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Nearly Countable Dense Homogeneous
Spaces

Michael Hrušák and Jan van Mill

Abstract. We study separable metric spaces with few types of countable dense sets. We present a struc-
ture theorem for locally compact spaces having precisely n types of countable dense sets: such a space
contains a subset S of size at most n−1 such that S is invariant under all homeomorphisms of X and
X \ S is countable dense homogeneous. We prove that every Borel space having fewer than c types of
countable dense sets is Polish. The natural question of whether every Polish space has either countably
many or c many types of countable dense sets is shown to be closely related to Topological Vaught’s
Conjecture.

1 Introduction

All spaces under discussion are separable and metrizable. A metric on a space X is
admissible if it generates the topology on X. A space is Polish if it has an admissible
complete metric.

Recall that a space X is countable dense homogeneous (CDH) if, given any two
countable dense subsets D and E of X, there is a homeomorphism f : X → X such
that f (D) = E. This is a classical notion that can be traced back to the works of
Cantor, Brouwer, Fréchet, and others. Examples of CDH spaces are the Euclidean
spaces, the Hilbert cube and the Cantor set. In fact, every strongly locally homoge-
neous Polish space is CDH, as was shown by Bessaga and Pełczyński [4]. Recall that
a space X is strongly locally homogeneous if it has a basis B of open sets such that for
every U ∈ B and every x, y ∈ U there is a autohomeomorphism h of X such that
h(x) = y and h � X \U = id.

In this paper we consider the number of types of countable dense sets that a given
space has. As usual, we let c denote the cardinality of the continuum. Given a space X
and a cardinal number 1 ≤ κ ≤ c, we say that a space X has κ types of countable dense
sets provided that κ is the least cardinal for which there is a collection A of countable
dense subsets of X such that |A | = κ, while for any given countable dense set B of X
there exist A ∈ A and a homeomorphism f : X → X such that f (A) = B.

We prove that a Borel space that has fewer than continuum many types of count-
able dense sets is Polish. This improves the result of Hrušák and Zamora Avilés [13]
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that a Borel CDH space is Polish. It is a natural question whether a Polish space hav-
ing uncountably many types of countable dense sets has in fact c many such types.
We show that the question is strongly related to Topological Vaught’s Conjecture.

The topological sum of n copies of [0, 1) has n+1-many types of countable dense
sets, while the topological sum of countably many copies of [0, 1) has countably many
types of countable dense sets, i.e., simple examples of locally compact spaces having
at most countably many types of countable dense sets can be constructed by adding
a finite number of points to a CDH Polish space (e.g., finite graphs). What is per-
haps the main result of this paper presenting a structure theorem on locally compact
spaces X having at most countably many types of countable dense sets shows that
these are the only examples.

Theorem 1.1 Let X be a locally compact space having at most countably many types
of countable dense sets. Then X contains a closed and scattered subset S of finite Cantor-
Bendixson rank that is closed under all homeomorphisms of X and has the property that
X \ S is CDH. If X has at most n types of countable dense sets for some n ∈ N, then
|S| ≤ n−1.

The pseudoarc P is an example of a homogeneous continuum that has c types
of countable dense sets, the maximum number possible. To see this, let A and B
be disjoint composants of P. Moreover, let D and E be countable dense sets of A
and B, respectively. By Lemma 4.3, there is a collection F consisting of c pairwise
nonhomeomorphic subsets of E, none of which is homeomorphic to Q . Since ev-
ery homeomorphism of P permutes its composants, it is easy to see that for distinct
F, F ′ ∈ F we have that D ∪ F and D ∪ F ′ are of different type.

The proofs of our results depend heavily on the Effros Theorem [8] about actions
of Polish groups on Polish spaces as well as on Ungar’s analysis of various homogene-
ity notions [18, 19].

2 Ungar’s Theorem Revisited

Recall that a space X is n-homogeneous provided that for all subsets F and G of X
of size n there is a homeomorphism f of X such that f (F) = G. In addition, X is
strongly n-homogeneous provided that for all n-tuples (x1, . . . , xn) and (y1, . . . , yn) of
distinct points of X there is a homeomorphism f of X such that f (xi) = yi for all
i ≤ n.

The natural question whether these homogeneity notions are actually equivalent
to countable dense homogeneity for certain classes of spaces was addressed by Ungar
in [18,19]. He showed that for highly connected locally compact spaces this is indeed
the case.1

Theorem 2.1 (Ungar [18,19]) Let X be a locally compact space such that no finite set
separates X. Then the following statements are equivalent:

(i) X is CDH;

1See van Mill [23] for an example of a Polish space that is strongly n-homogeneous for all n, but not
CDH.
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(ii) X is n-homogeneous for every n;
(iii) X is strongly n-homogeneous for every n.

The proof of this very elegant result is based on the Effros Theorem from [8]
on actions of Polish groups on Polish spaces (see below). For a generalization of
the implication (i) ⇒ (iii) in Theorem 2.1, see [23, Theorem 1.2]. The principal
aim of this section is to prove an extension of this result without the connectivity
assumptions.

First we recall relevant definitions and facts concerning actions of Polish groups.
An action of a topological group G on a space X is a continuous map

(g, x) 7−→ gx : G× X −→ X

such that ex = x for every x in X and g(hx) = (gh)x for g and h in G and x in X
(here e denotes the neutral element of G). It is easily seen that for each g in G the
map x 7→ gx is a homeomorphism of X whose inverse is the map x 7→ g−1x.

If x belongs to X and U is a subset of G, then U x = {gx : g ∈ U}. The action of G
on X is transitive if Gx = X for every x in X. It is micro-transitive if for every x in X
and every neighborhood U of e in G the set U x is a neighborhood of x in X.

Let G be a topological group acting on a space X. For every F ⊆ X, we put

GF =
{

g ∈ G : (∀ x ∈ F)(gx = x)
}
, and GF = {g ∈ G : gF = F}.

If F is a singleton, say F = {x}, then we denote GF by Gx; it is the stabilizer of x by G.
Observe that both GF and GF act on X \ F and that GF is a normal subgroup of GF .
Moreover, clearly, if F is finite, then GF has finite index in GF .

We say that a group G makes X CDH if G acts on X in such a way that for any two
countable dense subsets D, E ⊆ X there is a g ∈ G such that gD = E. The following
result appears in [23, Proposition 3.1].

Proposition 2.2 Let X be a space, and let G be a group that makes X CDH. If F ⊆ X
is finite, and D, E ⊆ X\F are countable and dense in X, then there is an element g ∈ GF

such that gD ⊆ E.

A space X is Baire if the complement of every first category subset of X is dense in
X. A space is analytic if it is a continuous image of a Polish space. It is well known
that an absolute Borel set is analytic and that a Borel subspace of an analytic space
is analytic.The following interesting fact was proved in a more general context by
Levi [16] (see also [20, §A13]).

Theorem 2.3 Every analytic Baire space has a dense Polish subspace.

As already mentioned, our main tool is the so-called Effros Theorem from [8],
also known as the Open Mapping Principle. It was generalized in [22], as follows.

Theorem 2.4 (Open Mapping Principle) Suppose that an analytic group G acts tran-
sitively on a space X. If X is of second category, then G acts micro-transitively on X.
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This extremely useful result was first proved in its original form by Effros [8] using
a Borel selection argument. Simpler proofs were found independently by Ancel [1],
Hohti [11], and Toruńczyk (unpublished). The proofs of Ancel and Toruńczyk are
based on an ingenious technique of Homma [12], while Hohti uses an open mapping
theorem due to Dektjarev [7].

The Open Mapping Principle implies the classical Open Mapping Theorem of
functional analysis (for separable Banach spaces). Indeed, let B and E be separable
Banach spaces, and let h : B → E be a continuous linear surjection. We think of B
as a topological group, and define an action of B on E by (x, y) 7→ h(x) + y. This
action is transitive, since if y and y ′ in E and x in B are such that h(x) = y ′− y, then
(x, y) 7→ y ′. By Theorem 2.4, the map B→ E defined by x 7→ h(x) + 0 is open.

More important for our considerations is the fact that the Open Mapping Prin-
ciple also implies that for every homogeneous compactum (X, %) and every ε > 0
there exists δ > 0 such that, if x and y in X satisfy %(x, y) < δ, then there is a
homeomorphism f : X → X such that f (x) = y and such that f does not move any
point more than ε far from itself. (This goes half way towards explaining the word
micro-transitive.) This interesting and surprising fact, first discovered by Ungar [19],
was used with great success by continuum theorists in their study of homogeneous
continua. See Ancel [1] and Charatonik and Maćkowiak [6] for details and further
references.

Lemma 2.5 Let G be an analytic group acting on a space Y . Suppose that Gy is of
second category in Y for every y ∈ Y . Then for every y ∈ Y , Gy is clopen in Y and the
map G→ Y defined by g 7→ g y is open.

Proof Since G is analytic, it follows that Gy is analytic, hence it contains a dense
Polish subspace by Theorem 2.3. Moreover, Gy has nonempty interior, say U . It then
clearly follows that GU is a dense open subset of Gy. Assume that for some y ∈ Y we
have that there exists z ∈ Gy \ Gy. Then by what we just proved, the interior V of
Gz is dense in Gz ⊆ Gy. However, this is impossible, since then Gz ∩V and Gy ∩V
would contain disjoint dense Polish subspaces of V . Therefore, Gy is closed in Y for
every y ∈ Y , and hence Gy is a clopen subset of Y since it has, as we just observed,
nonempty interior in Y . Observe that the evaluation of G at a given point y ∈ Y is
open, is a direct consequence of Theorem 2.4.

Now we are ready to state and prove the following generalization of Ungar’s The-
orem.

Theorem 2.6 Let G be a Polish group acting on a Baire space X. Then the following
statements are equivalent:

(i) G makes X CDH;
(ii) for every finite subset F of X and y ∈ X \ F, GF y is of second category in X;
(iii) for every finite subset F of X and y ∈ X \ F, GF y is of second category in X.

Moreover, X is Polish.

Proof We first prove that (ii)⇔ (iii). Indeed, pick a finite F ⊆ X, and let y ∈ X \ F.
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Since there is a finite subset A of G such that

GF y = (AGF)y =
⋃

a∈A
a(GF y),

it follows that GF y is a second category subset of X if and only if GF y is.
Hence it suffices to prove that (i)⇔ (iii). For (i)⇒ (iii), pick an arbitrary finite

subset F ⊆ X and y ∈ X \ F. Striving for a contradiction, assume that GF y is a
first category subset of X. Since X is Baire, there is a countable dense subset D of X
such that D ⊆ X \ (F ∪ GF y). By Proposition 2.2, we may pick g ∈ GF such that
g(D ∪ {y}) ⊆ D. However, this contradicts the fact that g y ∈ GF y ⊆ X \ D. For
(iii)⇒(i), first observe that by Lemma 2.5 we have that GF y is clopen in X \ F for all
finite subsets F ⊆ X and y ∈ X \ F. Let D and E be countable dense subsets of X.
Enumerate D as {dn : n ∈ N} and E as {en : n ∈ N}. By the above, Gd0 is clopen, so
we may pick g0 ∈ G such that gd0 ∈ E. Let m = min{n ∈ N : en 6= gd0}. Consider
the set F = {gd0} and the point em ∈ X \ F. The set GFem is clopen in X \ F. Pick
a very small symmetric open neighborhood V of the identity of the neutral element
e of GF . Then Vem is open in X \ F. It therefore intersects D, say in the point d.
Let h ∈ V be such that hd = em. Hence h fixes gd0 and moves d to em by a small
move. Continuing in this way by the standard back and forth method will produce
a sequence of elements of G that converges to an element of the Polish group G that
takes D onto E (precisely as in the proof of [19, Theorem 3.3]).

That X is Polish follows from the following observations. If x ∈ X, then Gx is
clopen in X. Hence by Theorem 2.4, the evaluation mapping g 7→ gx is an open
surjection. Hence Gx is Polish by Hausdorff ’s Theorem in [10] that an open image
of a Polish space is Polish, cf. [1]. Hence X is Polish, since {Gx : x ∈ X} is a clopen
partition of X by Polish subspaces.

The promised strengthening of Ungar’s Theorem 2.1 (i)⇔(iii) follows by an ap-
plication of Lemma 2.5 and Theorem 2.6.

Corollary 2.7 Let X be a locally compact space. Then the following statements are
equivalent:

(i) X is CDH;
(ii) for every finite subset F of X there is a partition U of X \ F into relatively clopen

sets such that for every U ∈ U and every x, y ∈ U there is a homeomorphism h
of X such that h(x) = y while h(F) = F;

(iii) for every finite subset F of X there is a partition U of X \ F into relatively clopen
sets such that for every U ∈ U and every x, y ∈ U there is a homeomorphism h
of X such that h(x) = y while h�F = id.

To see that Theorem 2.1 (ii)⇔(iii) holds requires a different application of the
Effros Theorem; see Ungar [18] for details.

3 Spaces with Few Types of Countable Dense Sets

In this section we study the structure of spaces having fewer than c types of count-
able dense sets. We are interested mostly in locally compact spaces, but since our
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proofs only require the existence of suitable actions by Polish groups, we formulate
our results first in the language of G-spaces.

Let X be a G-space, for some topological group G, i.e., a space with a fixed action
of G on X. By the G-type of a countable dense set D ⊆ X we mean the collection
{gD : g ∈ G}. We are interested in the structure of G-spaces having κ G-types of
countable dense sets, where κ is a cardinal number below c. Different groups may
yield different cardinal numbers, of course. If X is a crowded2 space, then the trivial
group G = {e} has c G-types of countable dense sets. More importantly, if X is
locally compact, then the number of H (X)-types of countable dense sets is equal
to the number of types of countable dense sets. Here H (X) denotes the group of
autohomeomorphisms of X. It is well known, and easy to prove, that for a locally
compact space, H (X) can be endowed with a Polish group topology such that the
natural action

H (X)× X → X, (g, x) 7→ g(x), g ∈H (X), x ∈ X,

is continuous. For details, see Kechris [15].
Here is our first structure theorem.

Theorem 3.1 Let G be a Polish group, and let X be a Baire G-space. Assume that X
has fewer than c G-types of countable dense sets. Then

S =
{

x ∈ X : Gx is of first category in X
}

is a closed and scattered (hence countable) subspace of X. Moreover, S has finite Cantor–
Bendixson rank, X is Polish, S is invariant under he action of G, and, assuming X \ S is
connected, G makes X \ S homogeneous.

Proof First note that if x ∈ S, then Gx ⊆ S. Striving for a contradiction, assume first
that S is not scattered. Then it contains a copy Q of the space of rational numbers
Q . Put T =

⋃
x∈Q Gx. Then T is clearly of first category, hence Y = X \ T is dense

and Baire. By Lemma 4.3 there is a family A consisting of c countable and pairwise
nonhomeomorphic subsets of T. Let D ⊆ Y be any countable dense set. Then the
collection {D ∪ A : A ∈ A } is clearly a collection of c countable dense subsets of
X pairwise non-equivalent under the action of G. This contradicts our assumptions.
Hence S is scattered, and so countable.

Now, given x ∈ S, the orbit Gx is scattered, hence discrete. We claim that there
does not exist an infinite collection of first category orbits. To this end, assume that
there are {xn : n ∈ N} in X such that Gxn is first category for every n, and Gxn ∩
Gxm = ∅ if n 6= m. Let D ⊆ X \

⋃
n∈N Gxn be a countable dense set. For every

A ∈P(N), put
D(A) = D ∪

⋃
n∈A

Gxn.

It is clear that the collection {D(A) : A ∈P(N)} is a collection of c pairwise non-G-
equivalent countable dense sets, which is a contradiction. Hence S has finite scattered
rank.

2A space is crowded if it has no isolated points.
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Next we claim that S is closed. Put Z = X \ S. Assume that there exists an element
z ∈ S \ S. Then Gz is clopen in Z by Lemma 2.5. Let U be an open subset of X such
that U ∩ Z = Gz. Observe that U ∩ S is scattered and S does not contain an isolated
point (by definition). Hence U ∩ S is nowhere dense in U . This implies that there is
an element z ′ ∈ U \ S. Pick g ∈ G such that gz ′ = z. Since z ∈ S and gS = S, we get
that z ′ = gz ∈ S. This is a contradiction.

The fact that X is Polish follows from the following observation. If z ∈ Z, then Gz
is clopen in Z. Hence by Theorem 2.4, the evaluation mapping g 7→ gz is an open
surjection. Hence Gz is Polish by Hausdorff ’s Theorem in [10] that an open image
of a Polish space is Polish, cf. [1]. Hence Z is Polish, since {Gz : z ∈ Z} is a clopen
partition of Z by Polish subspaces. As a consequence, X is Polish since S is closed
in X.

It is clear from the above that G makes Z homogeneous provided it is connected.

Corollary 3.2 Let X be a locally compact space with fewer than c types of countable
dense sets. Then there is a closed and scattered subset S of X of finite Cantor–Bendixson
rank that is invariant under all homeomorphisms of X. Moreover, X \ S is homogeneous
provided it is connected.

In the remainder of this section we will present the proof of Theorem 1.1. Hence
we show that the Structure Theorem 3.1 can be improved if we additionally assume
that the number of types of countable dense subsets of X is countable. The ques-
tion whether the number of types of countable dense sets of a Polish space can be
uncountable but less than c is an open problem.

Again, we formulate and prove our results in terms of group actions.

Theorem 3.3 Let G be a Polish group, and let X be a Baire G-space with at most
countably many G-types of countable dense sets. Then

S =
{

x ∈ X : Gx is of first category in X
}

is closed, scattered of finite Cantor–Bendixson rank, invariant under the action of G.
Also, X is Polish, and G makes X \ S CDH.

Moreover, |S| ≤ n−1 if X has at most n G-types of countable dense sets.

Note that the bound |S| ≤ n−1 is not necessarily optimal, as there are examples
of locally compact spaces with n-types of countable dense sets for which |S| < n−1,
e.g., if X is the subspace of the plane consisting of the union of the following three
objects: the circle centered at (0, 0) of radius 1, the line segment joining the points
(1, 0), (2, 0), and the geometric interior of the line segment joining the points (2, 1),
(2,−1). Then X has 4 types of countable dense sets, yet S = {(1, 0), (2, 0)} has size 2.

In order to prove the theorem, let X, G, and S be as in the theorem, and let Y =
X \ S. Suppose that X has at most n G-types of countable dense sets. We will prove
that |S| ≤ n−1. Assume that |S| ≥ n, and let A be a subset of S of size n. Observe
that B = GA is G-invariant and of first category. Let D be a countable dense subset
of X \ B. For every E ⊆ B, put DE = D ∪ E. Then DE is a countable dense subset of
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X for every E ⊆ B, and clearly gDE 6= DE ′ for E and E ′ contained in B of different
cardinality. Simply observe that B is G-invariant, and hence |gDE∩B| = |E| for every
E ⊆ B. From this it follows that X has more than n G-types of countable dense sets,
which is a contradiction.

Hence by Theorem 3.1 it suffices to prove that if X has countably many G-types of
countable dense sets, then Y = X \ S is CDH. In order to demonstrate this, we prove
several preliminary results.

Claim 1 Y is a topological sum of a discrete space and a crowded space.

To see this, denote by Is(X) the set of isolated points of X, and note that the set
C = Is(X)\Is(X) of accumulation points Is(X) is contained in S (C is closed nowhere
dense and Gx ⊆ C for every x ∈ C).

So we can and will assume that the set Y is crowded.
For a space X and n ≥ 1, let

Fn(X) =
{

x ∈ Xn : xi = x j iff i = j
}
.

This space is sometimes called the n-th configuration space of X. It is an open subset
of Xn. Hence if X is Polish, so is every Fn(X).

The following lemma, crucial here, was proved by Ungar [19] for locally compact
spaces. We present it with a simpler proof that also works for Polish spaces.

Lemma 3.4 Let X be a Polish space. Let T be a first category subset of Fn(X). Then
there is a countable dense D ⊆ X such that Fn(D) ∩ T = ∅.

Proof On X we choose some admissible complete metric. Let U = {Ui : i ∈ N}
be a countable open base for X such that Ui 6= ∅ for every i, and without loss of
generality write T as

⋃
i∈N Ti , where each Ti is closed and nowhere dense in Fn(X). If

(U1 × · · · ×Un) ∩ Fn(X) = ∅,

then we shrink every Ui to a nonempty open set V 1
i such that V 1

i ⊆ V 1
i ⊆ Ui and

diam V 1
i < 2−1; we put V 1

m = X for every m > n. If

(U1 × · · · ×Un) ∩ Fn(X) 6= ∅,

then it contains a point not in T1. Hence we may assume that there are open subsets
V 1

i for 1 ≤ i ≤ n such that

(a) V 1
i ∩V 1

j 6= ∅ iff i = j,

(b) V 1
i ⊆ V 1

i ⊆ Ui ,
(c) diam V 1

i < 2−1,
(d) for every permutation π : {1, . . . , n} → {1, . . . , n},

(V 1
π(1) × · · · ×V 1

π(n)) ∩ T1 = ∅.
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Put V 1
m = X for every m > n. Now we continue in this way. In each step we do

nothing but a basic shrinking in case we run into a set having empty intersection
with Fn(X). The conclusion is that we can find open subsets V 2

i for i ≤ n+1 such
that

(e) V 2
i ⊆ V 2

i ⊆ V 1
i if i ≤ n,

(f) V 2
n+1 ⊆ V 2

n+1 ⊆ Un+1,
(g) diam V 2

i < 2−2,
(h) for every permutation π : {1, . . . , n} → {1, . . . , n} and every k ≤ n,

(V 2
π(1) × · · · ×V 2

π(k−1) ×V 2
n+1 ×V 2

π(k+1) × · · · ×V 2
π(n)) ∩ T2 = ∅.

Put V 1
m = X for every m ≥ n+2. Continue in this way recursively.

At the end of the construction, for every k ∈ N, let qk be the unique point in the
intersection

⋂
i∈N V i

k. Then D = {qk : k ∈ N} is clearly as required.

The following result appears as Theorem 2.12 in van Mill [21]. For the sake of
completeness, we present its standard proof. Recall that given a cover U of a space
X, a set A ⊆ X, and a function f : A → X we say that f is limited by U if for every
x ∈ A there is a U ∈ U containing both x and f (x).

Lemma 3.5 Let G be an analytic group acting on a space Y such that Gy is a second
category subset of Y for every y ∈ Y . Then for every open cover U of Y and every
compact subset K ⊆ Y there is an open cover V of Y with the following property: for all
V ∈ V and x, y ∈ V there exists g ∈ G such that gx = y and g�K is limited by U .

Proof By continuity of the action, for x ∈ K, we may pick an open neighborhood
Vx of the neutral element e ∈ G such that V 2

x x is contained in an element of U . Since
every set of the form Vxx is open by Lemma 2.5, there is a finite F ⊆ K such that

K ⊆
⋃

x∈F
Vxx.

Let V =
⋂

x∈F Vx, and let W be a symmetric open neighborhood of e such that
W 2 ⊆ V . Put V = {W y : y ∈ Y}. Then V is an open cover by Lemma 2.5.
We claim that V is as required. To this end, pick arbitrary z, p, q ∈ Y such that
p, q ∈ W z. There are h, g ∈ W such that hz = p and gz = q. Then ξ = gh−1 ∈ V
and ξp = q. So it suffices to prove that for y ∈ K there exists U ∈ U containing
both y and ξy. Pick x ∈ F such that y ∈ Vxx ⊆ V 2

x x. There is an element h ∈ Vx

such that hx = y. Since ξy = (ξh)x ∈ V 2
x x and V 2

x x is contained in an element of
U , this completes the proof.

Fix m ≥ 1. We let G act on Fm(Y ) as follows:(
g, (y1, . . . , ym)

)
7→ (g y1, . . . , g ym), g ∈ G, (y1, . . . , ym) ∈ Fm(Y ).

Lemma 3.6 For every (y1, . . . , ym) ∈ Fm(Y ) there exists a Cantor set K in G such
that the collection {

{g y1, . . . , g ym} : g ∈ K
}

is pairwise disjoint.
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Proof Let % be an admissible metric on X.
The construction of K is, of course, similar to the standard construction of a Can-

tor set in an uncountable analytic space. We only need to ensure that for all distinct
g and h in K we have

{g y1, . . . , g ym} ∩ {hy1, . . . , hym} = ∅.

Pick an arbitrary (y1, . . . , ym) ∈ Fm(X). We need the following claim.

Claim 2 For every neighborhood W of the neutral element e of G, there exists
a ∈W such that

{ay1, . . . , aym} ∩ {y1, . . . , ym} = ∅.

Pick an open neighborhood V of e such that V m ⊆W , and put F = {y1, . . . , ym}.
Since F is finite, there exists by Lemma 2.5 an element a1 ∈ V such that a1 y1 6∈ F. Let
ε1 = %(a1 y1, F) and put δ1 = ε1/m. By Lemma 3.5 there exists an a2 ∈ G such that
(a2a1)y2 6∈ F and %((a2a1)y1, a1 y1) < δ1. By continuing in this way, it is clear that
in m steps we have succeeded in making {ay1, . . . , aym} and {y1, . . . , ym} disjoint,
where a = am · · · a1.

Now, by using Claim 2 at each step of the standard construction of a Cantor set as
a nested intersection of finite unions of disjoint balls of smaller and smaller diameter
in the complete space G, we can construct K.

In what follows, ω1 denotes the first uncountable cardinal and, at the same time,
the set of all countable ordinal numbers. A result in Baumgartner [2, Corollary 2.4],
attributed to Weiss, states that there is a family A = {Aα : α ∈ ω1} of countable
ordinal numbers such that

(a) if α < β ∈ ω1, then Aβ does not embed in Aα;
(b) for every α ∈ ω1, if S is a finite partition of Aα, then for some S ∈ S we have

that S and Aα are homeomorphic.

Proposition 3.7 If (y1, . . . , ym) ∈ Fm(Y ), then G(y1, . . . , ym) is of second category
in Fm(Y ).

Proof Striving for a contradiction, assume that for some (y1, . . . , ym) ∈ Fm(Y ) we
have that T = G(y1, . . . , ym) is of first category in Fm(Y ). By Lemma 3.4, there is a
countable dense subset D of Y such that Fm(D) ∩ T = ∅. Let K ⊆ T be the Cantor
set given by Lemma 3.6. We may assume that the ordinal numbers from the family A
above are all contained in K. Observe that for every i ≤ m, we have that the function
K → Y defined by g 7→ g yi is an embedding. For every α ∈ ω1, put

Dα = D ∪
⋃

g∈Aα

{g y1, . . . , g ym}.

Then for every α ∈ ω1, Dα is a countable dense subset of X. We claim that Dα and
Dβ are not G-equivalent for distinct α and β. To this end, pick α < β ∈ ω1, and
assume that there is an element h ∈ G such that hDβ = Dα. Since Fm(D) ∩ T = ∅,
for every g ∈ Aβ there exists i(g) ≤ m such that hg yi(g) 6∈ D. By (b), we may assume



Nearly Countable Dense Homogeneous Spaces 753

that there are B ⊆ Aβ and i ≤ m such that B is homeomorphic to Aβ , while hg yi 6∈ D
for every g ∈ B. Again by (b) there exist B ′ ⊆ B and j ≤ m such that B ′ and Aβ are
homeomorphic and hg yi ∈ Aαy j for every g ∈ B ′. However, this shows that Aβ can
be embedded in Aα, which is a contradiction.

Hence we have created uncountably many G-types of countable dense sets in X,
which violates our assumptions.

Thus we conclude that every G-orbit of Fm(Y ) is clopen by Lemma 2.5. From this
we conclude by Theorem 2.6 that G makes Y CDH, and this is what we had to prove.
This completes the proof of Theorem 3.3, and hence of its corollary Theorem 1.1.

Corollary 3.8 Let X be a homogeneous locally compact space. If X is not CDH, then
X has uncountably many types of countable dense sets.

Question 3.9 Let S be the set in Theorem 3.1. Is it true that X \ S is CDH?

Question 3.10 Let X be a homogeneous locally compact space that is not CDH.
Does X have c types of countable dense sets?

4 Spaces with Many Types of Countable Dense Sets

The aim of this section is to prove that every Borel space which is not completely
metrizable has c many types of countable dense sets (Corollary 4.6). This generalizes
the main result in Hrušák and Zamora Avilés [13]. Before we prove the theorem we
recall several known facts from descriptive set-theory (for more see e.g., Kechris [15]).

A well-known theorem of Souslin’s [15, 14.13] states that every uncountable ana-
lytic space contains a homeomorphic copy of a Cantor set. The following result and
its corollary are due to Hurewicz [14] (see also [20, pp. 78, 79]).

Theorem 4.1 If a space X is not a Baire space, then X contains a closed subspace
homeomorphic to Q .

A space X is completely Baire if all of its closed subspaces are Baire.

Corollary 4.2 A space X is completely Baire if and only if X does not contain a closed
copy of Q .

The following lemma can be found in Brian, van Mill, and Suabedissen [5]. For
the sake of completeness, we include its simple proof.

Lemma 4.3 The number of distinct homeomorphism classes of countable subsets of R
is c.

Proof Every countable subset of R can be embedded in Q , so the number of distinct
homeomorphism classes of countable subsets of R is at most |P(Q)| = c.

Let X ⊆ R. Let P be the largest crowded subset of X and let S = X \ P be the
scattered part of X. We define the scattered signature H(X) of X as follows: H(X) is
a set of ordinals, and α ∈ H(X) if and only if there is some p ∈ P such that p has
Cantor–Bendixson rank α in S ∪ {p}.
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Let A = {αn : n ∈ N} be a countable subset of ω1. We show that there is a count-
able subset of R with scattered signature A. On the interval [n+ 1/4, n+ 1/2], embed
ωαn +1, making sure that the point ωαn maps to the point n+ 1/2. Include the points
Q ∩ [n+ 1/2, n+ 3/4] and call the resulting set X. It is a routine exercise to show that
H(X) = A.

As there are c-many countable subsets of ω1, this proves that the number of dis-
tinct homeomorphism classes of countable subsets of R is at least c.

Fitzpatrick and Zhou [9] proved the following useful lemma.

Lemma 4.4 A crowded space X is meager in itself if and only if there is a countable
dense D ⊆ X that is Gδ in X.

The main theorem of this section is the following.

Theorem 4.5 Let X be an analytic space with fewer than c types of countable dense
sets. Then X is completely Baire.

Proof We can write X as A ∪ B, where A is open and scattered, and B is crowded.
Observe that A is countable and invariant under the homeomorphisms of X. Hence
B is also an analytic space with fewer than c types of countable dense sets. Moreover,
B is completely Baire if and only if X is completely Baire. It therefore suffices to
consider the case where A = ∅, hence where X is crowded.

Claim 3 X is nowhere countable.

Assume that it is not; that is

V =
⋃
{U : U is a countable open subset of X}

is not empty. Then V is itself a countable open subset of X. Since V is crowded,
V ≈ Q . By Lemma 4.3, we may pick a family E consisting of c pairwise nonhomeo-
morphic nowhere dense subsets of V . Let D be a countable dense subset of X\V , and
for E ∈ E , put D(E) = (V \E)∪D. Since V is invariant under the homeomorphisms
of X, clearly D(E) and D(E ′) are not equivalent for E 6= E ′, which proves that X has
c types of countable dense sets. This is a contradiction.

Claim 4 X is Baire.

Suppose that it is not the case. Then there is a nonempty open subset U of X
that is meager in itself. Let V be a nonempty open subset of U such that V ⊆ U ,
while U \ V 6= ∅. By Claim 2, V is uncountable, hence, being analytic, contains a
Cantor set K by Souslin’s Theorem. We may assume without loss of generality that K
is nowhere dense in X. Hence we may pick nonempty disjoint open sets W and W ′

in V \ K such that K = W ∩W ′. Observe that this implies that the interior of the
closure of W does not intersect K. Hence we may assume without loss of generality
that W is regular open.

Since W is meager in itself, we may pick a countable dense subset D0 ⊆W that is
a Gδ-subset of W (Lemma 4.4). Let {Un : n ∈ N} be a countable basis for X \W .
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By Claim 2 and Souslin’s Theorem, we can pick for every n a Cantor set Fn in Un.
Choose for every n ∈ N a countable dense subset Cn ⊆ Fn, and put D1 =

⋃
n∈N Cn.

Note that D1 ∩ O is not a Gδ-subset of O for every nonempty open subset O of
X \W . For if this were true, we could pick n ∈ N such that Fn ⊆ O, which would
imply that D1 ∩ Fn would be Gδ in Fn. However, D1 ∩ Fn contains the dense set
Cn. Hence D1 ∩ Fn is a countable dense subset of Fn that is Gδ in Fn. This shows by
Lemma 4.4 that Fn is meager in itself, which contradicts the fact that Fn is compact.

By Lemma 4.3, we may pick a family F consisting of c pairwise disjoint non-
homeomorphic countable subsets of K. For every F ∈ F put D(F) = D0 ∪ F ∪ D1.
Then D(F) is dense in X for every F ∈ F , and we claim that D(F) and D(F ′) are
not equivalent if F 6= F ′. To this end, pick distinct F, F ′ ∈ F , and let f : X → X be
a homeomorphism such that f (D(F)) = D(F ′). Since f (D0) is Gδ in f (W ), by the
above we obtain that f (W ) ⊆W . For if A = f (W ) \W 6= ∅, it would follow that

f (D0) = f
(

W ∩ D(F)
)
= f (W ) ∩ f

(
D(F)

)
= f (W ) ∩ D(F ′),

and hence

f (D0) ∩ A = f (D0) \W =
(

f (W ) ∩ D(F ′)
)
\W =

(
f (W ) \W

)
∩ D1 = D1 ∩ A.

However, this is a contradiction, since f (D0) ∩ A is a Gδ-subset of A, while D1 ∩ A is
not. Since W is regularly open, this consequently implies that f (W ) ⊆W . A similar
analysis with f replaced by f−1 gives us that f−1(W ) ⊆W . Hence we conclude that
f (W ) = W , and so f (W \W ) = W \W . From this we conclude that f (F) = F ′,
which is a contradiction. Hence again we conclude that X has c types of countable
dense sets, which contradicts our assumptions.

We are now ready to show that X is completely Baire. By Claim 3 and Theorem 2.3,
there is a Polish G ⊆ X that is dense in X. Let D0 be any countable dense subset of
G (and consequently also a dense subset of X). Note that D0 has the property that if
E ⊆ D0 is crowded, then E is not a Gδ-subset in E. For if E were Gδ in E, then E would
be Gδ in E ∩ G, but E ∩ G is Gδ in G, hence is Polish. This contradicts Lemma 4.4;
simply observe that E ∩ G is crowded, since E is.

Let Q be a closed homeomorphic copy of Q in X. We will derive a contradiction,
which means that we will be done by Corollary 4.2. We may assume without loss
of generality that Q ∩ G = ∅. Again by Lemma 4.3 we may fix a collection A of
c pairwise nonhomeomorphic nowhere dense subsets of Q. For every A ∈ A , put
D(A) = (Q \A)∪D0.We claim that the countable dense subsets D(A) and D(A ′) are
of different type if A 6= A ′. To this end, let f : X → X be a homeomorphism such that
f (D(A)) = D(A ′). Assume that there exists x ∈ Q \A such that f (x) 6∈ Q. Since Q is
closed in X, there is a neighborhood U of x in Q \ A such that f (U ) ⊆ D0. However,
Q \ A ≈ Q , hence U is crowded. Hence U is Gδ in U , but by the above, f (U ) is not
Gδ in f (U ). This is a contradiction. From this we conclude that f (Q \ A) = Q \ A ′,
and hence, f (A) = A ′. This again contradicts our assumptions.

By a result of Hurewicz every co-analytic completely Baire space is Polish (see [15,
21.21]). The following corollaries generalize the main result in Hrušák and Zamora
Avilés [13].
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Corollary 4.6 If X is Borel and has fewer than c types of countable dense sets, then X
is Polish.

Corollary 4.7 If X is Borel and not an absolute Gδ set, then X has c types of countable
dense sets.

5 ω1-many Types and Vaught’s Conjecture

Vaught’s Conjecture in model theory was posed by Vaught in 1961 [24]. It states that
any first-order complete theory in a countable language has either at most count-
ably many or c many non-isomorphic countable models. Morley [17] showed that
the number of countable models is at most ω1 or c. Morley’s proof led to the for-
mulation of the Topological Vaught’s Conjecture, the statement that whenever a Polish
group acts continuously on a Polish space, there are either countably or c many orbits.
The Topological Vaught’s Conjecture is, in fact, a stronger statement than Vaught’s
conjecture,

The results contained in this paper suggest the following natural question.

Question 5.1 Is there a Polish space X with ω1 types of countable dense sets?

We will not answer the question here. We will show, however, that it has a close
connection to Topological Vaught’s Conjecture.

Let S∞ denote the group of all permutations of N with the topology of pointwise
convergence. Then S∞ is a Polish group. It admits a standard action on every infinite
product XN, as follows:(

π, (x1, x2, . . . )
)
7→ (xπ(1), xπ(2), . . . ),

where π ∈ S∞ and (x1, x2, . . . ) ∈ XN. Consider the Cantor set3 2N and the standard
action of S∞ on it. This action has countably many orbits. If we let G denote the
subgroup of S∞ consisting of the neutral element only, then its natural action on 2N

has c orbits. For an arbitrary closed subgroup G of S∞, it is unknown whether the
number of the orbits of its natural action on 2N is countable or c. This is a special
case of Topological Vaught’s Conjecture, and we refer to Becker and Kechris [3] for
more information on this.

The connection between the number of types of countable dense sets and Topo-
logical Vaught’s Conjecture is established by the following two results.

Theorem 5.2 Let G be a closed subgroup of S∞, and let κ be the number of orbits
for the canonical action G × 2N → 2N. Then there is an action of a Polish group H on
X = N× [0, 1) such that X has κ H-types of countable dense sets.

Proof Let G act on X in the following natural way:(
g, (n, t)

)
7→
(

g(n), t
) (

g ∈ G, n ∈ N, t ∈ [0, 1)
)
.

3Following set theoretic notation we identify 2 = {0, 1}.
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Put
F =

{
f ∈H (X) : (∀ n ∈ N)

(
f (n, 0) = (n, 0)

)}
.

Then F is a closed subgroup of H (X) and hence is Polish. Moreover, for any two
countable dense subsets D and E of N× (0, 1) there exists f ∈ F such that f (D) = E.
Observe that every g ∈ G commutes with every f ∈ F. This means that the Polish
group H = F × G acts on X as follows:(

( f , g), x
)
7−→ ( f ◦ g)(x) ( f ∈ F, g ∈ G, x ∈ X).

A typical countable dense subset of X has the form D ∪ A, where D is a countable
dense subset of N× (0, 1), and A ⊆ N× {0}. By identifying P(N× {0}) and 2N in
the standard way, it is clear that we get what we want.

Hence, in particular, an action with ω1 orbits would produce a space with ω1

H-types of countable dense sets. We now aim at proving the converse.
Let X be a Polish space. Put

CD(X) =
{

x ∈ XN : {x1, x2, . . . }is dense in X
}
.

We think of CD(X) as the space of countable dense subsets of X.

Lemma 5.3 If X is Polish, then so is CD(X).

Proof Let U = {Un : n ∈ N} be a countable open base for X. Now simply observe
that CD(X) is equal to

XN \
⋃

n∈N
(X \Un)N

and hence is a Gδ-subset of XN. Hence since XN is Polish, so is CD(X).

This leads us to the following result.

Theorem 5.4 Let G be a Polish group for which there is a Polish G-space X with κ
G-types of countable dense sets. Then there is an action of a Polish group H on a Polish
space Y having exactly κ orbits.

Proof Consider the standard action of S∞ on XN. It is clear that CD(X) is invariant
under the action of S∞. We let G act on CD(X) as follows:(

g, (x1, x2, . . . )
)
7−→ (gx1, gx2, . . . ).

Observe that for π ∈ S∞, g ∈ G and x ∈ CD(X) we have that πgx = gπx. Hence we
can let the Polish group H = S∞ ×G act on the Polish space CD(X) (Lemma 5.3) as
follows: (

(π, g), (x1, x2, . . . )
)
7−→ (gxπ(1), gxπ(2), . . . ).

It is left as an exercise to the reader to show that H has exactly κ orbits.

Corollary 5.5 If there is a locally compact space X with κ types of countable dense
sets, then there is are Polish group G and a Polish G-space Y with κ orbits.

This suggests the following problem, equivalent to the question whether Topolog-
ical Vaught’s Conjecture is true for locally compact spaces.



758 M. Hrušák and J. van Mill

Question 5.6 Let X be a locally compact space. Does X have either at most ω or
exactly c types of countable dense sets?
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[4] C. Bessaga and A. Pełczyński, The estimated extension theorem, homogeneous collections and

skeletons, and their applications to the topological classification of linear matrix spaces and convex sets.
Fund. Math. 69(1970), 153–190.

[5] W. Brian, J. van Mill, and R. Suabedissen, Homogeneity and generalizations of 2-point sets. Houston
J. Math, to appear. http://www.few.vu.nl/∼vanmill/papers/preprints/SliceSets.pdf
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It was brought to our attention by Su Gao that the proof of Theorem 5.2 in our
paper is incomplete. We are indebted to him for this observation. The aim of this
note is to correct this.

Theorem 5.2 Let G be a closed subgroup of S∞ and let κ be the number of orbits for
the canonical action G × 2N → 2N. Then there is an action of a Polish group H on
X = N× [0, 1) such that X has κ H-types of countable dense sets.

Proof Let G act on X in the following natural way: (g, (n, t)) 7−→ (g(n), t) for g ∈
G, n ∈ N, t ∈ [0, 1). Put

F =
{

f ∈H (X) : (∀ n ∈ N)( f (n, 0) = (n, 0))
}
.

Then F is a closed normal subgroup of H (X) and hence is Polish. Moreover, for
any two countable dense subsets D and E of N × (0, 1) there exists f ∈ F such that
f (D) = E. Treat G also as subgroup of H (X). The Polish semi-direct product group
H = G o F acts on X as follows: ((g, f ), x) 7→ ( f ◦ g)(x) for f ∈ F, g ∈ G, x ∈ X.
Note that topologically, H = G o F is G× F, but its group operation ∗ is given by

(g1, f1) ∗ (g2, f2) = (g1g2, f1g1 f2g−1
1 ).

A typical countable dense subset of X has the form D ∪ A, where D is a countable
dense subset of N× (0, 1), and A ⊆ N× {0}. By identifying P(N× {0}) and 2N in
the standard way, it is clear that we get what we want.
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