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A NOTE ON AN UNUSUAL CHARACTERIZATION OF
THE PSEUDO-ARC

JAN VAN MILL

Abstract. Lewis showed that the pseudo-arc is the unique non-
degenerate continuum having the property that any two copies of it
that are setwise near each other in terms of the Hausdorff distance
are homeomorphically near each other. We present a new proof of
this fact based on a well-known result of Bing, standard facts from
infinite-dimensional topology and the Effros Theorem.

1. Introduction

All spaces under discussion are separable metric. For all undefined
notions, see Nadler [7] and van Mill [5].

A compactum X is said to have property HN (for ‘homeomorphically
near’), Lewis [4], if for any copy X0 of X in the Hilbert cube Q and any
ε > 0 there exists δ > 0 such that for any copy X1 of X in Q such that
dH(X0, X1) < δ there exists a homeomorphism h : X0 → X1 such that
d
(
x, h(x)

)
< ε for each x ∈ X0. In [4], Lewis proved the following:

Theorem 1.1. The pseudo-arc is the only non-degenerate continuum
with property HN.

The aim of this note is to present a new proof of this fact, based on
Bing’s Theorem from [1] that the space of pseudo-arcs is a dense Gδ-subset
of C(Q), standard facts from infinite-dimensional topology and the Effros
Theorem from [2] (see also [6]). In fact, besides Bing’s result, we need no
specifics in our proof about the pseudo-arc. This is rather curious and it
may make our method applicable in different situations.
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2. Proofs

For a finite collection U of open subsets of Q we put

N(U ) = {B ∈ C(Q) : (B ⊆
∪

U )& (∀U ∈ U )(B ∩ U ̸= ∅)}.

Let Z (Q) denote the collection of all Z-sets in Q. For a non-degenerate
continuum X, put

C(Q,X) = {A ∈ C(Q) : A is homeomorphic to X},
and

CZ (Q,X) = C(Q,X) ∩ Z (Q),

respectively.

Proposition 2.1. If X is a non-degenerate continuum with property HN,
then CZ (Q,X) is a dense Gδ-subset of C(Q).

Proof. We will first show that CZ (Q,X) is dense. To this end, take
arbitrary B ∈ C(Q) and ε > 0. There is a finite collection of open subsets
U of Q such that B ∈ N(U ) while dH(B,C) < ε for each C ∈ N(U ).
By [7, Theorem 19.2] we may pick I ∈ N(U ) such that I ≈ [0, 1].
Let r : Q → I be a retraction. By the Mapping Replacement Theo-
rem [5, Theorem 6.4.8], r can be approximated arbitrarily closely by
a Z-imbedding. Hence we may assume that there is an element Y ∈
Z (Q) ∩ N(U ) such that Y ≈ Q. There is a topological copy Z of X
which is contained in Y . By the Homeomorphism Extension Theorem [5,
Theorem 6.4.6], homeomorphisms between finite subsets of Q can be ex-
tended to homeomorphisms of Q. Hence we may assume that Z ∩ U ̸= ∅
for every U ∈ U , i.e., Z ∈ N(U ).

We will next show that CZ (Q,X) is a second category subset of C(Q).
Indeed, assume that for every i, Ni is a closed and nowhere dense subset
of C(Q). Pick any element Z ∈ CZ (Q,X).

Claim 1. Fix i ∈ N. Then for every ε > 0 there exists a homeomorphism
f : Q → Q such that d(f, 1Q) < ε and f(Z) ̸∈ Ni.

Using our assumptions, pick δ > 0 such that for any copy X0 of X in
Q such that dH(X0, Z) < δ there exists a homeomorphism h : Z → X0

such that d(h, 1Z) < ε. Since CZ (Q,X) is dense in C(Q) we may pick
X0 ∈ CZ (Q,X) \ Ni such that dH(Z,X0) < δ. Hence there exists a
homeomorphism h : Z → X0 such that d(h, 1Z) < ε. By the Homeo-
morphism Extension Theorem [5, Theorem 6.4.6], we may extend this
homeomorphism to a homeomorphism f : Q → Q such that d(f, 1Q) < ε.

Hence we can ‘free’ Z from Ni by an arbitrarily small move. This
means that in an inductive process we can free Z from all the Ni. This
has to be done with a little care so that once Z is free from some Ni,
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the limit homeomorphism does not carry it back to that Ni. But this
can easily be achieved by the Claim and a standard application of the
Inductive Convergence Criterion [5, Theorem 6.1.2] (cf., [5, the proof of
Theorem 6.4.5]).

Let H (Q) denote the group of homeomorphisms of Q endowed with
the standard compact-open topology. Then H (Q) is Polish, and the
Homeomorphism Extension Theorem [5, Theorem 6.4.6], shows that it
acts transitively on the second category space CZ (Q,X). By the Effros
Theorem from [2] (see also [6]), it follows that CZ (Q,X) is Polish and
hence a Gδ-subset of C(Q). �

This leads us to a proof of Lewis’ result from [4].

Theorem 2.2. Let X be a non-degenerate continuum. Then the following
statements are equivalent:

(1) X has property HN,
(2) CZ (Q,X) is a dense Gδ-subset of C(Q),
(3) C(Q,X) is a dense Gδ-subset of C(Q),
(4) C(Q,X) contains a dense Gδ-subset of C(Q),
(5) X is homeomorphic to the pseudo-arc.

Proof. For (1) ⇒ (2), we simply apply Proposition 2.1. For (2) ⇒ (5),
recall Bing’s Theorem [1] quoted above that the collection of pseudo-arcs is
a dense Gδ-subset of C(Q). Since by the Baire Category Theorem any two
dense Gδ-subsets of C(Q) intersect, we conclude that X is homeomorphic
to the pseudo-arc. We achieve (5) ⇒ (1) by another application of the
Effros Theorem. Indeed, first note that the connected Z-sets form a
dense Gδ-subset of C(Q) (Kroonenberg [3, Lemma 2.1(b)]). Hence if P
denotes the pseudo-arc, then by Bing’s Theorem just quoted and the Baire
Category Theorem we obtain that CZ (Q,P ) is a dense Gδ in C(Q). Now
observe that H (Q) acts transitively on CZ (Q,P ). By the Effros Theorem
from [2] (see also [6]), H (Q) acts micro-transitively on CZ (Q,P ). Pick an
arbitrary element S ∈ CZ (Q,P ), and let ε > 0. The evaluation function
γS : H (Q) → CZ (Q,P ) defined by γS(h) = h(S) is a continuous, open
surjection. By continuity of γS there exists θ > 0 such that

γS({g ∈ H (Q) : d(g, 1Q) < θ}) ⊆ {A ∈ CZ (Q,P ) : dH(S,A) < ε}.

Since γS is open, there exists δ > 0 such that

{A ∈ CZ (Q,P ) : dH(A,S) < δ} ⊆ γS({g ∈ H (Q) : d(g, 1Q) < θ}).

Hence this δ has the following property: if T ∈ CZ (Q,P ) and dH(S, T ) <
δ, then there is a homeomorphism f : Q → Q such that f(S) = T and
d(f, 1Q) < ε.
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To prove that P has property HN, take arbitrary P0 ∈ C(Q,P ) and
ε > 0. We assume without loss of generality that ε < 1. Define f : Q → Q
by f(x) = (1 − 1/3ε)x. Then f is a Z-imbedding and dH(f(A), f(B)) ≤
dH(A,B) for all A,B ∈ C(Q). Put S = f(P0) and let δ > 0 be as above for
S and 1/3ε. Now take an arbitrary P0 ∈ C(Q,P ) such that dH(P0, P1) < δ.
Then dH(S, f(P1)) < δ. Hence there is a homeomorphism α : Q → Q such
that d(α, 1Q) < 1/3ε and α(S) = f(P1). Hence the function β : P0 → P1

defined by β(x) = f−1(α(f(x))) is a homeomorphism such that for every
x ∈ P0, d(x, β(x)) < ε.

The statements (3) ⇔ (4) ⇔ (5) are a direct consequence of Bing’s
Theorem. �
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