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UNIONS OF F -SPACES

KLAAS PIETER HART, LEON LUO, AND JAN VAN MILL

Abstract. We show that every space that is the union of a ‘small’
family consisting of special P -sets that are F -spaces, is an F -space.
We also comment on the sharpness of our results.

Introduction

We assume that every space is Tychonoff unless specified otherwise,
and βX and X∗ stand for the Čech-Stone compactification and the Čech-
Stone remainder of X respectively. A space is an F -space if disjoint
cozero-subsets are contained in disjoint zero-subsets. Equivalently, X is
an F -space if every cozero-subset of X is C∗-embedded in X. The study of
F -spaces has a long history since the late 1950’s [5]. For basic information
on F -spaces, see [5], [6] and [8].

It is proven in [4] that each union of ω1 many cozero-subsets of an
F -space is again an F -space. Hence under the Continuum Hypothesis
(abbreviated CH) each open subspace of an F -space of weight c is again
an F -space. In [1] an example was constructed of a compact F -space with
weight ω2 · c that has an open subspace that is not an F -space. Hence
CH is equivalent to the statement that each open subspace of an F -space
with weight c is again an F -space. See [1], [2] and [3] for more related
results.

These results have motivated us to study the question “when is the
union of F -subspaces again an F -space” more closely. In this note it is
shown that if a space can be covered by a family of ω1 many special P -
sets, then it is an F -space. We shall also use the examples in [1, 2] to
discuss the sharpness of our result.
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1. Preliminaries

A closed subset A of a space X is called a P -set if the intersection of
any countable family of neighborhoods of A is again a neighborhood of A.
If A is a singleton subset of X, then the point in it is usually referred to
as a P -point.

Definition 1.1. A space is a P -space if every point is a P -point.

Definition 1.2. A closed subset A of a space X is called nicely placed
in X if for every open neighborhood U of A there is a cozero-subset V
of X such that A ⊆ V ⊆ U .

Definition 1.3. A subset A of a space X is said to be C∗-embedded in X
if for each continuous function f : A → I, there is a continuous extension
f̄ : X → I of f .

Proposition 1.4 ([8, 1.61]). A C∗-embedded subspace of an F -space is
an F -space.

If X is a set, and κ is a cardinal number, then [X]κ denotes {A ⊆ X :
|A| = κ}.

2. Unions of F -spaces

In this section we present our main result on unions of F -subspaces.
In the next sections we will comment on its sharpness.

Theorem 2.1. Let X be a space with a cover F that consists of not more
than ω1 many P -subsets, each of which is a nicely placed C∗-embedded
F -subspace of X. Then X is an F -space.

Proof. Let U be a cozero-subset of X, and let f : U → I be continuous.
Enumerate F ∪ {∅} as {Fα : α < ω1} where F0 = ∅. We shall construct,
by transfinite recursion, for each α < ω1, a cozero subset Vα of X and a
continuous function fα : Vα → I such that

(1) V0 = U and f0 = f ;
(2) Fα ⊆ Vα;
(3) if β < α then Vβ ⊆ Vα and fα � Vβ = fβ .

Suppose that we have constructed Vβ and fβ for all β < α where α < ω1.
Put V =

∪
β<α Vβ and g =

∪
β<α fβ . Clearly, V is a cozero-subset of X

and g is continuous on V . Let h = g �Fα. Since V ∩Fα is a cozero-subset
of Fα and Fα is an F -space, we can extend h to a continuous function
ξ : Fα → I. Moreover, since Fα is C∗-embedded in X, we can extend ξ to
a continuous function η : X → I.
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We claim that there is a cozero-subset W of X such that Fα ⊆ W and

g � (W ∩ V ) = η � (W ∩ V ).

Indeed, we write V as
∪

n<ω An, where each An is closed in X. For all
n < ω and k ≥ 1, let

Ak
n = {x ∈ An : |g(x)− η(x)| ≥ 2−k}.

Clearly, Ak
n is closed in X and disjoint from Fα since g � (Fα ∩ V ) =

η � (Fα ∩ V ). As Fα is a nicely placed P -subset of X there is a cozero
subset W of X such that

Fα ⊆ W ⊆ X \
∪
n<ω

∪
k≥1

Ak
n.

It is clear that W is as required. Now put Vα = V ∪W and fα = g∪(η�W ).
At the end of the recursion we let f̄ =

∪
α<ω1

fα; this is the desired
continuous extension of f . �

Remark 2.2. The referee noticed, as did we, that in the proof of Theo-
rem 2.1 we only need that X is covered by a family F such that |F| ≤ ω1

and each element F of F has the property that its closure, BF , in βX is
both a P -set in βX and an F -space. Indeed, by compactness, each BF is
nicely placed and C∗-embedded in βX. Hence Y =

∪
F∈F BF is an F -

space by Theorem 2.1. But then X is an F -space as well since it is clearly
C∗-embedded in Y . When writing the paper, we decided not to formulate
Theorem 2.1 in this form since the condition that each BF is both a P -set
and an F -space is not an ‘internal’ one: our theorem gives a condition
under which building blocks that are F -spaces yield an F -space, whereas
the other formulation would show when building blocks that need not be
F -spaces combine into an F -space.

But it is potentially a weaker condition than the ones that we stated
in Theorem 2.1 and so we believe that it should be studied more closely.

3. The first example

We shall describe an example of a locally compact space that is not an
F -space yet it admits a clopen cover of size ω2 consisting of compact zero-
dimensional F -spaces. This shows that Theorem 2.1 is false for unions of
families of size ω2. Our example is a modification of the example in [1].

Our starting point is the compact space G obtained from the topolog-
ical sum of ω∗ × (ω1 + 1) and βω by identifying the points ⟨u, ω1⟩ and u,
for every point u of ω∗.

Observe that after this identification ω is an open Fσ-subset of G and
that βω is a P -set of character ω1 in G. Moreover, the weight of G is
equal to c and G is zero-dimensional.
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Our next step is to put Y = ω×G. Let π : Y → G denote the projection
map and let π∗ : Y ∗ → G be the restriction of the Stone extension of π.
As π∗ is closed the preimage (π∗)←[βω] is not open since βω is not open
in G.

The space Y ∗ is a compact zero-dimensional F -space of weight c and
(π∗)←[βω] is a P -set of character ω1. The problem is that (π∗)←[ω] is
not dense in (π∗)←[βω]. To remedy this let f be the restriction of π∗

to (π∗)←[βω]. Now f maps the closed P -set (π∗)←[βω] onto the compact
F -space βω. Hence [6, Lemma 1.4.1] applies to show that the adjunction
space Ω = Y ∗∪f βω is a compact F -space of weight c. It is also easily seen
to be zero-dimensional. Thus we have replaced (π∗)←[βω] in Y ∗ by (a
copy of) βω; in this way we get an open Fσ-subset C in Ω whose closure
is a P -set of character ω1: let C = ω.

We can give an explicit increasing sequence ⟨Vα : α ∈ ω1⟩ of clopen sets
in Ω such that ω \ clΩ C is equal to

∪
α∈ω1

Vα. Indeed, in G we have the
clopen initial segments of ω∗×(ω1+1): put Gα = ω∗×(α+1) for each α.
These are transported into Y ∗, and hence into Ω, by taking preimages:
let Vα = (π∗)←[Gα] for all α.

Now we perform the same construction as in [1] with ω∗ replaced by Ω.
Let X be ω2 + 1 endowed with Gδ-topology. We observe that X × Ω is
an F -space by [7], and that its weight is equal to ω2 · c. This implies that
K = β(X ×Ω) is an F -space as well and its weight is equal to (ω2 · c)ω =
ω2 · c.

Next let L = {α ∈ ω2 + 1 : cf α ≥ ω1}. We let T be the closure in K
of L×C; note that T = clK(L× clΩ C) also. The complement U of T in
K is our example.

That U is not an F -space is proven in exactly the same way as in [1].
To finish we show that U is the union of ω2 many clopen subset of K.

Each of these is trivially a nicely placed and C-embedded P -set, and an
F -space because K is.

The first ω1 many clopen sets are the closures clK(X×Vα), for α ∈ ω1;
these cover the points of U that do not belong to clK(X × clΩ C), as we
shall see presently.

The other ω2 many clopen sets will appear in the course of the following
argument. Let u ∈ U and let W be a clopen neighbourhood of u in K that
is disjoint from T . We let A =

{
α ∈ X \ L : (∃m ∈ clΩ C)(⟨α,m⟩ ∈ W )

}
;

note that, because W is clopen, it is even the case that W ∩({α}×C) ̸= ∅
whenever α ∈ A.

Claim 1. A is countable.

Proof. If A is uncountable then, as a set or ordinals, it has an initial seg-
ment of order type ω1; we simply assume that the order type of A itself



UNIONS OF F -SPACES 297

is ω1. Let β = supA. Then β ∈ L. Moreover, for every α ∈ A, pick, by
the above remark, an element mα ∈ C such that ⟨α,mα⟩ ∈ W . Since C is
countable there is an m ∈ C such that M = {α : mα = m} has cardinal-
ity ω1. This then implies that ⟨β,m⟩ ∈ W ∩ (L×C), a contradiction. �

Claim 2. There exists α < ω1 such that

W ∩ (X × Ω) ⊆ (X × Vα) ∪ (A× Ω).

Proof. To begin we observe that for every γ ∈ X \ A there is an α such
that

W ∩ ({γ} × Ω) ⊆ {γ} × Vα.

This follows because W ∩ ({γ} × Ω) is compact and disjoint from {γ} ×
clΩ C.

We claim that for each α the set Oα = {γ /∈ A : ({γ} × Ω) ∩ W ⊆
{γ} × Vα} is open in X. Indeed, X \Oα = A ∪ πX [W ∩ (X × (Ω \ Vα))],
and this set closed because A is closed and because the projection πX :
X × (Ω \ Vα) → X is closed (by compactness of Ω \ Vα).

By repeated application of the pressing-down lemma one readily proves
that X \A is Lindelöf, so that there is β ∈ ω1 such that X \A ⊆

∪
α<β Oα.

But this then implies that W ∩ (X × Ω) ⊆ (X × Vβ) ∪ (A× Ω). �

Since (X ×Vβ)∪ (A×Ω) is clopen in X×Ω we see that W ⊆ clK(X ×
Vβ) ∪ clK(A× Ω).

From this we extract our second family of clopen sets: all sets of the
form clK(A× Ω) for countable A ⊆ X \ L.

We finish by observing that [X \ L]ω has a cofinal subfamily A of
cardinality ω2: for each α ∈ ω2 the set [α\L]ω has a cofinal subfamily Aα

of cardinality ω1, obtained via an injection from α into ω1. Then A =∪
α<ω2

Aα is as required.
Hence the clopen families {clK(X × Vα) : α ∈ ω1} and {clK(A × Ω) :

A ∈ A} is the required cover of U .

4. The second example

We shall describe an example of a space that admits a cover of size ω1

consisting of C∗-embedded F -subspaces that are P -sets yet it is not an
F -space. This shows that Theorem 2.1 is false for unions of P -sets that
are not nicely placed. The space is Example 1.9 from [2].

Let X = ω1 ∪ {p}, where neighborhoods of p are cocountable and
ω1 is discrete. Let S = ω1 × ω∗, where again ω1 has the discrete topol-
ogy. Let C ⊆ ω∗ be a cozero subset whose closure is not a zero-set.



298 K. P. HART, L. LUO, AND J. VAN MILL

For α ∈ ω1, let Cα = {α} × C, and put

K =
∩

α∈ω1

clβS

(∪
γ>α

Cγ

)
.

Then Y = βS \ K is a locally compact F -space, and X × Y is not an
F -space [2].

The crucial property of Y is the following: if for each α one takes a
zero subset Zα of {α} × ω∗ that contains Cα then

(†) Y ∩
∩

α∈ω1

clβS

(∪
γ>α

Zγ

)
̸= ∅.

Lemma 4.1. Let x be a P -point in a space D and let E be a locally
compact space. Then {x} × E is a P -set in D × E.

Proof. Let F be an Fσ-subset of D × E which is disjoint from {x} × E,
we show that clF is also disjoint from {x} × E.

To this end let y ∈ E and let C be a compact neighborhood of y in E.
The projection map πD : D×C → D is closed, hence H = πD[F∩(D×C)]
is an Fσ-subset of D that does not contain x. Hence U = D \ clH is a
neighborhood of x since x is a P -point in D. So the product of U and the
interior of C is a neighborhood of ⟨x, y⟩ that is disjoint from F , so that
⟨x, y⟩ ̸∈ clF . �

From this Lemma we conclude that the collection{
{x} × Y : x ∈ X

}
consists of P -subsets of X × Y that are themselves F -spaces and clearly
C∗-embedded. Since X×Y is not an F -space, at least one of them cannot
be nicely placed by Theorem 2.1. Since {q} × Y is clopen in X × Y for
every q ∈ X \ {p} the only candidate for such P -set is E = {p} × Y . It
is instructive to provide a direct argument that E is not nicely placed
in X × Y .

To this end put

A =
∪

α∈ω1

{α} × Cα.

It was shown in the proof of Theorem 1.7 in [2] that A is a cozero subset
of Y . Since A is disjoint from the P -set E there is a neighbourhood O
of E that is disjoint from A. If E were nicely placed in X × Y then
there would be a cozero-set V in X × Y such that E ⊆ V ⊆ O. Hence
Z = (X × Y ) \ V is a zero-set in X × Y that contains A but misses E.
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For every α < ω1, put Zα = Z ∩ ({α}×ω∗), this is a zero-set in {α}×ω∗

that contains Cα. By (†) the intersection

Y ∩
∩

α∈ω1

clβS

(∪
γ>α

Zγ

)
is nonempty. This intersection is a subset of Z ∩ E which was assumed
to be empty.

5. The third example

The only question left is whether the hypothesis of being C∗-embedded
is essential for Theorem 2.1. Unfortunately, we are unable to answer this
question. A simpler question is: Is it true that every P -subset which is
nicely placed in an F -space is C∗-embedded in that space? If the answer
is positive, the condition on C∗-embeddedness in Theorem 2.1 would be
superfluous. We can show that the assumption 2ω1 = ω2 implies the
answer is negative.

The equality 2ω1 = ω2 implies that there is a maximal almost disjoint
family on ω1 of cardinality 2ω1 , that is, a collection A of subsets of ω1

with the following properties:
(1) A ⊆ [ω1]

ω1 ,
(2) if A,B ∈ A are distinct, then |A ∩B| ≤ ω,
(3) A is maximal with respct to the properties (1) and (2),
(4) |A| = 2ω1 .

Let X be ω1 ∪ A and topologize X in the standard way as follows: the
points of ω1 are isolated and a neighborhood of A ∈ A contains {A} and all
but countably many elements from A. Then X is a P -space, and by Jones’
Lemma, the set A is not C∗-embedded in X. However, by maximality of
A, every neighborhood of A has a countable complement and is therefore
clopen. So, every neighborhood of A is clopen, and therefore A is nicely
placed in the P -space X for trivial reasons.
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