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Countable Dense Homogeneous Rimcompact Spaces
and Local Connectivity
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Abstract. We prove that every nonmeager connected Countable Dense Homogeneous space is locally
connected under some additional mild connectivity assumption. As a corollary we obtain that every
Countable Dense Homogeneous connected rimcompact space is locally connected.

1. Introduction

All spaces under discussion are separable metric.
A space X is Countable Dense Homogeneous (abbreviated: CDH) provided that for all countable dense

subsets D and E of X there is a homeomorphism f : X → X such that f (D) = E. For more information on
this concept, see Arhangel’skii and van Mill [2]. Bennett [3] proved that every connected CDH-space is
homogeneous.

In 1972, Fitzpatrick [6] proved that every locally compact, connected CDH-space is locally connected.
Fitzpatrick and Zhou [7] asked in 1992 whether every Polish, connected CDH-space is locally connected.
This problem is one of the few problems in [7] that is still open and was the motivation for the current
investigations.

For a space X and x ∈ X we let Q(x,X) denote the quasi-component of x in X. That is, Q(x,X) is the
intersection of all clopen subsets of X that contain x. Observe that if x ∈ X, and X is a subspace of Y, then
Q(x,X) ⊆ Q(x,Y).

Theorem 1.1. Let X be a nonmeager connected CDH-space and assume that for some point x in X we have that for
every open neighborhood W of x, Q(x,W) \ {x} is nonempty. Then X is locally connected.

Corollary 1.2. Every rimcompact connected CDH-space is locally connected.

This corollary generalizes the result of Fitzpatrick just quoted. Observe that we do not require our space
to be nonmeager.
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2. Preliminaries

As usual, for a subset U of a space X, we put Fr U = U \ Int U; it is called the boundary of U.
A space X is meager if it can be expressed as a countable union of nowhere dense sets. Clearly, every

Baire space (see below) is nonmeager.
A space X is called rimcompact if there exists an open base B for X such that Fr B is compact for each

B ∈ B. For more information on this concept, see Aarts and Nishiura [1].
For a space X we let H(X) denote its group of homeomorphisms. If A ⊆ X, then H(X; A) denotes

{ f ∈ H(X) : h restricts to the identity on A}.
We will need the following result.

Proposition 2.1 (van Mill [11, Proposition 3.1]). Let X be CDH. If F ⊆ X is finite and D,E ⊆ X\F are countable
and dense in X, then there is an element f ∈ H(X; F) such that f (D) ⊆ E.

A space X is a λ-set if every countable subspace is Gδ. It was shown by Fitzpatrick and Zhou [7, Theorem
3.4] that every meager CDH-space is a λ-set. There are such CDH-spaces, see [5] and [8].

A space is Polish if it has an admissible complete metric. A space is Baire if the intersection of any
countable family of dense open sets in the space is dense. A space is analytic if it is a continuous image of
the space of irrational numbers.

3. Proof of Theorem 1.1

Let X be any nonmeager CDH-space which is connected and contains a point x such that for every open
neighborhood W of X, Q(x,W) \ {x} is nonempty. By Bennett [3], X is homogeneous. Hence this property of
the point x is shared by all points.

Lemma 3.1. For every open neighborhood V of a point x in X we have that the interior of Q(x,V) is nonempty.

Proof. Striving for a contradiction, assume that for some open V in X containing x we have that Q(x,V) has
empty interior in X. Since V is open in X, and Q(x,V) is closed in V, this clearly implies that Q(x,V) is
nowhere dense in X.

For every n pick an open neighborhood Un of x such that diam Un < 2−n. The assumptions imply that
for every n, there exists yn ∈ Q(x,Un) \ {x}.

Since Q(x,V) is nowhere dense in X, we may pick a countable dense subset E ⊆ X \ Q(x,V). Put
D = E ∪ {yn : n ∈ N}. By Proposition 2.1, there exists f ∈ H(X) such that f (x) = x and f (D) ⊆ E. Pick n so
large that f (Un) ⊆ V. Since yn ∈ Q(x,Un)\ {x}we have that f (yn) ∈ Q( f (x), f (Un))\ { f (x)} = Q(x, f (Un))\ {x} ⊆
Q(x,V) \ {x}. Since f (yn) ∈ E and E ∩Q(x,V) = ∅, this is a contradiction.

Corollary 3.2. For every open subset V of X and x ∈ V, we have that the interior of Q(x,V) is dense in Q(x,V).

Proof. Assume that the interior W of Q(x,V) is not dense in Q(x,V). Then there are y ∈ Q(x,V) and an open
subset U of x such that y ∈ U ⊆ V and U ∩W = ∅. By Lemma 3.1, the interior P of Q(y,U) is nonempty.
However, Q(y,U) ⊆ Q(y,V) = Q(x,V), hence P ⊆ Q(x,V) and hence P ⊆ W. This is a contradiction since
∅ , P ⊆ U ∩W = ∅.

Lemma 3.3. There is a point x ∈ X with the following property: for every open neighborhood V of x, the quasi-
component Q(x,V) is a neighborhood of x.

Proof. Let U1 be a maximal pairwise disjoint collection of nonempty open subsets of X each of diameter
less than 2−1. Clearly,

⋃
U1 is dense. Fix U ∈ U1. Each quasi-component of U has dense interior by

Corollary 3.2. Hence the interiors of all the quasi-components of elements of U1 form a pairwise disjoint
open (and hence countable) collection with dense union. LetU2 be a maximal pairwise disjoint collection
of nonempty open subsets of X each of diameter less than 2−2 and having the property that every element
V ∈ U2 is contained in some quasi-component of some member from U1. It is clear that U2 has dense
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union. Hence we can continue the same construction with all the quasi-components of members fromU2,
thus creating the family U3. Etc. At the end of the construction, we have a sequence {Un : n ∈ N} of
subfamilies of pairwise disjoint nonempty open subsets of X such that for every n,

1.
⋃
Un is dense in X,

2. if V ∈ Un+1, then there exist U ∈ Un and p ∈ U such that V ⊆ Q(p,U),
3. meshUn < 2−n.

Since X is nonmeager, the collection {X \
⋃
Un : n ∈ N} does not cover X. Hence there is a point x ∈ X for

which there exists for every n ∈ N an element Un ∈ Un such that x ∈ Un. We claim that x is as required.
To this end, let V be any open neighborhood of x. By (3), there exists n such that x ∈ Un ⊆ V. Since by (2),
x ∈ Un+1 ⊆ Q(p,Un) for some p ∈ Un, we have x ∈ Un+1 ⊆ Q(x,Un). But Q(x,Un) ⊆ Q(x,V), and so Q(x,V) is
a neighborhood of x.

Again by homogeneity, the property of the point x in Lemma 3.3 is shared by all points.

Corollary 3.4. Every quasi-component of an arbitrary open subset of X is open.

Now let V be a nonempty open subset of X, and let W be a quasi-component of V. Observe that W is a
clopen subset of V since the quasi-components of V form a pairwise disjoint family. If W is not connected,
then we can write W as A ∪ B, where A and B are disjoint nonempty open subsets of W. But then A and B
are clearly clopen in V, which implies that W is not a quasi-component. Hence quasi-components of open
subsets of X are both open and connected. So we arrive at the conclusion that X is locally connected. This
completes the proof of Theorem 1.1.

Let us return to the question whether every connected Polish CDH-space is locally connected. Theo-
rem 1.1 implies that a counterexample is very tricky. It is connected, yet its properties resemble those of
complete Erdős space in [4].

4. Proof of Theorem 1.2

To begin with, let us prove the following simple but curious fact.

Proposition 4.1. Every meager CDH-space which has an open baseU such that Fr U is analytic for every U ∈ U,
is zero-dimensional.

Proof. By the result of Fitzpatrick and Zhou quoted in §2, it follows that X is a λ-set. Observe that by the
Baire Category Theorem, a countable dense subspace of a Cantor set K is not a Gδ-subset of K. This implies
that X does not contain a copy of the Cantor set. LetU = {Un : n ∈N} be an open basis for X such that Fr Un
is analytic for every n. Clearly, every Fr Un is countable since every uncountable analytic space contains a
copy of the Cantor set, [10, Corollary 1.5.13]. Let D =

⋃
n Fr Un. Then D is countable and hence Gδ and so

X \ D can be written as
⋃

n Fn, where every Fn is closed in X. Since Fn ∩ Um = Fn ∩ Um for all n and m, it
follows that each Fn is zero-dimensional. So the cover

{{d} : d ∈ D} ∪ {Fn : n ∈N}

of X consists of countably many closed and zero-dimensional subsets. Hence X is zero-dimensional by the
Countable Closed Sum Theorem [10, Theorem 3.2.8].

Let X be any CDH-space which is connected and rimcompact. Then X is nonmeager by the previous
result.

Pick an arbitrary x ∈ X.

Lemma 4.2. For every open neighborhood V of x we have that Q(x,V) \ {x} , ∅.
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Proof. Pick an open set A such that x ∈ A ⊆ A ⊆ V while moreover Fr A is compact. We claim that Q(x,V)
meets Fr A. Indeed, pick an arbitrary (relatively) clopen E ⊆ V that contains x. Then E ∩ A is clopen in A,
hence closed in X, and contains x. Suppose that (E ∩ A) ∩ Fr A = ∅. Then E ∩ A = E ∩ A is nonempty and
clopen in X which contradicts connectivity. Hence the collection

{E ∩ Fr A : E is a (relatively) clopen subset of V that contains x}

is a family of closed subsets of Fr A with the finite intersection property. By compactness of Fr A, the set
Q(x,V) consequently meets Fr A.

So X is as in Theorem 1.1, and we are done.

It was noted by Lyubomyr Zdomskyy that if a connected, CDH, rim-σ-compact space X has dimension
greater than 1, then it is locally connected. Striving for a contradiction, assume that X is not locally
connected. From Theorem 1.1 it follows that there is a baseU at a point x in X such that Q(x,U) = {x} for
all U ∈ U. Hence for every U ∈ U, {x} is a countable intersection of clopen subsets of U. This together with
the homogeneity of X easily implies that every compact subspace of U is zero-dimensional. As a result,
every compact subspace of X must be zero-dimensional. Then the rim-σ-compactness yields that there is a
base with zero-dimensional boundaries, and hence the space X must have dimension 1.

In the light of Proposition 4.1, the question whether every rimcompact connected CDH-space is Polish,
is natural. It was shown by Hrušák and Zamora Avilés [9] that every Borel CDH-space is Polish. As
a consequence, a counterexample to this question is not Borel. The answer is in the negative, at least
consistently. Let X be an ℵ1-dense subset of the 2-sphere S2. The proof of the main theorem in Steprāns
and Watson [12] shows that Y = S2

\ X is CDH under MAℵ1 for σ-centered posets. It is clear that Y is
connected and locally connected. It is also clear that Y not Polish since ℵ1 < c. Moreover, every y ∈ Y has a
neighborhood base the boundary of every element of which misses X so that Y is rimcompact.
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