets (for example) we have that there is a Cantor subset C of \mathbb{R} such that the transcendence degree of \mathbb{R} over the (relative to \mathbb{R}) algebraic closure of C is \mathfrak{c} ([10] Theorem VIII.1.1).

Theorem 5.1. Suppose C is a subset of \mathbb{R} such that the transcendence degree of \mathbb{R} over the (relative to \mathbb{R}) algebraic closure of C is \mathfrak{c} and such that the union of two copies of C in \mathbb{R} is homeomorphic to C. Then there is a subset X of the plane such that for every line L the set $L \cap X$ is homeomorphic to C. In particular there is a Cantor-slice set.

PROOF. As always, we will well order the lines in the plane as $\langle L_{\alpha} : \alpha < \mathfrak{c} \rangle$ and we will parametrize a line L_{α} as

$$L_{\alpha}(t) = r_{\alpha}e^{i\theta_{\alpha}} + te^{i(\theta_{\alpha} + \frac{\pi}{2})} = r_{\alpha}(\cos\theta_{\alpha}, \sin\theta_{\alpha}) + t(-\sin\theta_{\alpha}, \cos\theta_{\alpha})$$

for $r_{\alpha} \in \mathbb{R}_{0}^{+}$ and $\theta_{\alpha} \in [0, \pi)$ such that $r_{\alpha}e^{i\theta_{\alpha}}$ is the closest point of L to 0. We identify L_{α} with \mathbb{R} by the parametrization given above, so that if we talk about a real number t (resp. a set A of real numbers) 'interpreted as a an element (resp. subset) of L_{α} ' we mean the point $L_{\alpha}(t) \in \mathbb{R}^{2}$ (resp. the set $\{L_{\alpha}(a): a \in A\} \subseteq L_{\alpha} \subset \mathbb{R}^{2}$) whereas if we consider t (resp. A) 'interpreted as an element (resp. subset) of \mathbb{R} ' we mean the actual real number (resp. set of real numbers). Let us note that the two coordinates of $L_{\alpha}(t)$ are given by an algebraic equation in $\{r_{\alpha}, \cos \theta_{\alpha}, \sin \theta_{\alpha}, t\}$. For each α , we will write $D_{\alpha} = \{r_{\alpha}, \cos \theta_{\alpha}, \sin \theta_{\alpha}\}$.

Fix some $i_0 \in C$.

We will construct sequences $a_{\alpha}, b_{\alpha}, t_{\alpha} \in \mathbb{R}, \alpha < \mathfrak{c}$ by transfinite induction. Having constructed $a_{\beta}, b_{\beta}, t_{\beta}$ for $\beta < \alpha$ we will write $C_{\beta} = (a_{\beta} + t_{\beta}(C - i_0)) \cup (b_{\beta} + t_{\beta}(C - i_0))$ (interpreted as a subset of L_{β}) and $P_{\alpha} = \bigcup_{\beta < \alpha} C_{\beta}$ (interpreted as a subset of \mathbb{R}^2). The conditions of our transfinite induction are:

- (1) $P_{\alpha} \cap L_{\alpha} \subseteq \{L_{\alpha}(a_{\alpha}), L_{\alpha}(b_{\alpha})\}$
- (2) If $L_{\alpha}(a_{\alpha}) \notin \bigcup_{\beta < \alpha} L_{\beta}$ then $L_{\alpha}(a_{\alpha}) \notin \langle P_{\alpha} \rangle$ and similarly for b_{α} .
- (3) t_{α} is not in the algebraic closure of

$$C \cup \bigcup_{\beta \le \alpha} D_{\beta} \cup \{t_{\beta} \colon \beta < \alpha\} \cup \{a_{\beta}, b_{\beta} \colon \beta \le \alpha\}$$

(4) For $\gamma > \alpha$ we have $|P_{\alpha+1} \cap L_{\gamma}| \leq 2$.

So suppose we are at stage α in our construction (if $\alpha = 0$ then of course $P_{\alpha} = \emptyset$, $\bigcup_{\beta < \alpha} L_{\beta} = \emptyset$ etc):

The key fact is that the (relative to \mathbb{R}) algebraic closure of $\langle P_{\alpha} \rangle \cap L_{\alpha}$ in \mathbb{R} (after identifying L_{α} with \mathbb{R}) is still small, in the sense that \mathbb{R} has transcendence degree \mathfrak{c} over it. For suppose $t \in L_{\alpha}$ (identified with \mathbb{R}) is in $\langle P_{\alpha} \rangle$. Then there are $\beta_i < \alpha, i = 1, 2$ with $t_i \in C_{\beta_i}$ (interpreted as a subset of \mathbb{R}) such that t, t_1, t_2 are collinear (this time interpreting t, t_1 , and t_2 as points on L_{α}, L_{β_1} and L_{β_2} respectively). But collinearity of these points can be expressed as an algebraic equation in their coordinates and hence as an algebraic equation over $D_{\alpha} \cup D_{\beta_1} \cup D_{\beta_2} \cup \{t, t_1, t_2\}$ (where again t, t_1, t_2 are interpreted as real numbers). But each $t_i \in C_{\beta_i}$ so is given by an algebraic equation over $C \cup \{t_{\beta_i}, i_0, a_{\beta_i}, b_{\beta_i}\}$. Hence $\{t \in L_{\alpha} : t \in \langle P_{\alpha} \rangle\}$ is contained in the (relative to \mathbb{R}) algebraic closure A_{α} of $C \cup \{t_{\beta}, a_{\beta}, b_{\beta} : \beta < \alpha\} \cup \bigcup_{\beta \leq \alpha} D_{\beta}$. Since \mathbb{R} has transcendence degree \mathfrak{c} over C and $\{t_{\beta}, a_{\beta}, b_{\beta} : \beta < \alpha\} \cup \bigcup_{\beta \leq \alpha} D_{\beta}$ has size $< \mathfrak{c}$, this means that \mathbb{R} has transcendence degree \mathfrak{c} over A_{α} . In particular $\mathbb{R} \setminus A_{\alpha} \neq \emptyset$ and if F is any finite subset of \mathbb{R} then \mathbb{R} still has transcendence degree \mathfrak{c} over the algebraic closure of $A_{\alpha} \cup F$.

Next note that P_{α} will meet L_{α} in at most two points: if α is a successor then this follows from condition 4 from the previous step of the induction; if on the other hand α is a limit and P_{α} would meet L_{α} in three points, then there is $\beta < \alpha$ such that $P_{\beta+1}$ already meets L_{α} in three points, a contradiction to condition 4 at inductive stage β again.

If the intersection $P_{\alpha} \cap L_{\alpha}$ has exactly two points, we choose a_{α}, b_{α} so that $L_{\alpha}(a_{\alpha}), L_{\alpha}(b_{\alpha})$ are precisely those two points. If it only meets L_{α} in one point, then we choose $a_{\alpha} = b_{\alpha}$ to be that point. Finally, if the intersection is empty, then we choose $a_{\alpha} = b_{\alpha}$ outside A_{α} .

Lastly, since \mathbb{R} had transcendence degree \mathfrak{c} over A_{α} , it will have transcendence degree \mathfrak{c} over the algebraic closure of $A_{\alpha} \cup \{a_{\alpha}, b_{\alpha}\}$ so we can choose t_{α} such that condition 3 is satisfied. Note that by this choice and an argument as in the first paragraph, this means that the set C_{α} will meet $\langle P_{\alpha} \rangle$ in at most those points in which it already meets P_{α} . Hence the fourth inductive condition continues to be satisfied.

The construction of X is now clear: simply take $X = \bigcup_{\alpha < \mathfrak{c}} C_{\alpha}$.

Corollary 5.2. If $A \subseteq \mathbb{R}$ is zero-dimensional then there is a slice set for A.

PROOF. A can be embedded in a Cantor set in such a way that any two preassigned points are in the image of A. We can follow the construction of the previous theorem (Theorem 5), but instead of choosing a Cantor set C_{α} at stage α of the construction, we embed A into C_{α} , such that $L_{\alpha}(a_{\alpha})$ and $L_{\alpha}(b_{\alpha})$ both belong to the image of A under the embedding.

References

- W. R. Brian, "Topics in general and set-theoretic topology," doctoral thesis, University of Oxford (2012).
- [2] B. Chad, Doctoral Thesis, University of Oxford, (2011).
- [3] B. Chad and R. Suabedissen, Symmetries of two-point sets, Topology Appl. 155 (2008), 1213-1220.
- [4] B. Chad and R. Suabedissen, On affine groups admitting invariant two-point sets, Topology Appl. 156 (2009), 2209-2213
- [5] B. Chad, R. W. Knight and R. Suabedissen, Set-theoretic constructions of 2-point sets, Fund. Math. 203 (2009) 179-189
- J. J. Dijkstra, K. Kunen and J. van Mill, Hausdorff measures and two point set extensions, Fund. Math. 157 (1998) 44-60
- [7] Kunen, K. Set Theory. Studies in Logic and the Foundations of Mathematics, vol. 102. (1980), Elsevier, Amsterdam, The Netherlands.
- [8] S. Mazurkiewicz, On a certain planar set that has precisely two points in common with each straight line, C. R. Acad. Sci. Lettres Varsovie 7 (1914), 382-384 (in Polish).
- [9] J. van Mill, Homogeneous subsets of the real line, Comp. Math. 45 (1982), 3-13.
- [10] S. Lang, Algebra, 3rd ed., Addison-Wesley, Reading, 1993
- [11] J. H. Schmerl, Some 2-point sets, Fund. Math. 208 (2010), 87-91

Received February 1, 2012 Revised version received May 8, 2012

WILLIAM R. BRIAN, DEPARTMENT OF MATHEMATICS, TULANE UNIVERSITY E-mail address: wbrian.math@gmail.com

JAN VAN MILL KORTEWEG-DE VRIES INSTITUTE FOR MATHEMATICS, UNIVERSITY OF AMSTERDAM

E-mail address: j.vanMill@uva.nl

Rolf Suabedissen, Department of Mathematics, University of Oxford $E\text{-}mail \ address: suabedis@maths.ox.ac.uk}$

898