
Topology and its Applications 178 (2014) 411–416
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Monotone partitions and almost partitions

Maddalena Bonanzinga a,∗, Filippo Cammaroto a, Jan van Mill b,1, 
Bruno A. Pansera a

a Dipartimento di Matematica e Informatica, Università di Messina, Viale F. Stagno d’Alcontres N. 31, 
98166 Messina, Italy
b KdV Institute for Mathematics, University of Amsterdam, Science Park 904, P.O. Box 94248, 
1090 GE Amsterdam, The Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 April 2014
Received in revised form 14 October 
2014
Accepted 14 October 2014
Available online 31 October 2014

MSC:
54D20

Keywords:
Partition
Monotone partition
Tree of open sets
Souslin line
Generalized ordered space

In this paper we are interested in monotone versions of partitionability of topological 
spaces and weak versions thereof. We identify several classes of spaces with these 
properties by constructing trees of open sets with various properties.
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1. Introduction

Monotone versions of covering properties have been extensively studied the last decade. For details, see 
e.g., [2,4–8,12,14]. A space is zero-dimensional if it has a base consisting of open-and-closed (abbreviated 
clopen) sets. It is well-known, and easy to prove, that a zero-dimensional Lindelöf space X has the following 
covering property: every open cover U of X can be refined by a clopen partition r(U ) of X. In [11] Levy 
and Matveev introduce monotone partionability in zero-dimensional spaces in the following way: a zero 
dimensional space X is monotonically partition-Lindelöf (abbreviated mpL) if one can assign to every open 
cover U a countable partition r(U ) of X into clopen sets so that r(U ) refines U , and r(U ) refines r(V )

* Corresponding author.
E-mail addresses: mbonanzinga@unime.it (M. Bonanzinga), camfil@unime.it (F. Cammaroto), j.vanMill@uva.nl (J. van Mill), 

bpansera@unime.it (B.A. Pansera).
1 The third-named author is indebted to G.N.S.A.G.A. for generous support.
http://dx.doi.org/10.1016/j.topol.2014.10.012
0166-8641/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.topol.2014.10.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
mailto:mbonanzinga@unime.it
mailto:camfil@unime.it
mailto:j.vanMill@uva.nl
mailto:bpansera@unime.it
http://dx.doi.org/10.1016/j.topol.2014.10.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.topol.2014.10.012&domain=pdf


412 M. Bonanzinga et al. / Topology and its Applications 178 (2014) 411–416
whenever U refines V . In [11], it is shown that every zero-dimensional second countable space is mpL, and 
it is noted that the one-point Lindelöfication of the discrete space of cardinality ω1, Lω1 , is an example 
of a non-metrizable mpL-space. Also, it is proved that every countable mpL-space is second countable 
[11, Corollary 16].

In this paper we prove that in ZFC every Lindelöf P -spaces of weight ω1 is mpL; this result was proved 
in [11] under CH for mL-spaces (see below) instead of mpL. Then we discuss several natural generaliza-
tions of monotone partition-Lindelöfness which brings spaces of countable π-weight, ordered ccc spaces and 
monotonically normal compact ccc spaces into the picture.

A space X is called monotonically (weakly) Lindelöf (abbreviated: m(w)L) if for every open cover U of 
X there is a countable open cover r(U ) of X (countable open collection r(U ) such that 

⋃
r(U ) is dense) 

such that r(U ) refines U , and if U refines the open cover V of X, then r(U ) refines r(V ).
It is clear that every mpL-space is mL. In [10], Levy and Matveev showed that no dense subspace of 

2ω1 is mL. Hence if X is any countable dense subspace of 2ω1 , then X is an example of a countable 
zero-dimensional space that is not mpL. It is a more challenging question whether there exists an mL
zero-dimensional space that is not mpL [11, Question 17]. We prove that a countable example of Levy and 
Matveev [10] which requires the Continuum Hypothesis, does the job.

We end with several open problems.
In this paper a family U of subsets of a space X is called open if every U ∈ U is open in X, a family of 

sets is called cellular if its elements are pairwise disjoint and all given spaces are assumed to be regular.

2. Monotone partition-Lindelöfness

At least two important classes of spaces are monotonically partition-Lindelöf (for more or less obvious 
reasons): the separable metrizable zero-dimensional spaces (see also [11]) and the Lindelöf P -spaces of 
weight ω1. In both cases the proofs are identical. In the metrizable case, one can find a tree of clopen 
partitions of height ω which forms a basis for the topology, as follows. Consider the open cover Un of a 
zero-dimensional separable metrizable space of all open sets of diameter less than 2−n. By the assumptions 
and the comment at the start of Section 1, this cover can be refined by a clopen partition Pn. It is trivial to 
construct clopen partitions Qn of X such that Qn refines the common refinement of Pn and Qn−1. Then 
the partitions Qn form the tree of clopen partitions that we are after. In the Lindelöf P -case, the proof is 
similar, except that the tree has height ω1.

Theorem 2.1. Every Lindelöf P -space of weight ω1 is mpL.

Proof. Let X be a Lindelöf P -space of weight ω1. For every α < ω1 let Bα be a countable clopen partition 
of X such that if β < α, then Bα refines Bβ , and 

⋃
α<ω1

Bα is a base for X. Now for an open cover 
U of X, by induction on α < ω1 we define (possibly empty) subcollections Uα of Bα, as follows. Put 
U0 = {E ∈ B0 : (∃U ∈ U )(E ⊆ U)}. Observe that U0 may be the empty collection. Having defined for 
some α < ω1 the collections Uβ for all β < α, put Vα =

⋃
β<α Uβ , and let

Uα =
{
E ∈ Bα :

(
E ∩

⋃
Vα = ∅

)
& (∃U ∈ U )(E ⊆ U)

}
.

This completes the construction.
Now put r(U ) =

⋃
α<ω1

Uα. It is clear that r(U ) is a cellular (and hence countable) clopen collection.

Claim 1. r(U ) refines U .

This is clear by the construction.



M. Bonanzinga et al. / Topology and its Applications 178 (2014) 411–416 413
Claim 2. 
⋃

r(U ) covers X.

Take an arbitrary x ∈ X. Since U covers, we may take U ∈ U such that x ∈ U . There exists some 
α < ω1 and an element B ∈ Bα such that x ∈ B ⊆ U . If B ∩

⋃
Vα = ∅, then B ∈ Vα and hence we are 

done. If B ∩
⋃

Vα �= ∅, then there exists V ∈ Vβ for some β < α such that B ⊆ V , hence we are done as 
well.

Claim 3. If U refines Ṽ , then r(U ) refines r(Ṽ ).

Indeed, for some α < ω1 take an arbitrary element E ∈ Uα. There exist U ∈ U and V ∈ Ṽ such that 
E ⊆ U ⊆ V . Let Wα =

⋃
β<α Ṽβ . If E ∩

⋃
Wα = ∅, then E ∈ Ṽα, and hence we are done. If not, then for 

some β < α we have that E ∩
⋃

Ṽβ �= ∅. But E ∈ Bα, and since β < α there consequently exists F ∈ Ṽβ

such that E ⊆ F , which finishes the proof. �
Our aim now is to present an example of a countable zero-dimensional mL-space that is not mpL.
Let κ > 0 be a cardinal. Say that a sequence T = {Tα : α < κ} of infinite subsets of ω is a pretower if 

Tβ ⊆∗ Tα and Tβ �=∗ Tα whenever α < β < κ. Let p /∈ ω. Denote by XT the set ω ∪ {p} with the topology 
TT generated by the base {{n} : n < ω} ∪ {{p} ∪ (Tα \ A) : α < κ and A ∈ [ω]<ω}. Here [ω]<ω stands for 
the collection of finite subsets of ω. The following result is obvious.

Proposition 2.2. If T = {Tα : α < κ} is a pretower and κ has uncountable cofinality, then XT is not second 
countable.

In Levy and Matveev [10, §3] it was shown that under the Continuum Hypothesis, there is a pretower T =
{Tα : α < ω1} such that XT is mL. Hence XT is mL but not mpL by [11, Corollary 16] and Proposition 2.2.

3. Generalizations

The following generalization of monotone partition-Lindelöfness is quite natural.

Definition 3.1. A space X is monotonically weakly partition-Lindelöf (abbreviated: mwpL) if for every open 
cover U of X there is a family r(U ) of open sets of X such that:

(1) r(U ) is countable;
(2) r(U ) is cellular;
(3) r(U ) refines U ;
(4)

⋃
r(U ) is dense in X;

(5) if U refines V then r(U ) refines r(V ).

There is also a natural ‘hereditary’ version of this notion that is of interest.

Definition 3.2. A space X is hereditarily monotonically weakly partition-Lindelöf (abbreviated: hmwpL) if 
for every family U of open sets there is a family of open sets r(U ) such that:

(1) r(U ) is countable;
(2) r(U ) is cellular;
(3) r(U ) refines U ;
(4)

⋃
r(U ) is dense in 

⋃
U ;

(5) if U refines V then r(U ) refines r(V ).



414 M. Bonanzinga et al. / Topology and its Applications 178 (2014) 411–416
The terminology is justified by observing that every open subspace of an hmwpL-space is mwpL. For 
closed subspaces this is not true: consider any Isbell–Mrówka space Ψ (see [3, 3.6.I.(a)]).

Observe that mpL ⇒ mwpL ⇒ mwL. However, an mpL-space need not be hmwpL. Indeed, the one-point 
Lindelöfication Lω1 of a discrete space D of cardinality ω1 is an mpL-space (see Section 1) but the open 
subset D is not weakly Lindelöf, hence Lω1 is not hmwpL.

By [11, Corollary 16] and Corollary 4.2 below, we have that the space ω ∪ {p}, where p is a nonprincipal 
ultrafilter on ω, is an hmwpL-space which is not mpL.

Lemma 3.3. If Y is a dense subspace of X, and if X is hmwpL, then so is Y .

Proof. Let r be an operator witnessing the fact that X is hmwpL. For every relatively open subset U of Y , 
put

E(U) = X \ Y \ U.

Here closure means closure in X. So E(U) is the largest open subset of X that extends U . Now for a family 
of open subsets U of Y , put

�(U ) =
{
V ∩ Y : V ∈ r

({
E(U) : U ∈ U

})}
.

Then � demonstrates that Y is hmwpL. �
It is clear that if X is hmwpL, then X is ccc. The one-point Lindelöfication of ω1 is not ccc, yet is mwpL. 

Hence there is a space that is mwpL but not hmwpL. This leads us to the following problem.

Question 3.4. Is there a ccc space that is mwpL but not hmwpL?

Question 3.5. Is there a ccc mwL-space that is not mwpL?

4. Spaces with a special π-base

Theorem 4.1. Let λ ≤ ω1. Let X be a ccc space containing for every α < λ an open cellular family Bα such 
that

(1) if α < β < λ, then Bβ refines Bα,
(2) B =

⋃
α<λ Bα is a π-basis for X.

Then X is hmwpL.

Proof. Let U be any collection of nonempty open sets. By induction on α < λ we define (possibly empty) 
subcollections Uα of Bα, as follows. Put U0 = {E ∈ B0 : (∃U ∈ U )(E ⊆ U)}. Observe that U0 may be the 
empty collection. Having defined for some α < λ the collections Uβ , put Vα =

⋃
β<α Uβ , and let

Uα =
{
E ∈ Bα :

(
E ∩

⋃
Vα = ∅

)
& (∃U ∈ U )(E ⊆ U)

}
.

This completes the construction. The proof can now be completed as in the proof of Theorem 2.1. �
Corollary 4.2. Every space X with countable π-weight is hmwpL.
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Proof. Let B = {Bn : n < ω} be a countable π-base for X. For each n < ω we will construct a subcollection 
En of B satisfying the following conditions:

(1) If A, B ∈ En are distinct, then A ∩B = ∅,
(2)

⋃
En is dense in X,

(3) there is an element E ∈ En such that E ⊆ Bn,
(4) if m < n, then Em refines En.

Let E0 be a maximal collection of elements of B such that its elements have pairwise disjoint closures 
and which contains B0. Clearly, 

⋃
E0 is dense.

Having defined En for some n < ω, consider Bn+1. There exists E ∈ En such that E ∩ Bn+1 �= ∅. There 
moreover exists m < ω such that Bm ⊆ E ∩ Bn+1. Now let F be a maximal collection of elements of B
such that its elements have pairwise disjoint closures which are all contained in E and which contains Bm. 
Put En+1 = (En \ {E}) ∪ F . The inductive hypotheses are clearly satisfied.

Hence we are done by the λ = ω case of Theorem 4.1. �
These results suggest (at least) two questions. The first one is whether Corollary 4.2 can be generalized 

to spaces with larger π-weight. This is not possible unfortunately. In [2] it was shown on page 591 that 
no countable dense set in the Cantor cube 2ω1 is mwL. As a consequence, no countable dense set in 2ω1

is hmwpL. Having said that, the second question is whether there is an example of an hmwpL-space of 
uncountable π-weight. There is one, if one assumes enough set theory. We will deal with this in the next 
section.

5. Monotonically normal spaces

Recall that a linearly ordered space (LOTS) is a triple (X, <, I ), where < is a linear ordering of X and I
is the open-interval topology of that ordering. A generalized ordered space (GO-space) is a triple (X, <, T ), 
where < is a linear ordering of X and T is a Hausdorff topology on X that has a base of order-convex sets. 
Here a subset C ⊆ X is called order-convex if x ≤ y ≤ z and {x, z} ⊆ C implies y ∈ C. E. Čech proved 
that X is a GO-space if and only if X is a subspace of some LOTS.

In the proof of Theorem 5.1 below we need the fact that the density of any ccc GO-space is at most ω1. 
For ordered spaces, a proof of this can be found in Juhász [9, p. 14]. It was explained to us by David J. 
Lutzer that from this one can quite easily get the result for GO-spaces; he ascribes it to folklore. If (X, <, τ)
is a GO-space that satisfies ccc, let λ be the usual open-interval topology of the order <. Then λ ⊆ τ so that 
(X, <, λ) is a LOTS that satisfies ccc. Consequently, there is a dense subset D of (X, λ) having |D| ≤ ω1. 
Let J be the set of all isolated points of the original GO-space (X, τ). Then, by ccc, J is countable. Then 
D ∪ J is dense in (X, τ) and has cardinality ≤ ω1.

The following result is related to Bennett, Lutzer and Matveev [1, §3].

Theorem 5.1. Every ccc GO-space is hmwpL.

Proof. Let X be a ccc GO-space. First observe that X is first countable and has as we discussed above a 
dense subset D of size at most ω1. If X is separable, then X has countable π-weight and so we are done 
by Corollary 4.2. So we may assume that X is not separable. Let A be the closure of the isolated points I
of X (possibly, A = ∅). List D \ A as {dα : α < ω1}. For every α < ω1 put Kα = A ∪ {dβ : β < α}. Then ⋃

α<ω1
Kα is closed in X since X is first countable, and it is obviously dense, hence X =

⋃
α<ω1

Kα.
For every α < ω1, let Tα be the family of convex components of X \Kα. Observe that Tα is countable 

by ccc, and Tα refines Tβ if β < α. We claim that T = {{x} : x ∈ I} ∪
⋃

Tα is a π-basis of X. Indeed, 
α<ω1
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let (a, b) be an arbitrary interval. We may assume that (a, b) contains no isolated points. Hence there exists 
α < ω1 such that |Kα ∩ (a, b)| ≥ 2. This implies that some member of Tα is contained in (a, b). Hence by 
replacing T0 by {{x} : x ∈ I} ∪ T0, we see that the π-basis satisfies the conditions in Theorem 4.1. As a 
consequence, X is hmwpL. �
Corollary 5.2. A Souslin continuum is hmwpL and has π-weight ω1.

Question 5.3. Is there in ZFC an example of an hmwpL-space of uncountable π-weight?

Let X be a compact monotonically normal space. By a result of Rudin [13] there is a compact LOTS 
L that maps onto X, say f : L → X is a continuous surjection. There is a closed subset L′ of L such that 
f�L′: L′ → X is an irreducible surjection [3, Exercise 3.1.C]. Hence we may assume without loss of generality 
that f is irreducible. Observe that if U ⊆ L is nonempty and open, and U# = X \ f(L \U), then f−1(U#)
is a dense open subset of U . Hence if X is ccc, then so is L. This leads us to the following result:

Theorem 5.4. Let X be a compact monotonically normal ccc space. Then X is hmwpL.

Proof. Let f : L → X be a continuous mapping such as the one we described above. By Theorem 5.1, L is 
hmwpL; let r be the operator witnessing this. For every collection of open subsets U , put UL = {f−1(U) :
U ∈ U }. Moreover, put

�(U ) =
{
V # : V ∈ r(UL)

}
.

We claim that the operator � is as required. Indeed, the collection �(U ) is open and cellular since r(UL)
is. Also, since 

⋃
�(U ) is dense in 

⋃
UL, and for every V ∈ �(U ), f−1(V #) is dense in V , we are done once 

we showed that � is monotone. To check this, suppose that U and V are open collections of X such that 
U refines V . Observe that r(UL) refines r(VL). Pick an arbitrary member U# in �(U ), where U ∈ r(UL). 
There exists V ∈ r(VL) such that U ⊆ V . Clearly, U# ⊆ V #, and hence we are done. �

The authors are indebted to the referee for careful reading and valuable suggestions.

References

[1] H. Bennett, D. Lutzer, M. Matveev, The monotone Lindelöf property and separability in ordered spaces, Topol. Appl. 151 
(2005) 180–186.

[2] M. Bonanzinga, F. Cammaroto, B.A. Pansera, Monotone weak Lindelöfness, Cent. Eur. J. Math. 9 (2011) 583–592.
[3] R. Engelking, General Topology, second edition, Heldermann Verlag, Berlin, 1989.
[4] Y. Ge, C. Good, A note on monotone countable paracompactness, Comment. Math. Univ. Carol. 42 (2001) 771–778.
[5] C. Good, L. Haynes, Monotone versions of countable paracompactness, Topol. Appl. 154 (2007) 734–740.
[6] C. Good, R.W. Knight, Monotonically countably paracompact, collectionwise Hausdorff spaces and measurable cardinals, 

Proc. Am. Math. Soc. 134 (2006) 591–597.
[7] C. Good, R.W. Knight, I. Stares, Monotone countable paracompactness, Topol. Appl. 101 (2000) 281–298.
[8] G. Gruenhage, Monotonically compact T2-spaces are metrizable, Quest. Answ. Gen. Topol. 27 (2009) 57–59.
[9] I. Juhász, Cardinal functions in topology, Mathematical Centre Tract, vol. 34, Mathematical Centre, Amsterdam, 1971.

[10] R. Levy, M. Matveev, On monotone Lindelofness of countable spaces, Comment. Math. Univ. Carol. 49 (2008) 155–161.
[11] R. Levy, M. Matveev, Some questions on monotone Lindelöfness, Quest. Answ. Gen. Topol. 26 (2008) 13–27.
[12] C. Pan, Monotonically CP spaces, Quest. Answ. Gen. Topol. 15 (1987) 25–32.
[13] M.E. Rudin, Nikiel’s conjecture, Topol. Appl. 116 (2001) 305–331.
[14] I. Stares, Versions of monotone paracompactness, Papers on General Topology and Applications, Gorham, August 10–13, 

Ann. N.Y. Acad. Sci. 806 (1996) 433–438.

http://refhub.elsevier.com/S0166-8641(14)00401-5/bib42656E6E6574744C75747A65724D6174766565763038s1
http://refhub.elsevier.com/S0166-8641(14)00401-5/bib42656E6E6574744C75747A65724D6174766565763038s1
http://refhub.elsevier.com/S0166-8641(14)00401-5/bib426F6E616E7A696E676143616D6D61726F746F50616E736572613131s1
http://refhub.elsevier.com/S0166-8641(14)00401-5/bib656E67656C6B696E673A67656E746F70s1
http://refhub.elsevier.com/S0166-8641(14)00401-5/bib5965476F6F643031s1
http://refhub.elsevier.com/S0166-8641(14)00401-5/bib476F6F644861796E65733037s1
http://refhub.elsevier.com/S0166-8641(14)00401-5/bib476F6F644B6E696768743036s1
http://refhub.elsevier.com/S0166-8641(14)00401-5/bib476F6F644B6E696768743036s1
http://refhub.elsevier.com/S0166-8641(14)00401-5/bib476F6F644B6E696768537461726573743036s1
http://refhub.elsevier.com/S0166-8641(14)00401-5/bib477275656E686167653039s1
http://refhub.elsevier.com/S0166-8641(14)00401-5/bib6A756861737As1
http://refhub.elsevier.com/S0166-8641(14)00401-5/bib4C6576794D617476656576303861s1
http://refhub.elsevier.com/S0166-8641(14)00401-5/bib4C6576794D6174766565763038s1
http://refhub.elsevier.com/S0166-8641(14)00401-5/bib50616E3837s1
http://refhub.elsevier.com/S0166-8641(14)00401-5/bib527564696E3031s1
http://refhub.elsevier.com/S0166-8641(14)00401-5/bib5374617265733936s1
http://refhub.elsevier.com/S0166-8641(14)00401-5/bib5374617265733936s1

	Monotone partitions and almost partitions
	1 Introduction
	2 Monotone partition-Lindelöfness
	3 Generalizations
	4 Spaces with a special π-base
	5 Monotonically normal spaces
	References


