On nowhere first-countable compact spaces with countable \(\pi \)-weight

JAN VAN MILL

Abstract. The minimum weight of a nowhere first-countable compact space of countable \(\pi \)-weight is shown to be \(\kappa_B \), the least cardinal \(\kappa \) for which the real line \(\mathbb{R} \) can be covered by \(\kappa \) many nowhere dense sets.

Keywords: \(\pi \)-weight; nowhere first-countable; \(\kappa_B \); compact space

Classification: 54D35

1. Introduction

All spaces under discussion are Tychonoff.

In [4], the author showed that there is a (naturally defined) compact space \(X \) which is (topologically) homogeneous under \(\text{MA} + \neg \text{CH} \) but not under \(\text{CH} \). This space has countable \(\pi \)-weight, character \(\omega_1 \) and weight \(c \). It is an open problem whether there can be a compact nowhere first-countable homogeneous space of countable \(\pi \)-weight and weight less than \(c \). This cannot be done by a straightforward modification of the method in [4] since from Juhász [2, Theorem 5] it follows that under \(\text{MA} \), every compact space of countable \(\pi \)-weight and weight less than \(c \) is somewhere first-countable. Hence a homogeneous compactum of countable \(\pi \)-weight and weight less than \(c \) is first-countable under \(\text{MA} \) ([4, Theorem 1.5]). Let \(\lambda \) be the minimum weight of a nowhere first-countable compact space of countable \(\pi \)-weight. Clearly, \(\omega_1 \leq \lambda \leq c \). The aim of this note is to show that \(\lambda \) is equal to \(\kappa_B \), the least cardinal \(\kappa \) for which the real line \(\mathbb{R} \) can be covered by \(\kappa \) many nowhere dense sets. Hence there exists a nowhere first-countable compact space of weight \(\kappa_B \) and countable \(\pi \)-weight. Whether such a space can be homogeneous while \(\kappa_B < c \) remains an open problem.

2. Preliminaries

Our basic references are Miller [5], Juhász [1] and Kunen [3].

For every space \(X \), define \(\kappa_B(X) \) to be the least cardinal \(\kappa \) such that \(X \) can be covered by \(\kappa \) many nowhere dense (in \(X \)) subsets of \(X \). In Miller [5, Lemma 1] it is shown that for every crowded Polish space \(X \) we have \(\kappa_B(X) = \kappa_B \).
Let $\text{MA}_\kappa(\text{countable})$ denote the statement that for any countable partial order \mathbb{P} and family \mathcal{F} of dense subsets of \mathbb{P}, if $|\mathcal{F}| < \kappa$, then there exists a \mathbb{P}-generic filter G over \mathcal{F}. It is well-known, see Miller [5, Lemma 2], that κ_B is the greatest κ for which $\text{MA}_\kappa(\text{countable})$ holds.

The proof of the following result is standard and is included for the sake of completeness.

Lemma 2.1 (MA$_{\kappa^+}(\text{countable})$). Let X be a crowded space of weight at most κ and of countable π-weight. Assume that D is a nowhere dense subset of X. Then there exist disjoint open sets U and V in X such that $D \subseteq U \cap V$.

Proof: Let \mathcal{U} be a countable π-base for X. Put

$$\mathbb{P} = \{\langle p, q \rangle : (p, q \in [\mathcal{U}]^{<\omega}) \land (\bigcup p \cap \bigcup q = \emptyset) \land (\bigcup p \cup \bigcup q \subseteq X \setminus D)\}.$$

Order \mathcal{P} in the natural way by $\langle p_0, q_0 \rangle \leq \langle p_1, q_1 \rangle$ iff $\bigcup p_1 \subseteq \bigcup p_0$ and $\bigcup q_1 \subseteq \bigcup q_0$. Let \mathcal{V} be an open base for X such that $|\mathcal{V}| \leq \kappa$. Let $W = \{V \in \mathcal{V} : V \cap D \neq \emptyset\}$. For every $W \in \mathcal{W}$, put

$$W^* = \{\langle p, q \rangle \in \mathcal{P} : (\bigcup p \cap W \neq \emptyset) \land (\bigcup q \cap W \neq \emptyset)\}.$$

We claim that W^* is dense in \mathcal{P}. To prove this, take an arbitrary $\langle p, q \rangle \in \mathcal{P}$. By assumption, $(\bigcup p \cup \bigcup q) \cap D = \emptyset$ and $W \cap D \neq \emptyset$. Since X is crowded, there exist $U, V \in \mathcal{W}$ such that

$$W \cup U \subseteq W \setminus (D \cup p \cup q).$$

Hence $p' = p \cup U$ and $q' = q \cup V$ belong to \mathcal{P} and, clearly, $\langle p', q' \rangle \leq \langle p, q \rangle$. By our assumptions, there is a filter F in \mathbb{P} such that for every $W \in \mathcal{W}$ we have $W^* \cap F \neq \emptyset$. Put

$$U = \bigcup\{p : (\exists q \in [\mathcal{U}]^{<\omega})(\langle p, q \rangle \in F)\},$$

and

$$V = \bigcup\{q : (\exists p \in [\mathcal{U}]^{<\omega})(\langle p, q \rangle \in F)\},$$

respectively. Then U and V are clearly as required. \qed

It was shown in Miller [5, Theorem 1] that κ_B has uncountable cofinality. (Interestingly, Shelah [6] showed that the measure analogue of this may fail.)

3. Proofs

Theorem 5 and Lemma 4 in Juhász [2] imply that if X is countably compact, nowhere first-countable, and has a dense set of points of countable π-character, then $w(X) \geq \kappa_B$. For completeness sake, we include a simple proof of a weaker result which suffices for our purposes.
Lemma 3.1 (Juhász [2]). Let κ be a cardinal for which there exists a compact nowhere first-countable space X with countable π-weight and weight κ. Then $\kappa_B \leq \kappa$.

Proof: Let \mathcal{B} be an open base for X such that $|\mathcal{B}| = \kappa$. Moreover, let \mathcal{U} be a countable π-base for X. For every $B \in \mathcal{B}$, put

$$S(B) = \overline{B} \setminus \bigcup \{U \in \mathcal{U} : U \subseteq B\}.$$

Since \mathcal{U} is a π-base, it is clear that for every $B \in \mathcal{B}$ the set $S(B)$ is a nowhere dense closed subset of X.

We claim that $\bigcup_{B \in \mathcal{B}} S(B) = X$. To this end, pick an arbitrary $x \in X$. The collection $\mathcal{V} = \{U \in \mathcal{U} : x \in U\}$ is countable. Since $\chi(x, X) > \omega$, there exists $B \in \mathcal{B}$ which contains no $U \in \mathcal{V}$. Hence for every $U \in \mathcal{U}$ which is contained in B it follows that $x \notin U$, i.e., $x \in S(B)$.

There is an irreducible continuous surjection $f : X \to Y$, where the weight of Y is countable. Hence Y is covered by the collection of nowhere dense closed sets

$$\{f(S(B)) : B \in \mathcal{B}\}.$$

Clearly Y is crowded since X is. From this we conclude that $\kappa_B \leq \kappa$, as required. \hfill \Box

If X is a compact space and A and B are closed subsets of X such that $A \cup B = X$, then $X(A, B)$ denotes the topological sum $(\{0\} \times A) \cup (\{1\} \times B)$ of A and B and $\pi_{A, B} : X(A, B) \to X$ is defined by

$$\pi_{A, B}(t) = \begin{cases} a & (t = (0, a), a \in A), \\ b & (t = (1, b), b \in B). \end{cases}$$

Observe that $t \in A \cap B$ if and only if $|\pi_{A, B}^{-1}(\{t\})| \geq 2$ if and only if $|\pi_{A, B}^{-1}(\{t\})| = 2$.

Lemma 3.2. $\pi_{A, B} : X(A, B) \to X$ is irreducible if and only if $A \setminus B$ is dense in A and $B \setminus A$ is dense in B.

Proof: It will be convenient to denote $\{0\} \times A$ and $\{1\} \times B$ by A' and B', respectively. Assume first that $C \subseteq X(A, B)$ is a proper closed set such that $\pi_{A, B}(C) = X$. We may assume without loss of generality that $U = A' \setminus C$ is nonempty. Put $V = \pi_{A, B}(U)$. Then V is a nonempty relatively open subset of A. Moreover, if $x \in V$, then there exists $(1, b) \in B'$ such that $B \ni b = \pi_{A, B}((1, b)) = x$. As a consequence, $V \subseteq B$. There is an open subset W in X such that $W \cap A = V$. Since $V \subseteq B$, obviously $W \subseteq B$. Hence $A \setminus B$ is not dense in A.

For the converse implication, assume without loss of generality that $A \setminus B$ is not dense in A. Then $(\{0\} \times A \setminus B) \cup (\{1\} \times B)$ is a proper closed subset of $X_{A, B}$ which is mapped onto X by $\pi_{A, B}$. \hfill \Box
Lemma 3.3. There is a nowhere first-countable compact space of weight κ_B and countable π-weight.

Proof: Let $\tau : \kappa_B \to \kappa_B$ be a surjection every fiber of which has size κ_B. Moreover, let $\{D_\alpha : \alpha < \kappa_B\}$ be a family of closed and nowhere dense subsets of 2^ω covering 2^ω. Our space will be the inverse limit X_{κ_B} of a continuous inverse system $\{X_\alpha, \beta \leq \alpha < \kappa_B, f_\alpha^\beta\}$ such that $X_0 = 2^\omega$ and for every $\alpha < \kappa_B$ and $\beta \leq \alpha$,

1. X_α is a compact space of weight at most $|\alpha|\cdot\omega$,
2. $f_\alpha^\beta : X_\alpha \to X_\beta$ is a continuous, irreducible surjection,
3. there are closed sets A_α and B_α in X_α such that
 a. $A_\alpha \cup B_\alpha = X_\alpha$,
 b. $A_\alpha \cap B_\alpha \supseteq (f_\alpha^0)^{-1}(D_\tau(\alpha))$,
 c. $A_\alpha \setminus B_\alpha$ and $B_\alpha \setminus A_\alpha$ are dense in A_α respectively B_α,
 d. $X_{\alpha+1} = X_\alpha(A_\alpha, B_\alpha)$ and $f_\alpha^{\alpha+1} = \pi_{A_\alpha, B_\alpha}$.

The construction of this inverse sequence is a triviality by a repeated application of Lemmas 2.1 and 3.2. The only thing left to verify is that X_{κ_B} has weight κ_B and is nowhere first-countable.

Striving for a contradiction, assume that X_{κ_B} is first-countable at t. Since κ_B has uncountable cofinality (see §2), there exists $\beta < \kappa_B$ such that

(†) $(f_\beta^{\kappa_B})^{-1}(\{f_\beta^{\kappa_B}(t)\}) = \{t\}.$

Let $\xi < \kappa_B$ be such that $f_0^{\kappa_B}(t) \in D_\xi$. Pick $\alpha > \beta$ so large that $\tau(\alpha) = \xi$. Then clearly

$$\|(f_\alpha^{\alpha+1})^{-1}(\{f_\alpha^{\kappa_B}(t)\})\| = 2,$$

which contradicts (†).

That the weight of X_{κ_B} is at most κ_B follows by construction. And that it has weight at least κ_B is a consequence of Lemma 3.1 and the fact that it is nowhere first-countable. Observe that X_0 has countable weight, and that X_{κ_B} admits a continuous, irreducible map onto X_0. Hence X_{κ_B} has countable π-weight. \[\square\]

4. Questions

(1) Is there in ZFC a homogeneous nowhere first-countable compact space of countable π-weight and weight κ_B?

(2) What are the cardinals of the form $w(X)$, where X is a nowhere first-countable compactum of countable π-weight?

(Let Π denote this set of cardinals. We showed that $\kappa_B \in \Pi$. Moreover, $\mathfrak{c} \in \Pi$. To check this, let X be the absolute of the unit interval. Then X has countable π-weight, is nowhere first-countable, and has weight \mathfrak{c} (since it contains a copy of $\beta\omega$). We do not know whether there can be a cardinal $\kappa \in \Pi \setminus \{\kappa_B, \mathfrak{c}\}$.)
A natural question is whether there can be a κ in Π of countable cofinality. This question may have a very simple answer. Indeed, assume that there is a sequence

$$\kappa_0 < \kappa_1 < \cdots < \kappa_n < \cdots$$

in Π. For every n let X_n be a witness of the fact that $\kappa_n \in \Pi$. Then $X = \prod_{n<\omega} X_n$ is a witness that $\kappa = \sup_{n<\omega} \kappa_n \in \Pi$.

References

KdV Institute for Mathematics, University of Amsterdam, Science Park 904, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands

E-mail: j.vanMill@uva.nl

URL: http://staff.fnwi.uva.nl/j.vanmill/

(Received January 27, 2015)