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Approximately 10 years ago, Zambakhidze asked whether every non-zero-dimen-
sional topological group with a bc-base is locally compact. Below we show that 
the small inductive dimension ind of any non-locally compact group with such a 
base doesn’t exceed 1. We prove, however, that a σ-compact non-locally compact 
topological group with a bc-base is zero-dimensional. Two more results in this paper 
are worth mentioning: 1) if the free topological group F (X) of a Tychonoff space X
has a bc-base, then ind(X) ≤ 0, and 2) a topological group G has a bc-base if and 
only if G can be compactified by a zero-dimensional remainder.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We will call a base B of a space X a bc-base if the boundary B(U) = U \ U of every member U of B
is compact. Spaces with a bc-base are also called rimcompact. A separable metrizable space is rimcompact 
if and only if it can be compactified by a zero-dimensional remainder (de Groot [10], Freudenthal [8,9]; 
see also [1]). Here and everywhere below we call a non-empty space X zero-dimensional if X has a base 
consisting of clopen subsets, that is, if ind(X) = 0. We also assume all spaces considered in this article to 
be Tychonoff.

Clearly, if a space X is zero-dimensional or locally compact, then X has a bc-base.
Approximately 10 years ago, L.G. Zambakhidze asked whether every non-zero-dimensional topological 

group with a bc-base is locally compact. As far as we know, no progress has been made on this problem. In 
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this note we will show that the small inductive dimension ind of non-locally compact groups with a bc-base 
is not greater than 1. To do this, we establish a statement of independent interest: every non-empty compact 
subspace of any non-locally compact topological group with a bc-base is zero-dimensional. Moreover, we show 
that the free topological group F (X) of a space X (see [3]) has a bc-base if and only if X is zero-dimensional. 
We also formulate and prove some applications of these results.

We also have to warn the reader that, besides the small inductive dimension ind, we occasionally consider 
below the large inductive dimension Ind and the covering dimension dim (see [5,6]). This allows to sharpen 
certain of the results obtained.

2. Topological groups with a bcs-base

We will call a base B of a space X a bcs-base if the boundary B(U) = U \U of every member U of B is 
σ-compact.

Theorem 2.1. Suppose that G is a non-σ-compact topological group with a bcs-base, and that G =
⋃
{Yi :

i ∈ ω}, where each Yi is a separable metrizable Fσ-subspace of G. Then

(1) G can be written as A ∪B, where A and B are zero-dimensional and A is σ-compact,
(2) ind(G) = Ind(G) = dim(G) ≤ 1,
(3) any σ-compact subspace of G is zero-dimensional.

Proof. Let us first observe that the group G is hereditarily Lindelöf. This implies that G is strongly 
hereditarily normal ([6, Theorem 2.1.4]) and strongly paracompact ([6, §2.4]). Hence indG = IndG ([6, 
Theorem 2.4.4]).

Let F be an arbitrary σ-compact subspace of G, and let B be a bcs-base for G.
For any i ∈ ω and U ∈ B, put qi(U) = U ∩ Yi.
The family {qi(U) : U ∈ B} is a base of the space Yi. Since Yi has a countable base, it follows that there 

exists a countable subfamily Bi of the base B such that the family ηi = {qi(U) : U ∈ Bi} is also a base 
for Yi.

Put Ei =
⋃
{B(U) : U ∈ Bi}, and E =

⋃
{Ei : i ∈ ω} ∪ F . Clearly, E is a σ-compact subspace 

of G. Therefore, the subgroup H of G algebraically generated in G by E is also σ-compact. Since G is not 
σ-compact, it follows that G \H �= ∅. Let us fix a ∈ G \H.

Claim 1. The subspace Z = G \H of the space G is zero-dimensional.

To justify this claim, we invoke a few simple facts:

Fact 1. The subspace Zi = Z ∩ Yi = Yi \H is zero-dimensional.

Indeed, {V ∩ Zi : V ∈ ηi} is a base of Zi, and each member of this base is an open and closed subset 
of Zi.

Fact 2. Each Zi is the union of a countable family of closed separable metrizable subspaces of Z.

This is so, since Yi is an Fσ-subspace of G, and Zi = Z ∩ Yi.

Fact 3. The space Z can be represented as the union of a countable family {Pi : i ∈ ω} of closed zero-
dimensional separable metrizable subspaces Pi of Z.
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This follows from Facts 1 and 2, since every subspace of a zero-dimensional space is, obviously, zero-
dimensional.

Since the spaces Pi in Fact 3 are separable metrizable, we have:

dim(Pi) = ind(Pi) = Ind(Pi) ≤ 0,

for every i ∈ ω.
Observe that the spaces G and Z are strongly hereditarily normal. It follows that Ind(Zi) ≤ 0, for every 

i ∈ ω ([6, Theorem 2.3.8]). Now Claim 1 follows from Fact 3.
We have: aH ⊆ Z. It follows that aH is also zero-dimensional. Since H is homeomorphic to aH, it follows 

that H is zero-dimensional. This obviously implies that ind(G) ≤ 1 and that F is zero-dimensional.
Assume first that dim(G) = 0. Then ind(G) = Ind(G) = 0 since G is strongly paracompact ([6, The-

orem 3.1.30]). Assume next that dim(G) = 1. Then 1 = dim(G) ≤ ind(G) ≤ 1 again since G is strongly 
paracompact ([6, Theorem 3.1.29]). From this we conclude that dim(G) = ind(G) = Ind(G) = 1 since we 
already observed that ind(G) = Ind(G). Since H is σ-compact, we are done. �
Corollary 2.2. Let X be a non-σ-compact separable metrizable space such that the free topological group F (X)
has a bcs-base. Then every σ-compact subspace of F (X) is zero-dimensional, and dim(F (X)) = ind(F (X)) =
Ind(F (X)) ≤ 1. In particular, dim(X) ≤ 1, and every σ-compact subspace of X is zero-dimensional.

Proof. It is well known that F (X) can be represented in the form:

F (X) =
⋃

{Yi : i ∈ ω},

where each Yi is a separable metrizable Fσ-subspace of F (X). Indeed, it is enough to put Yi = Fi+1(X) \
Fi(X), where Fi(X) is the subspace of F (X) consisting of “words” of length ≤ i (see [3, Theorem 7.1.13]). 
The subspace of “words” of length 1 is a closed homeomorph of the topological sum of two copies of X in 
F (X), hence F (X) is non-σ-compact. Thus, F (X) in the role of G satisfies the assumptions in Theorem 2.1
which is clearly as required since we already observed that X is homeomorphic to a closed subspace of 
F (X). �
Corollary 2.3. Erdős space E does not have a bcs-base.

Proof. By Dijkstra and van Mill [4, Corollary 12], E \ A and E are homeomorphic for every σ-compact 
subspace A of E. Since dim(E) = 1 (Erdős [7]), this shows that E does not satisfy the conclusions of 
Theorem 2.1. �
3. Translation-disjoint sets

Subsets A and B of a topological group G will be called translation-disjoint if for any open neighbourhood 
O of the neutral element e of G there exists c ∈ O such that cA and B are disjoint.

Proposition 3.1. Suppose that G is a topological group, and K and Z are non-empty subspaces of G. Then 
at least one of the following conditions hold:

(1) Z and K are translation-disjoint.
(2) There exists an open neighbourhood O of the neutral element e of G such that

O ⊆ KZ−1.
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Proof. Assume that Z and K are not translation-disjoint. Then we can fix an open neighbourhood O of e
such that (yZ) ∩K �= ∅, for each y ∈ O. Thus, the next condition holds: (3) For each y ∈ O, there exist 
z ∈ Z and x ∈ K such that yz = x. Then y = xz−1 ∈ KZ−1, that is, O ⊆ KZ−1. We conclude that (2) 
holds. �

The next statement obviously follows from the preceding one, since KZ−1 is compact whenever K and 
Z are compact.

Lemma 3.2. Suppose that G is a non-locally compact topological group. Then any two compact subsets A
and B of G are translation-disjoint.

3.1. Translation-disjointness and total disconnectedness

It is convenient to generalize the concept of translation-disjointness to topological spaces. In fact, several 
such generalizations, introduced below, might turn out to be useful.

Suppose that X is a topological space, and A, B are subsets of X. We will say that A and B are 
〈p, 1〉-disjoint if, for any x, y ∈ A and any open neighbourhoods U, V of x and y, respectively, there exists 
a continuous mapping f : A → X such that f(x) ∈ U , f(y) ∈ V , and B ∩ f(A) = ∅. If, in addition, we can 
always choose f to be a homeomorphism of A onto f(A), then we say that A and B are 〈p, 2〉-disjoint.

Proposition 3.3. Any two translation-disjoint subsets of an arbitrary topological group G are 〈p, 2〉-disjoint.

We say that a space X is separated by a compact subset F of X between points p and q of X if there 
are disjoint open subsets U and V such that p ∈ U , q ∈ V , and U ∪ V = X \ F . A space X is separated by 
compacta if for any two distinct points p, q ∈ X, the space X is separated between p and q by some compact 
subspace of X.

A basic fact concerning 〈p, 1〉-disjoint sets is described in the following statement:

Proposition 3.4. Suppose that X is a topological space, and A is a subspace of X such that A is 〈p, 1〉-disjoint 
with any compact subspace B of X. Furthermore, suppose that X can be separated by a compact subset of 
X between any two distinct points of A. Then A is totally disconnected.

Proof. Fix any two distinct points p, q in A. By the assumption, there exists a compact subset B ⊆ X such 
that X \B = U ∪V , where U, V are disjoint open subsets of X, and p ∈ U , q ∈ V . Since the sets A and B are 
〈p, 1〉-disjoint, there exists a continuous mapping f : A → X such that f(p) ∈ U , f(q) ∈ V , and the sets f(A)
and B are disjoint. It follows from the last condition that f(A) ⊆ U ∪ V . Therefore, A ⊆ f−1(U) ∪ f−1(V ), 
where A1 = A ∩ f−1(U) and A2 = A ∩ f−1(V ) are disjoint open subsets of A, and p ∈ A1, q ∈ A2. Hence, 
A is totally disconnected. �
3.2. Translation-disjointness in free topological groups

Suppose now that F (X) is the free topological group of a non-discrete space X. For n ∈ ω, we denote by 
An the subspace of F (X) consisting of all reduced words on X with length not greater than n ([3, p. 417]). 
We use this notation below.

Proposition 3.5. For any n, m ∈ ω, the subspaces An and Am are translation-disjoint in F (X).

Proof. Fix k ∈ ω such that k − n > m. Take any open neighbourhood O of the neutral element e of F (X). 
Since O \ Ak is non-empty, we can fix c ∈ O \ Ak. Then, clearly, Am ∩ cAn = ∅. Hence, the subspaces An

and Am are translation-disjoint. �
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Since every compact subspace B of F (X) is contained in some Am ([3, Theorem 7.5.3]), the above 
statement implies the next one:

Corollary 3.6. For each n ∈ ω, the subspace An is translation-disjoint with any compact subspace of F (X).

4. Translation-disjointness and zero-dimensionality

We now come to our main results.

Theorem 4.1. Suppose that G is a topological group and that X ⊆ G. Furthermore, suppose that e ∈ X, and 
the next condition is satisfied:

(ad) For every open neighbourhood U of e (in G) there exists an open neighbourhood Oe of e in G such that 
Oe ⊆ U and the boundary Oe \ Oe and X are translation-disjoint in G.

Then X is zero-dimensional at e.

Proof. Take any open neighbourhood W of e in G. We have to show that there exists an open and closed 
neighbourhood of e in X contained in W .

There exists a symmetric open neighbourhood U of e in G such that U2 ⊆ W . By the assumption, we 
can take an open neighbourhood V of e in G such that V ⊆ U and the boundary K = V \ V and X are 
translation-disjoint in G. Clearly, V 2 ⊆ W . Put H = G \ V . Obviously, the sets V , K, H are pairwise 
disjoint, and G = V ∪K ∪H. We also put P = X \W . It is clear that P ⊆ H. In fact, the next statement 
holds:

Claim 1. V P ⊆ H.

Indeed, if vp ∈ V for certain v ∈ V and p ∈ P , then V p ∩ V �= ∅, hence p can be written in the form 
v−1
0 v1 for certain v0, v1 ∈ V . Hence p ∈ V −1V ⊆ U−1U = U2 ⊆ W , which is a contradiction.

Since X and K are translation-disjoint in G, we can find c ∈ V such that cX∩K = ∅. Then cX ⊆ V ∪H, 
ce = c ∈ V , and cP ⊆ H, by Claim 1. It follows that the set Vc = V ∩ cX is open and closed in cX, c ∈ Vc, 
and Vc ∩ cP = ∅. Hence, the set M = c−1Vc = c−1(V ∩ cX) is a clopen neighbourhood of e in X such that 
M ∩ P = ∅, i.e., M ⊆ W . �
Corollary 4.2. Let G be a topological group with a bc-base, and let X be a subset of G which is translation-
disjoint with every compact subset of G. Then X is zero-dimensional.

Hence, in the light of Corollary 3.6, we get:

Corollary 4.3. Let X be a space such that F (X) has a bc-base. Then X is zero-dimensional, that is, 
ind(X) ≤ 0.

Theorem 4.4. Suppose that G is a non-locally compact topological group with a bc-base. Then every compact 
subspace of G is zero-dimensional.

In fact, a slightly more general statement holds:

Theorem 4.5. Suppose that G is a non-locally compact topological group such that any two distinct points of 
G can be separated by a compactum. Then every σ-compact subspace of G is zero-dimensional.
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Proof. Take any compact subset A of G. Clearly, it is enough to show that A is zero-dimensional. By 
Lemma 3.2, A is translation-disjoint with any compact subset of G. It follows from Propositions 3.3 and 3.4
that A is totally disconnected. Since A is compact, we conclude that dim(A) = 0. Therefore, every σ-compact 
subspace of G is zero-dimensional by the Countable Closed Sum Theorem ([6, 3.1.8]). �
Corollary 4.6. Every σ-compact non-locally compact topological group with a bc-base is zero-dimensional.

The next basic result immediately follows from Theorem 4.4 and the definition of small inductive dimen-
sion:

Theorem 4.7. If G is any non-locally compact topological group with a bc-base, then ind(G) ≤ 1.

A subset K of a topological group G will be called k-nowhere dense in G if the interior of K·F is empty, 
for every compact subspace F of G.

The next statement obviously follows from the results we have already obtained above.

Theorem 4.8. If G is a topological group with a bc-base, then every k-nowhere dense subspace of G is 
zero-dimensional.

Now we can improve Corollary 4.3 as follows:

Corollary 4.9. Let X be a space such that the free topological group F (X) of X has a bc-base. Then the 
subspace An of F (X) consisting of reduced words of length ≤ n is zero-dimensional.

However, we do not know the answer to the next question:

Problem 4.10. Suppose that the free topological group F (X) of a space X has a bc-base. Is then F (X)
zero-dimensional?

In connection with the last question and Corollary 4.9 we should mention that Shakhmatov [11] con-
structed an example of a normal space X such that indX = 0 but F (X) is not zero-dimensional.

4.1. Topological groups with a zero-dimensional remainder

In this part we investigate when a topological group has a zero-dimensional remainder.

Theorem 4.11. Suppose that a non-locally compact topological group G has a zero-dimensional remainder in 
a compactification b(G). Then

(a) G is rimcompact, that is, G has a bc-base;
(b) ind(G) ≤ 1;
(c) ind(b(G)) ≤ 2.

Proof. This theorem immediately follows from Theorem 4.7, the following two obvious lemmas, and some 
well-known basic facts of dimension theory. �

A family γ of open subsets of a space X will be called boundary-compact (in X) if the boundary of every 
member of γ is compact.
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Lemma 4.12. If a nowhere locally compact space X is zero-dimensional, then in every remainder Y of X
there exists a boundary-compact (in Y ) π-base.

Lemma 4.13. If a topological group G has a boundary-compact π-base, then G has a bc-base as well, i.e. G
is rimcompact.

Thus, Theorem 4.11 is proved.
As an application, let us consider compactifications of the space Q of rational numbers. The 1-dimensional 

sphere S1 can be interpreted as a compactification of Q. The remainder S1 \Q of Q in this compactification 
is homeomorphic to the space J of irrational numbers. Notice that ind(J) = 0, and J is homeomorphic to a 
topological group. In this connection we mention the next easy to establish but curious fact:

Proposition 4.14. If a zero-dimensional remainder Y of Q is homeomorphic to a topological group, then Y
is homeomorphic to the space J of irrational numbers.

We also obtain from Theorem 4.11 the following:

Corollary 4.15. If b(Q) is any compactification of Q such that the remainder Y = b(Q) \ Q satisfies the 
condition ind(Y ) ≥ 2, then Y is not homeomorphic to any topological group.

Problem 4.16. Does there exist a compactification bQ of Q such that the remainder Y = b(Q) \ Q is 
homeomorphic to a 1-dimensional topological group?

4.2. Translation-disjointness and some local properties

Recall that a space X is of countable type if every compact subspace of X is contained in a compact 
subspace with a countable base of open neighbourhoods in X.

Theorem 4.17. Suppose that G is a topological group with a bc-base. Then at least one of the following 
conditions holds:

(i) Every closed subspace Z of G of countable type is zero-dimensional.
(ii) G is a paracompact p-space.

Proof. Assume that (i) does not hold. Then, by Corollary 4.2, Z is not translation-disjoint with some 
compact subspace K of G. By Proposition 3.1, there is an open neighbourhood O of the neutral element 
e of G such that O is contained in the subspace Y = KZ−1 of G. The natural mapping f of the space 
K × Z onto Y is perfect (Arhangel’skii [2, Corollary 5]). Since K × Z is of countable type, it follows that 
Y is of countable type as well. Since O ⊆ Y , we conclude that G is locally of countable type. Hence, G is 
of pointwise countable type. Therefore, G is a paracompact p-space, since it is a topological group. �

The next statement has a similar proof:

Theorem 4.18. Suppose that G is a topological group, and A, B are any two subspaces of G with a countable 
network.. Then either A and B are translation-disjoint, or G has locally a countable network.

Clearly, the following statement also holds:

Theorem 4.19. Suppose that G is a topological group with a base B such that the boundary of every member 
U of B has a countable network. Then G satisfies at least one of the following conditions:
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(α) G has locally a countable network.
(β) If a subspace Y of G has a countable network, then Y is totally disconnected.

4.3. Some open questions

The next question of L.G. Zambakhidze remains the main open problem in the field:

Problem 4.20. Is every non-locally compact topological group with a bc-base zero-dimensional?

Problem 4.21. Is every metrizable non-locally compact topological group with a bc-base zero-dimensional?

A similar question can be formulated about topological groups that are paracompact p-spaces.
Theorem 4.5 suggests that the answer to the next question may be in the affirmative.

Problem 4.22. Is every non-locally compact topological group with a bc-base totally disconnected?

Observe that the proof of Corollary 4.2 does not provide any information on the spaces such that their 
free topological group has a bcs-base. Indeed, F (X) is σ-compact provided X is.

The next open questions point in a somewhat different direction than all other questions in the paper as 
well as the results obtained in it.

Problem 4.23. Let F (X) be the free topological group of a space X. Then is it possible to find a zero-
dimensional subspace Y of F (X) such that KY = F (X), for some compact subspace K of F (X)?

Problem 4.24. Let F (X) be the free topological group of a compact (metrizable) space X. Then is it possible 
to find a zero-dimensional subspace Y of F (X) such that KY = F (X), for some compact subspace K of 
F (X)?

Problem 4.25. Given a topological group G, when is it possible to find a zero-dimensional subspace Y of G
such that KY = G, for some compact subspace K of G?
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