
Topology and its Applications 195 (2015) 143–150
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

On topological groups with a first-countable remainder, II

A.V. Arhangel’skii a,1, J. van Mill b,∗

a MGU and MPGU, Moscow, Russia
b KdV Institute for Mathematics, University of Amsterdam, Science Park 105-107, P.O. Box 94248, 
1090 GE Amsterdam, The Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 December 2013
Received in revised form 15 July 
2014
Available online 26 September 2015

Dedicated to the Memory of Mary 
Ellen Rudin, a Great Person and a 
Great Mathematician

MSC:
54H11
54A25
54B05

Keywords:
Character
π-Base
Remainder
Compactification
Topological group
Precompact
First-countable
Metrizable

We establish estimates on cardinal invariants of an arbitrary non-locally compact 
topological group G with a first-countable remainder Y . We show that the weight 
of G and the cardinality of Y do not exceed 2ω . Moreover, the cardinality of G does 
not exceed 2ω1 . These bounds are best possible as witnessed by a single topological 
group G. We also prove that every precompact topological group with a first-
countable remainder is separable and metrizable. It is known that under Martin’s 
Axiom and the negation of the Continuum Hypothesis, every σ-compact topological 
group with a first-countable remainder is metrizable. We show that under the 
Continuum Hypothesis, there is an example of a countable topological group which 
is not metrizable and has a first-countable remainder. Hence for countable groups, 
the question of whether the existence of a first-countable remainder is equivalent to 
being metrizable, is undecidable.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

By ‘a space’ we understand a Tychonoff topological space. By a remainder of a space X we mean the 
subspace bX \X of a Hausdorff compactification bX of X. We follow the terminology and notation in [10].

A series of results on remainders of topological groups have been obtained in [2,4], and in [6]. They 
show that the remainders of topological groups are much more sensitive to the properties of topological 
groups than the remainders of topological spaces are in general. Of course, there is an important exception 
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to this rule: the case of locally compact topological groups. Indeed, every locally compact non-compact 
topological group has a remainder consisting of exactly one point. Thus, we will be interested only in the 
case of non-locally compact topological groups.

It was proved in Arhangel’skii [4] that if a non-locally compact topological group G has a remainder with 
a Gδ-diagonal, then both G and this remainder are separable metrizable spaces. It is a well known Theorem 
of Birkhoff and Kakutani that every first-countable topological group is metrizable (see, for example, [8]). 
One may expect that the first-countability of a remainder would also force the metrizability of the group 
itself, provided, of course, that the remainder is dense in the compactification. There are many partial 
results. For example, if Gω has a first-countable remainder, then G is metrizable. See Arhangel’skii [3] for 
more details and references. The question was answered in the negative recently in Arhangel’skii and van 
Mill [7] where it was shown that there is a non-locally compact topological group G of size 2ω1 and character 
ω1 which has a first-countable remainder. It was also shown there that these cardinal characteristics of G
are no surprise: every non-locally compact topological group G with a first-countable remainder has size at 
most 2ω1 and character at most ω1.

In this paper we continue these investigations. We were motivated by the result in Arhangel’skii [3]
that under Martin’s Axiom and the negation of the Continuum Hypothesis (abbreviated MA+¬CH) the 
following holds: if G is a σ-compact topological group with a remainder of countable tightness, then either 
G is locally compact, or G is metrizable. We prove that under the Continuum Hypothesis (abbreviated CH), 
there is an example of a non-discrete countable topological group of character ω1 with a first-countable 
remainder Y . Hence for countable non-discrete topological groups G the question whether G is metrizable 
if and only if G has a first-countable remainder, is undecidable. This example also shows that Problem 12 
from Arhangel’skii [5] is undecidable. We also prove that every precompact non-locally compact group with 
a first-countable remainder is separable and metrizable (in fact, we prove a stronger result of which this 
is a corollary). Moreover, we continue our investigations on cardinal characteristics of non-locally compact 
topological groups G which have a compactification bG such that Y = bG \G is first-countable. We prove 
that for such G we have that χ(G) ≤ ω1, |Y | ≤ 2ω, w(bG) ≤ 2ω (hence w(G) ≤ 2ω) and |bG| ≤ 2ω1 . The 
example in Arhangel’skii and van Mill [7] demonstrates that these results are best possible.

2. Cardinal characteristics

We denote by w(X) the weight of a space X, and e(X) stands for the extent of X. Thus, e(X) is the 
smallest infinite cardinal number τ such that |A| ≤ τ , for every closed discrete subspace A of X. The 
character of a space X is denoted by χ(X).

Lemma 2.1. For any topological group H, we have: w(H) ≤ e(H)χ(H).

Proof. Fix an open neighbourhood U of the neutral e in H. Let us say that A ⊆ H is U -discrete if 
aU ∩A = {a}, for each a ∈ A.

Claim 1. Every U -discrete A subset of H is closed and discrete in H.

Indeed, let A be U -discrete and let p /∈ A. Let V be a symmetric open neighbourhood of e such that 
V 2 ⊆ U . Then pV ∩ A contains at most one element of A. For if there exist distinct a1, a2 ∈ pV ∩ A, then 
we can pick v1, v2 ∈ V such that pv1 = a1 and pv2 = a2. But then a1 = a2(v−1

2 v1) ∈ a2U which contradicts 
a1 �= a2. This clearly implies that A is closed, and since A is discrete, we are done.

Fix a base P of the space H at e such that |P| = χ(H), and for each U ∈ P fix a maximal U -discrete 
subset AU of H.
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Claim 2. The union of all these AU (where U runs over P) is a dense subset M of H such that |M | ≤
e(H)χ(H).

We only need to check that M is dense. But this is trivial. For assume it is not. Then there exist p ∈ H

and U ∈ P such that pU ∩ M = ∅. But then AU ∪ {p} is U -discrete, which contradicts the maximality 
of AU .

Since w(H) = d(H)χ(H), see e.g. [8, Theorem 5.2.5 a)], we are done. �
Theorem 2.2. Suppose that G is a non-locally compact topological group with a compactification bG such 
that its remainder Y is first-countable. Then:

(a) χ(G) ≤ ω1 and w(G) ≤ 2ω,
(b) |Y | ≤ 2ω,
(c) w(bG) ≤ 2ω and |bG| ≤ 2ω1 .

Proof. That χ(G) ≤ ω1 was proved in Arhangel’skii and van Mill [7]. We will next show that w(G) ≤ 2ω.

Claim 3. e(G) ≤ 2ω.

Assume the contrary. Then we can fix a closed discrete subspace A of G such that |A| > 2ω. Clearly, Y
is dense in bG, and therefore, the space bG is first-countable at each y ∈ Y . Hence the closure of A in bG is 
a first-countable compactum B such that |B| ≥ |A| > 2ω, a contradiction (Arhangel’skii [1]).

Since we already know that χ(G) ≤ ω1, it follows from Claim 1 and Lemma 2.1 that w(G) ≤ 2ω. Hence 
(a) holds.

To prove (b), fix a dense subset S of G such that |S| ≤ 2ω. This is possible by what we just proved. As 
we observed earlier, the space bG is first-countable at each y ∈ Y . Hence, we can reach every y ∈ Y by a 
sequence ηy in S converging to y. Since the cardinality of the set of all such sequences does not exceed 2ω, 
we conclude that |Y | ≤ 2ω.

It remains to prove (c). Observe that bG has a network P such that |P| ≤ 2ω. Therefore, w(bG) ≤ 2ω, 
since bG is compact.

Since χ(G) ≤ ω1 by (a) and G is dense in bG, we have: the character of bG at every x ∈ G does not 
exceed ω1. A similar statement holds for the points of Y . Therefore, the character of bG at any point is not 
greater than ω1. Since bG is compact, we consequently have: |bG| ≤ 2ω1 . �
3. Precompact topological groups

A space is said to be ω-bounded (strongly ω-bounded) if the closure of every countable (σ-compact, 
respectively) subset is compact.

Lemma 3.1. Suppose that X is a nowhere locally compact space with a remainder Y which is not ω-bounded. 
Then no remainder of X is ω-bounded.

Proof. Let bX be a compactification of X such that Y = bX \X contains a countable subset A such that 
A ∩X �= ∅. Let f : βX → bX be a continuous map that restricts to the identity on X. For every a ∈ A pick 
ba ∈ βX \ X such that f(ba) = a. Then clearly if B = {ba : a ∈ A}, then B ∩ X �= ∅. Now let b1X be 
an arbitrary compactification of X, and let g: βX → b1X be a continuous surjection which restricts to the 
identity on X. Put C = g(B). Then, clearly, C ∩X �= ∅. �
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Proposition 3.2. Suppose that bX is a compactification of a nowhere locally compact space X such that the 
following two conditions are satisfied:

(1) bX is separable.
(2) The remainder Y = bX \X has a dense subspace homeomorphic to X.

Then the remainder Y is not ω-bounded.

Proof. Since X is nowhere locally compact, the subspace Y is also dense in bX and is not compact. Fix a 
countable subset A of bX such that A is dense in bX. Put AX = A ∩X.

Case 1. AX is dense in X.

Using condition (2), we fix a subspace H of Y = bX\X such that H is dense in Y and H is homeomorphic 
to X. Then H is separable, so that we can fix a countable dense subspace C of H. The closure of C in Y is 
Y and hence, is not compact. Thus, in Case 1 the space Y is not ω-bounded.

Case 2. AX is not dense in X.

Hence, there exists a nonempty open subset U of bX such that the closure F of U in bX does not 
intersect AX . Hence, the set AU = A ∩ U is contained in Y . Since A is dense in bX, the set AU is dense 
in U . Thus, the closure of the countable subset AU of Y in bX is the compactum F . However, F is not 
contained in Y , since otherwise we would have U ⊂ Y . This is a contradiction, since U is open in bX and 
Y is, clearly, nowhere locally compact. Therefore, the closure of AU in Y is not compact (since it is dense 
in F but is not F ). Hence Y is not ω-bounded. �

We will need the following result of Efimov which follows from Corollary 1.3 and Theorem 1.4 in [9].

Theorem 3.3. (B.A. Efimov [9]) Let τ be an infinite cardinal number. Then we have: if the π-character of 
a dyadic compactum X is ≤ τ for each x ∈ M , where M ⊆ X and M is dense in X, then the weight of X
is ≤ τ .

Proposition 3.4. Suppose that X is a nowhere locally compact space such that the character of X at every 
point does not exceed 2ω. Furthermore, suppose that bX is a dyadic compactification of X such that the 
remainder Y = bX \X contains a dense subspace homeomorphic to X. Then Y is not ω-bounded.

Proof. Clearly, the character of bX at any x ∈ X does not exceed 2ω. Since bX is a dyadic compactum and 
X is dense in bX, it follows from Theorem 3.3 that the weight of bX is not greater than 2ω. Since bX is a 
dyadic compactum, we conclude that bX is separable. It remains to apply Proposition 3.2. �
Theorem 3.5. Suppose that X is a homogeneous nowhere locally compact space with a remainder of countable 
π-character and that the character of X at every point does not exceed 2ω. Furthermore, suppose that bX is a 
dyadic compactification of X such that the remainder Y = bX \X contains a dense subspace homeomorphic 
to X. Then X and bX are separable and metrizable.

Proof. Let b1X be a compactification of X such that Y = b1X \X. Observe that it follows from Proposi-
tion 3.4 that bX \X is not ω-bounded. Hence by Lemma 3.1 this implies that b1X \X is not ω-bounded. 
Let A be a countable subset of b1X \X containing the point x0 ∈ X in its closure. Since every a ∈ A clearly 
has countable π-character in b1X and A is countable, it follows that x0 has countable π-character in b1X. 
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Since X is dense in b1X, it follows that the π-character of X at x0 is countable. Since X is homogeneous, 
we conclude that the π-character of X is countable at every x ∈ X. Since X is also dense in the dyadic 
compactification bX, it follows that the π-character of bX is countable at every x ∈ X. Now Theorem 3.3
implies that bX is metrizable and so we are done. �
Proposition 3.6. Suppose that G is a topological group such that the Souslin number of G is countable, and 
let Y be an arbitrary remainder of G. Then the following two conditions are equivalent:

(a) Y is first-countable;
(b) Every y ∈ Y is a Gδ-point in Y .

Proof. Indeed, Y is either pseudocompact or Lindelöf, by the dichotomy theorem in Arhangel’skii [6]. If 
Y is pseudocompact then, clearly, (a) and (b) are equivalent. It remains to consider the case when Y is 
Lindelöf. Since the Souslin number of G is countable, G and Y are paracompact p-spaces by Arhangel’skii 
[2, Theorem 4.17]. Hence, Y is a Lindelöf p-space and so (a) and (b) are equivalent. Thus, we are done. �

This leads us to the main result in this section.

Theorem 3.7. If a non-locally compact precompact topological group G has a remainder Y such that every 
y ∈ Y is a Gδ-point in the space Y , then G is separable and metrizable

Proof. Let bG be a compactification of G such that the pseudo-character Y = bG \G is countable. Since the 
Souslin number of G is countable, G being precompact, by Proposition 3.6 it follows that Y is first-countable. 
We already know that the character of G is not greater than ω1 (Theorem 2.2(a)). The Rajkov completion 
of G is a compact topological group b1G (see e.g. [8]). Obviously, the remainder b1G \G contains a translate 
of G and hence a dense topological copy of G. Since every compact topological group is dyadic [8, §4.1], we 
can apply Theorem 3.5. �
4. The example

All Abelian groups are written additively.
Let G be an Abelian group. We say that G is Boolean provided that each element has order at most 2. 

We write G additively, and denote its neutral element by e. If G is Boolean, and F ⊆ G is finite, then so is 
〈 〈F 〉 〉.

A nonempty subset A of a Boolean group G is independent if for every finite nonempty subset F of A
we have ΣF �= e. Observe that if A and B are disjoint subsets of G such that A ∪ B is independent, then 
〈 〈A〉 〉 ∩ 〈 〈B〉 〉 = {e}. Also observe that if xn ∈ G for every n < ω is chosen such that xn /∈ 〈 〈{xi : i < n}〉 〉, 
then X = {xn : n < ω} is independent.

Let G be a Boolean topological group. We say that G is linear provided that the neutral element of G
has a neighbourhood base consisting of subgroups of G.

Lemma 4.1. Let G be a first-countable, countable, dense-in-itself linear Boolean topological group with com-
pactification bG. If K ⊆ bG \ G is σ-compact, then there is a dense-in-itself subgroup H of G having the 
following properties:

(1) G/H is infinite,
(2) H is not open,
(3) for every finite F ⊆ G, F+H ∩K = ∅ (here closure means closure in bG).
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Proof. Since G is countable and first-countable, it has a countable base. By observing that the subgroup 
generated by a finite subset of G is finite, and the fact that G is dense-in-itself, it is easy to construct two 
disjoint dense subsets D and E such that D ∪ E is independent. Our subgroup H will be a subgroup of 
〈 〈D〉 〉. Since 〈 〈D〉 〉 ∩E = ∅ and E is dense, it follows that H is not open and moreover that G/H is infinite.

Let f : ω → ω × ω be a surjective map. It will be convenient to denote f(n) by 〈n0, n1〉.
Enumerate the finite nonempty subsets of G as {Fn : n < ω}. Write K as 

⋃
n<ω Kn, where Kn is compact 

for every n. Finally, let (Un)n be an open neighbourhood base at e ∈ G consisting of subgroups of G such 
that Un+1 ⊆ Un for every n. By recursion on n, we pick an open neighbourhood Vn of e in G and point 
pn ∈ Vn ∩D, such that:

(1) Vn is a subgroup of G,
(2) Vn ⊆ Un ∩

⋂
m<n Vm,

(3) Fn0+〈〈{p0, . . . , pn−1}〉〉+Vn ∩Kn1 = ∅ (here closure means closure in bG).

The construction is a triviality. Indeed, assume that we are at step n of the construction. Put F =
Fn0+〈 〈{p0, . . . , pn−1}〉 〉. Since F is finite, and Kn1 is a compact subset of bG \ G, for every x ∈ F we may 
pick an open neighbourhood Vx of e in G such that x+Vx ∩Kn1 = ∅ (again, closure means closure in bG). 
We may assume that for every x ∈ F , Vx is a subgroup of G. Now put Vn = Un ∩

⋂
x∈F Vx ∩

⋂
m<n Vm, and 

let pn be an arbitrarily chosen point from Vn ∩D. This completes the recursion.
Now put H = 〈 〈{pn : n < ω}〉 〉; we claim that H is as required. As we observed before, H is not open. 

Moreover, H is dense-in-itself since the sequence (pn)n converges to e and is contained in G \ {e}.
Now consider arbitrary n, m < ω. We will show that Fn+H ∩ Km = ∅. Indeed, let i < ω be such that 

f(i) = 〈n, m〉. Observe that by construction we have that

Fn + 〈〈{p0, . . . , pi−1}〉〉 + Vi ∩Km = ∅

Since H ⊆ 〈 〈{p0, . . . , pi−1}〉 〉 + Vi, this clearly gives us what we want. �
Corollary 4.2. Let G be a countable dense-in-itself linear Boolean topological group with first-countable 
compactification bG. If K ⊆ bG \ G is σ-compact, then there are a linear dense-in-itself topology τ on G, 
a first-countable compactification c(G, τ) of (G, τ) and a continuous surjection f : c(G, τ) → bG such that:

(1) the original topology on G is strictly contained in τ ,
(2) f restricts to the identity (G, τ) → G,
(3) if x ∈ K, then f−1({x}) is a single point.

Proof. Let H be the subgroup of G from Lemma 4.1. We endow G/H with the discrete topology, and let 
α(G/H) = (G/H) ∪ {∞} denote its Alexandroff one-point compactification. Let φ: G → G/H denote the 
canonical homomorphism. Consider the graph

Γ = {〈x, φ(x)〉 : x ∈ G}

of φ in bG × α(G/H). We identify G and Γ. Observe that the subspace topology τ that Γ (=G) inherits 
from bG ×α(G/H) is simply the topology we get from G by declaring its subgroup H to be open. This is a 
linear topology on G that strictly contains the original topology. Clearly, τ is dense-in-itself since H is. Let 
X denote the closure of Γ in the compact space bG ×α(G/H). Then X is a first-countable compactification 
c(G, τ) of (G, τ). Let f : X → bG denote the restriction to X of the projection bG × α(G/H) → bG. By 
our identifications, f restricts to the identity on (G, τ). It suffices to check that if x ∈ K, then f−1({x})
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is a single point. We claim that f−1({x}) = {〈x, ∞〉}. First observe that by compactness, f−1({x}) �= ∅. 
Clearly, f−1({x}) ⊆ {x} × α(G/H). Striving for a contradiction, assume that for some p ∈ G we have that 
〈x, φ(p)〉 ∈ X. By construction, x /∈ p+H. Since bG ×{φ(p)} is clopen in bG ×α(G/H), there is a sequence 
(gi)i in G such that the sequence (〈gi, φ(p)〉)i is entirely contained in Γ and converges to 〈x, φ(p)〉. Hence 
φ(gi) = φ(p) for every i and gi → x. But this is a contradiction since from this we get that gi ∈ p+H for 
every i and x /∈ p+H. �

Assume CH throughout. We let G be a countable dense subgroup of the Cantor group 2ω. By transfinite 
induction on α ≤ ω1 we will construct a linear dense-in-itself group topology τα on G. We will denote 
the space with underlying set G and topology τα by Gα. We emphasize that we think of all the spaces 
Gα as having the same underlying set, namely, G. Along the way we will also construct a first-countable 
compactification bαGα of Gα and for every β ≤ α a continuous function fα

β : bαGα → bβGβ such that (among 
other things) the following conditions are satisfied:

(K1) for every β < α, τβ is strictly contained in τα,
(K2) for every β ≤ α, fα

β restricts to the identity Gα → Gβ ,
(K3) if α is a limit ordinal, then τα is the supremum of the topologies {τβ : β < α} and bαGα =

lim←−−{bβGβ , f
β
ξ }.

The example we are looking for will be bω1Gω1 . Observe that (K1) implies that Gω1 is not first-countable. 
To ensure that bω1Gω1 \Gω1 is first countable, we use CH for bookkeeping.

Let τ : ω1 → ω1 × ω1 be a surjective map such that τ(α) = 〈β, ξ〉 implies that β ≤ α. By CH, for every 
α ≤ ω1 we enumerate bαGα \ Gα by {xα

ξ : ξ < ω1}. Along the way we will construct an Fσ-subset Sα of 
bαGα such that

(K4) Sα ⊆ bαGα \Gα,
(K5)

⋃
β<α(fα

β )−1(Sβ) ⊆ Sα,
(K6) if τ(α) = 〈η, ξ〉, then (fα

η )−1({xη
ξ}) ⊆ Sα,

(K7) if β < α and x ∈ Sβ , then (fα
β )−1({x}) is a single point.

Observe that τω1 is dense-in-itself by (K1) and the fact that τα is dense-in-itself for every α < ω1. Hence 
Gω1 is nowhere locally compact. To check that R = bω1Gω1 \Gω1 is first-countable, take an arbitrary p ∈ R. 
There exists η < ω1 such that fω1

η (p) /∈ Gη. Pick ξ < ω1 such that fω1
η (p) = xη

ξ . Let τ(α) = 〈η, ξ〉, and 
observe that η ≤ α. By (K6) we have that (fα

η )−1({xη
ξ}) ⊆ Sα. Hence by (K7) we get that (fω1

α )−1({fω1
α (p)})

is a single point. Hence the first-countability of bαGα gives us that bω1Gω1 is first-countable at p.
It remains to perform the construction. But this is a triviality. At limit stages, everything is determined. 

And at successor stages, we simply need to apply Corollary 4.2.
In Arhangel’skii [5, Problem 12] the following was asked: Suppose that X is a Čech-complete space of 

countable tightness such that ω1 is a precaliber of X. Is X separable? What if, in addition, X has a countable 
remainder? The hope was to get a positive answer in ZFC. For compacta the answer is ‘yes’, and under 
MA+¬CH the answer is ‘yes’ as well (Shapirovskĭı [11]). We claim that the space Y = bω1Gω1 \ Gω1 that 
was constructed in this section is a first-countable counterexample under CH. Hence Problem 12 from [5] is 
undecidable. To see that Y is not separable, simply observe that by construction Y is ω-bounded and not 
compact, hence not separable. Alternatively, apply Arhangel’skii [3, Theorem 3.12].
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