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Dedicated to the one hundredth anniversary of the birth of George Chogoshvili (1914–1998), the founder of the Georgian

topological school, and one of the most in�uential Georgian mathematicians of the 20th century. He was a source of inspiration

for many generations. In particular, Chogoshvili’s ideas in�uenced Leo Esakia (1934–2010), who was one of the pioneers in

developing topological modal logic, an area representing a fruitful cross-fertilization of tools and techniques of topology and

logic. Our paper continues this tradition. We are honored to dedicate it to the memory of Professor Chogoshvili.

1 Introduction
It is well known that if we interpret modal diamond as topological closure (and hence modal box as topolog-

ical interior), then the modal logic S4 de�nes the class of all topological spaces. The celebrated McKinsey–

Tarski theorem [14] states that S4 is the logic of any dense-in-itself (separable) metrizable space. In particular,

S4 is the logic of the real closed unit interval I = [0, 1].
We recall that a topological space is extremally disconnected (ED-space) provided the closure of each

open set is open. Compact Hausdor� ED-spaces are of major importance in the category of compact Haus-

dor� spaces as they are the projective objects in the category. In fact, each compact Hausdor� space has the

projective cover, called the Gleason cover (see [12, 13, 16]). The class of ED-spaces is de�nable by the modal

logic S4.2 = S4 + ⋄◻p → ◻⋄p (see, e.g., [3, p. 253]). As was shown in [1], ED-spaces play an important role in

modeling full belief. It is a consequence of [5, Proposition 4.3] that S4.2 is the logic of the Gleason cover of I.
Ourmain interest in this paper is themodal logic S4.3 = S4 + ◻(◻p → q) ∨ ◻(◻q → p). This system plays

an important role in tense logic. It was studied in detail by Bull [7], Fine [11], and others. In particular, it

is known that Kripke frames of S4.3 are those S4.2-frames whose subframes are also S4.2-frames. Similarly,

we will see that topological spaces satisfying S4.3 are those ED-spaces whose subspaces are also ED-spaces.

Because of this, S4.3 was recently proposed as the logic of updatable full belief [2].

ED-spaces whose subspaces are also ED-spaces are called hereditarily extremally disconnected spaces

(HED-spaces). Unlike compact Hausdor� ED-spaces, which are in abundance, the only compact Hausdor�

HED-spaces are �nite (see, e.g., [6, p. 82]). On the other hand, there are plenty of non-compact HED-spaces.

In fact, as follows from [6, Proposition 2.3], every dense-in-itself topology is contained in a dense-in-itself

HED-topology. As we already have pointed out above, S4.2 is the logic of the Gleason cover of I. Our main

result yields a countable Hausdor� HED-subspace of the Gleason cover of I whose logic is S4.3.
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In proving ourmain result, we utilize two tools, one logical and one topological. On the one hand, we use

the fact that S4.3 is characterized by �nite rooted S4.3-frames (see, e.g., [8, Chapter 5]). On the other hand,

we use E�mov’s theorem [9] (see also [15, Theorem 1.4.7]) that each compact Hausdor� ED-space of weight

no greater than continuum can be embedded in the Čech–Stone compacti�cation of natural numbers.

2 Preliminaries
In this section we recall some basic de�nitions and facts about modal logic and topology. As basic references

we use [8] for modal logic and [10] for topology.

2.1 Logical background

The modal logic S4 is the least set of formulas containing the classical tautologies, the formulas

◻(p → q) → (◻p → ◻q),
◻p → p,

◻p → ◻◻p,

and closedunderModusPonens (MP)

ÿ, ÿ→÷
÷ , substitution (S)

ÿ(p1 ,...,pn)
ÿ(÷1 ,...,÷n) , and necessitation (N)

ÿ
◻ÿ . Note that,

as it is customary, we use ⋄ÿ to abbreviate ¬◻¬ÿ. Let

S4.2 = S4 + ⋄◻p → ◻⋄p,
S4.3 = S4 + ◻(◻p → q) ∨ ◻(◻q → p).

AKripke frame is a pairF = (W, R), whereW is a nonempty set andR is a binary relation onW. A valuation
in F is a function í assigning subsets of F to propositional letters. This assignment extends recursively to all

formulas, where Boolean connectives ∧,¬ are interpreted as set-theoretic intersection and complement, and

we set

w ⊨ ◻ÿ i� (∀v)(wRv → v ⊨ ÿ),

w ⊨ ⋄ÿ i� (∃v)(wRv ∧ v ⊨ ÿ).

AmodelonF is a pairM = (F, í), whereí is a valuation inF. A formulaÿ is true in amodelM = (F, í)provided
w ⊨ ÿ for each w ∈ W; and ÿ is valid in a frame F provided ÿ is true in every model on F. If ÿ is valid in F, we

write F ⊨ ÿ. If ÿ is not valid in F, then we say that F refutes ÿ and write F ̸⊨ ÿ.
Let F = (W, R) be a Kripke frame. We call F a quasi-order provided R is re�exive and transitive. It is well

known (see, e.g., [8, Chapter 3]) that F ⊨ S4 i� F is a quasi-order, that F ⊨ S4.2 i� F is a quasi-order satisfying

(∀u, v, v�)(uRv ∧ uRv�) → (∃w)(vRw ∧ v�Rw), (2.1)

and that F ⊨ S4.3 i� F is a quasi-order satisfying

(∀u, v, w)(uRv ∧ uRw) → (vRw ∨ wRv). (2.2)

It is easy to see that a quasi-order F satis�es (2.2) i� each subframe of F satis�es (2.1).

For a quasi-order F = (W, R), de�ne an equivalence relation ∼ on W by setting w ∼ v i� wRv and vRw.

The equivalence classes of ∼ are called clusters of F. One can partially order the clusters by setting C ≤ C�
i�

there existw ∈ C andw� ∈ C�
such thatwRw�

. The resulting partial order is known as the skeleton ofF. We say

that a cluster C of F ismaximal provided C is a maximal element of the skeleton, and we call F a quasi-chain
provided the skeleton of F is a chain.
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Let F = (W, R) be a quasi-order. Then, w ∈ W is a root of F provided wRv for each v ∈ W, and F is rooted
provided F has a root. It is easy to see that a �nite rooted quasi-order satis�es (2.1) i� it has a uniquemaximal

cluster, and it satis�es (2.2) i� it is a quasi-chain. It is well known (see, e.g., [8, Chapter 5]) that S4 is charac-
terized by �nite rooted quasi-orders, that S4.2 is characterized by �nite rooted quasi-orders having a unique

maximal cluster, and that S4.3 is characterized by �nite quasi-chains.

2.2 Topological background

Topological semantics generalizes Kripke semantics for S4. Indeed, we can view quasi-orders as special topo-

logical spaces, inwhich each point has a least neighborhood, namelyR[w] := {v | wRv}. Such spaces are often

referred to as Alexandro� spaces and can equivalently be characterized as those topological spaces in which

the intersection of an arbitrary family of opens is open. The quasi-order associatedwith an Alexandro� space

X is the specialization order of a topological space de�ned by xRy i� x belongs to the closure of {y}.
Given a topological space X, we interpret formulas as subsets of X, Boolean connectives as the corre-

sponding set-theoretic operations, ◻ as interior, and ⋄ as closure. Consequently, for x ∈ X, we have

x ⊨ ◻ÿ i� there is an open neighborhood U of x such that y ⊨ ÿ for all y ∈ U,

x ⊨ ⋄ÿ i� for each open neighborhood U of x there is y ∈ U such that y ⊨ ÿ.

Since S4-axioms correspond to Kuratowski’s axioms, we see that S4 de�nes the class of all topological spaces.
Moreover, since for an Alexandro� space, the topological semantics coincides with the Kripke semantics of

the associatedquasi-order, and since S4 is Kripke complete,we see that S4 is the logic of all topological spaces.
In fact, by the McKinsey–Tarski theorem [14], S4 is the logic of an arbitrary dense-in-itself separable metric

space. Rasiowa and Sikorski proved in [17] that separability can be dropped from the assumptions, and hence

S4 is the logic of an arbitrary dense-in-itself metric space.

A topological space X is extremally disconnected (ED-space) if the closure of each open subset of X is

open, and it is hereditarily extremally disconnected (HED-space) if every subspace of X is an ED-space. Let i
and c denote the interior and closure. SinceX is an ED-space i� ci(A) ⊆ ic(A) for eachA ⊆ X, we see that S4.2
de�nes the class of all ED-spaces. In addition, since S4.2 is Kripke complete, we see that S4.2 is the logic of all

ED-spaces. It is a corollary of the McKinsey–Tarski theorem that S4 is the logic of the real closed unit interval

I = [0, 1]. It follows from [5] that S4.2 is the logic of the Gleason cover of I.
The Gleason cover of a compact Hausdor� space X is a pair (Y, ð), where Y is a compact Hausdor�

ED-space and ð: Y → X is an irreducible map (an onto continuous map such that the image of a proper

closed subset of the domain is proper). The Gleason cover ofX is unique up to homeomorphism, and can be

constructed as follows. A subset U of X is regular open if U = ic(U). Let RO(X) be the collection of regular

open subsets of X. Ordered by inclusion, RO(X) is a complete Boolean algebra, where⋁I Ui = ic(⋃I Ui) and
¬U = i(X \ U). Let Y be the Stone space of RO(X) (the space of ultra�lters of RO(X)). By Stone duality, since

RO(X) is complete,Y is a compact Hausdor� ED-space. De�ne ð: Y → X by setting ð(∇) = ⋂{cX(U) | U ∈ ∇}.
Then, (Y, ð) is the Gleason cover ofX [12].

3 Main results
Our goal is to obtain results about S4.3 and HED-spaces that are similar to those about S4.2 and ED-spaces.

We start by showing that S4.3 de�nes the class of all HED-spaces (see also [2]). We recall that A, B ⊆ X are

separated provided c(A) ∩ B = ⌀ = A ∩ c(B). By [6, Proposition 2.1], X is HED i� any two separated subsets

ofX have disjoint closures.

Proposition 3.1. For a topological spaceX, the following are equivalent:
(1) X is an HED-space.
(2) X ⊨ ◻(◻p → q) ∨ ◻(◻q → p).
(3) c(A \ cB) ∩ c(B \ cA) = ⌀ for any A, B ⊆ X.
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Proof. It is straightforward to verify that when interpreting ◻ as i, then X ⊨ ◻(◻p → q) ∨ ◻(◻q → p) i�

c(A \ cB) ∩ c(B \ cA) = ⌀ for any A, B ⊆ X. Thus, (2) is equivalent to (3). To see that (1) implies (3), sup-

pose that X is an HED-space. Since A \ cB and B \ cA are separated, from [6, Proposition 2.1] we have that

c(A \ cB) ∩ c(B \ cA) = ⌀. Finally, to see that (3) implies (1), suppose that A, B ⊆ X are separated. Then,

A \ c(B) = A and B \ cA = B. Therefore, c(A) ∩ c(B) = c(A \ cB) ∩ c(B \ cA) = ⌀. Thus, X is an HED-space by

[6, Proposition 2.1].

As a corollary, we obtain that S4.3 de�nes the class of all HED-spaces. Since S4.3 is Kripke complete, it follows

that S4.3 is the logic of all HED-spaces. As we pointed out in the introduction, S4.2 is the logic of the Gleason

cover of I. We will construct a countable HED-subspaceX of the Gleason cover of I whose logic is S4.3.
To see that the logic of an HED-spaceX is S4.3, in view of Proposition 3.1, it is su�cient to show that each

non-theorem of S4.3 is refuted on X. But since S4.3 is the logic of �nite quasi-chains, each non-theorem of

S4.3 is refuted on a �nite quasi-chain. We call a topological space Y an interior image ofX provided there is a

continuous open surjection f: X → Y. Note that f is continuous and open i� cXf
−1(B) = f−1cY(B) for each

B ⊆ Y (see, e.g., [17, pp. 99–100]); and B can be replaced by singletons provided Y is �nite. It is well known

(see, e.g., [4, Proposition 2.9]) that interior images re�ect refutation. Therefore, to conclude that S4.3 is the

logic of X, it is su�cient to show that each �nite quasi-chain, viewed as a topological space, is an interior

image ofX.

Let (Y, ð) be the Gleason cover of I. As I is a dense-in-itself separable space, so is Y. Moreover, since Y is

an in�nite compact Hausdor� ED-space, it contains a copy of the Čech–Stone compacti�cation of the natural

numbers âø (see, e.g., [10, Exercise 6.2.G(b)])¹. Therefore, the weight of Y is at least that of continuum. But

since Y is separable, its weight is at most that of continuum. Thus, the weight of Y is that of continuum.

Furthermore, ð−1(x) is in�nite for each x ∈ I. To see this, take a pairwise disjoint family² {Un ∈ RO(I) | n ∈ ø}
such that x ∈ c(Un) for each n ∈ ø. The �lter in RO(I) generated by the regular open neighborhoods of x
together withUn is proper, hence extends to an ultra�lter inRO(I). Each such ultra�lter∇ contains all regular

open neighborhoods of x, so ð(∇) = x. Since the Un’s are disjoint, these ultra�lters are distinct, producing

in�nitely many points in ð−1(x). In fact, each ð−1(x) has a large cardinality because as an in�nite closed set

of a compact Hausdor� ED-space, it contains a copy of âø (see, e.g., [10, Exercise 6.2.G (b)]).

Lemma 3.2. There is a pairwise disjoint family {En ⊆ Y | n ∈ ø} such that eachEn is countably in�nite anddense
in Y.

Proof. Let D be a countably in�nite dense subset of I (for example, take D = ℚ ∩ I). For each x ∈ D, since

ð−1(x) is in�nite, there is a countably in�nite subset Dx = {xn | n ∈ ø} of ð−1(x). For each n ∈ ø, de�ne

En = {xn | x ∈ D} (see Figure 1). Clearly each En is countably in�nite and {En | n ∈ ø} is pairwise disjoint.

It remains to show that En is dense in Y for each n ∈ ø. By construction, ð(En) = {ð(xn) | x ∈ D} = D. Since

ð is a closed map, ð(cEn) is a closed set in I containing D. As D is dense in I, we see that ð(cEn) = I. Thus,
since ð is irreducible, cEn = Y.

We are ready to construct an HED-subspace X of Y such that each �nite quasi-chain is an interior image

ofX. The spaceXwill be the union of the spaces {Xn | n ∈ ø} de�ned recursively. In de�ningXn, we will also

de�ne a decreasing sequence Yn of subspaces of Y such that each Yn is homeomorphic to Y. Let D be a �xed

countable dense subset of I, and �x x ∈ I \ D.

Base step: Let {En ⊆ Y | n ∈ ø} be the pairwise disjoint family of countably in�nite dense subsets of Y con-

structed in Lemma 3.2, and setX0 := ⋃{En ⊆ Y | n ∈ ø}. Note thatX0 ⊆ ð
−1(D) ⊆ Y \ ð−1(x). PutY0 = Y and let

ℎ0 : Y0 → Y be the identity homeomorphism.

1 This can be seen by observing that a compact Hausdor� ED-space is an F-space [10, Exercise 6.2.G (f)] and then applying

[18, Proposition 1.64].

2 To see that such a family exists, letm ∈ ø. PutV−
m = (x −

1
2m+1 , x −

1
2(m+1) ) and V+

m = (x +
1

2(m+1) , x +
1

2m+1 ). Let è : ø→ øbe any

sequence such that è−1(n) is in�nite for all n ∈ ø. Finally, for n ∈ ø, setUn = ⋃{(V
−
m ∪ V

+
m) ∩ I | m ∈ è

−1(n)}. Since any two distinct

intervals in {V−
m, V

+
m | m ∈ ø} do not share endpoints, and hence have disjoint closures, we see that each Un is regular open.
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Figure 1. The family {En | n ∈ ø}.
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Figure 2. Recursive step of the construction.

Recursive step: Suppose Xn and Yn are already de�ned, ℎn : Yn → Y is a homeomorphism, ðn = ð ∘ ℎn, and
Xn ⊆ Yn \ (ðn)

−1(x). Let ân be a closed subspace of (ðn)
−1(x) homeomorphic to âø. Since Y is a compact

Hausdor� ED-space whose weight is that of continuum, by E�mov’s theorem, there is a closed subspace

Yn+1 of ân and a homeomorphism ℎn+1 : Yn+1 → Y. Let Xn+1 be the union of the pairwise disjoint family of

countably in�nite dense subsets of Yn+1 constructed in Lemma 3.2.

The recursive step of the construction is captured in Figure 2. Themembers of the family {Ei | i ∈ ø} given
by Lemma 3.2 that make up Xn, which is a proper dense subset of Yn, are labeled and depicted by collec-

tions of horizontally arranged dots. The set (ðn)
−1(x) ⊆ Yn is pictured as a “pointed oval” appearing above

the point x ∈ I \ D. Notice that ân, which is homeomorphic to âø, is contained in (ðn)
−1(x), and the isolated

points of ân are depicted by the collection of vertically arranged dots “converging” to the remainder, which

is indicated by the box with thin lines. Further note that Yn+1, which is homeomorphic to Y, is contained in

(the remainder of) ân, that (ðn+1)
−1(x) ⊆ Yn+1 is also pictured as a “pointed oval” above the point x, and that

Xn+1 ⊆ Yn+1 \ (ðn+1)
−1(x) is also indicated by collections of horizontally arranged dots.

Observe that {Xn | n ∈ ø} is a pairwise disjoint family. We setX := ⋃{Xn | n ∈ ø}.

Lemma 3.3. (1) If n ≥ m, thenXn ⊆ Ym; and if n < m, thenXn ∩ Ym = ⌀.
(2) X is countable.
(3) X is a dense subspace of Y.
(4) X is an HED-space.

Proof. (1) By de�nition,Ym+1 ⊆ âm ⊆ (ðm)
−1(x) ⊆ Ym. Therefore, n ≥ m impliesYn ⊆ Ym. SinceXn ⊆ Yn, we con-

clude that n ≥ m impliesXn ⊆ Ym.
By de�nition, Xn ⊆ Yn \ (ðn)

−1(x). Since Yn+1 ⊆ (ðn)
−1(x), we see that Xn ∩ Yn+1 = ⌀. Therefore, if n < m,

then n + 1 ≤ m. Thus, Ym ⊆ Yn+1, yieldingXn ∩ Ym ⊆ Xn ∩ Yn+1 = ⌀.
(2) By de�nition, each Xn is a countable union of countable sets, hence is countable. Therefore, X is a

countable union of countable sets, and so is countable.

(3) It is clear by the de�nition ofX0 and Lemma 3.2 thatX0 is dense in Y. SinceX0 ⊆ X, we conclude that

X is dense in Y.
(4) By (3),X is a dense subspace of an ED-space, soX is an ED-space. As a subspace of a Hausdor� space,

X is also clearly Hausdor�. But every countable Hausdor� ED-space is an HED-space (see, e.g., [6, p. 86]).

Thus,X is an HED-space.

Lemma 3.4. Every �nite quasi-chain is an interior image ofX.
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Proof. Suppose F = (W, R) is a �nite quasi-chain, and suppose its skeleton is ordered as follows:

Ck−1 ≤ Ck−2 ≤ ⋅ ⋅ ⋅ ≤ C1 ≤ C0.

The idea is to mapXi toCi for i < k, and toCk−1 for i ≥ k. Recall thatXi is the countably in�nite disjoint union

of countable in�nite dense subsets {Eij | j ∈ ø} of Yi.

Claim 3.5. Let i ∈ ø. For any nonempty á ⊆ ø, we have

cX(⋃{Eij | j ∈ á}) =⋃{Xn | n ≥ i}.

Proof. Let á ⊆ ø be nonempty. Since each Eij is dense in Yi, the set⋃{Eij | j ∈ á} is dense in Yi. Therefore,

Yi = cYi(⋃{Eij | j ∈ á}) = cY(⋃{Eij | j ∈ á}) ∩ Yi ⊆ cY(⋃{Eij | j ∈ á}).

Conversely, from Eij ⊆ Yi it follows that ⋃{Eij | j ∈ á} ⊆ Yi. Therefore, since Yi is closed in Y, we have that

cY(⋃{Eij | j ∈ á}) ⊆ Yi, and hence the equality. Thus, by Lemma 3.3 (1),

cX(⋃{Eij | j ∈ á}) = cY(⋃{Eij | j ∈ á}) ∩ X = Yi ∩ X =⋃{Xn | n ≥ i}.

Let ≡n be the congruence on ømodulo n. For i < k, let Ci = {w0, . . . , wni−1}. PartitionXi into

⋃{Eij | j ≡ni 0}, ⋃{Eij | j ≡ni 1}, . . . , ⋃{Eij | j ≡ni ni − 1}.
De�ne f: X → W as follows. If x ∈ Xi for i < k, then set f(x) = wn provided x ∈ ⋃{Eij | j ≡ni n}. If x ∈ Xi for

i ≥ k, then set f(x) = v for some v ∈ Ck−1.

The map f: X → W is well de�ned since {Xi | i ∈ ø} partitionsX and the sets

⋃{Eij | j ≡ni 0}, ⋃{Eij | j ≡ni 1}, . . . , ⋃{Eij | j ≡ni ni − 1}
partitionXi for i < k. Furthermore, for each i < k, we have

f(Xi) = f( ⋃
n<ni ⋃j≡ninEij) = ⋃

n<ni f( ⋃
j≡ninEij) = ⋃

n<ni{wn} = Ci.

Therefore, f is onto.

Viewing F as an Alexandro� space, the closure of w ∈ W is R−1[w] := {v | vRw}. Therefore, to see that f
is interior, since W is �nite, it is su�cient to show that cXf

−1(w) = f−1R−1[w] for each w ∈ W. Let w ∈ W.

Then,w ∈ Ci for some i < k. Therefore,w = wm for somem ≤ ni − 1. First suppose that x ∈ cXf
−1(w). Then, by

Claim 3.5,

x ∈ cXf
−1(wm) = cX( ⋃

j≡nimEij) =⋃
n≥i

Xn,

giving

f(x) ∈ f(⋃
n≥i

Xn) =⋃
n≥i

f(Xn) = ⋃
k>n≥i

Cn = R
−1[Ci] = R

−1[w].

Thus, x ∈ f−1R−1[w].
Conversely, suppose x ∈ f−1R−1[w]. Then, f(x)Rw, giving that f(x) ∈ Cj for i ≤ j < k. By the de�nition

of f, it must be the case that x ∈ Xj when j < k − 1 and x ∈ ⋃n≥k−1 Xn when j = k − 1. Therefore, by Claim 3.5,

x ∈⋃
n≥i

Xn = cX( ⋃
j≡nimEij) = cXf

−1(wm) = cXf
−1(w).

Thus, cXf
−1(w) = f−1R−1[w], completing the proof.

Theorem 3.6. S4.3 is the logic of a countable HED-subspace of the Gleason cover of I.

Proof. LetX be the countable subspace of the Gleason cover of I constructed above. By Lemma 3.3 (4),X is an

HED-space. Therefore, by Proposition 3.1, X Ïâ S4.3. Suppose S4.3 ̸⊢ ÿ. Since S4.3 is the logic of �nite quasi-

chains, there is a �nite quasi-chain F refuting ÿ. By Lemma 3.4, F is an interior image of X. Since interior

images re�ect refutations,X refutes ÿ. Thus, S4.3 is the logic ofX.
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