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Abstract We establish that a Čech-complete space X must be subcompact if it has a dense
subspace representable as the countable union of closed subcompact subspaces of X . In par-
ticular, if a Čech-complete space contains a dense σ -compact subspace then it is subcompact.
This result is new even for separable Čech-complete spaces. Furthermore, if X is a compact
space of countable tightness then X\A is subcompact for any countable set A ⊂ X . We also
show that any Gδ-subset of a dyadic compact space is subcompact and give a comparatively
simple proof of the fact that X\A is subcompact for any linearly ordered compact space X
and any countable set A ⊂ X .
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1 Introduction

It is a classical theorem that the topology of a metrizable space X can be generated by a
complete metric if and only if X is Čech-complete. In the last century it was a motivation
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for quite a few attempts to generalize completeness of a metric space by weakening Čech-
completenss or considering analogous properties.

For example, pseudocompleteness defined by Oxtoby [8] is weaker than Čech-
completeness and for metric spaces it is equivalent to the existence of a dense Čech-complete
subspace. The class of pseudocomplete spaces has many nice properties and contains the class
of pseudocompact spaces. There are several famous open problems about pseudocomplete-
ness: it is unknown whether it is preserved by open mappings and dense Gδ-subspaces (see
[1]). However, it is not difficult to prove that every Čech-complete space is pseudocomplete.

Subcompactness, the weakest of so called Amsterdam properties defined by de Groot (see
[6]) is another example of a generalization of completeness of metric spaces. A metrizable
space is subcompact if and only if it is Čech-complete. It is known that subcompactness is
preserved by open subspaces, free unions and arbitrary products but it is still an open question
whether it is preserved by dense Gδ-subspaces (see [2]). In particular, it is not known whether
every Čech-complete space is subcompact.

It is also an open question (see [5]) whether K\A is subcompact if K is a compact
space and A ⊂ X is countable. Fleissner, Tkachuk and Yengulalp proved in [5] that K\A
is subcompact if K is a compact linearly ordered space and A ⊂ K is countable. The same
conclusion is true (see [5, Corollary 2.8]) if K is an ω-monolithic compact space.

In this paper we establish that a Čech-complete space X must be subcompact provided
that it has a dense subspace representable as the countable union of closed subcompact
subspaces of X . In particular, if X has a dense subspace which is the countable union of
closed locally compact subspaces of X then X is subcompact. This conclusion is new even
if X is k-separable, i.e., has a dense σ -compact subspace.

Therefore every k-separable (and hence every separable) Čech-complete space is sub-
compact. These results help to solve three open questions formulated in [5]. We show that
X\A is subcompact if X is a compact space of countable tightness and A ⊂ X is countable.
This gives a positive answer to questions 3.5 and 3.6 from the paper [5]. If X is a dyadic
compact space then any Gδ-subset of X is subcompact: this solves [5, Problem 3.13]. Our
methods also give a much simpler proof than in [5] of the fact that K\A is subcompact if K
is a compact linearly ordered space and A ⊂ K is countable.

2 Notation and terminology

All spaces are assumed to be Tychonoff. Given a space X , the family τ(X) is its topology
and τ ∗(X) = τ(X)\{∅}. Let τ(x, X) = {U ∈ τ(X) : x ∈ U } for any x ∈ X ; if A ⊂ X
then τ(A, X) = {U ∈ τ(X) : A ⊂ U }. All ordinals are identified with the set of their
predecessors and are assumed to carry the interval topology. A space is Čech-complete if it
is homeomorphic to a Gδ-subset of a compact space. We denote by D the set {0, 1} with the
discrete topology.

Given a space Y , a non-empty family U ⊂ τ ∗(Y ) is called a regular filterbase if, for any
U, V ∈ U there is W ∈ U such that W ⊂ U ∩ V . The space Y is subcompact if it has a base
B ⊂ τ ∗(Y ) such that every regular filterbase U ⊂ B has non-empty intersection; such a base
is also called subcompact. A space X has countable tightness (this is denoted by t (X) ≤ ω)
if A = ⋃{B : B ⊂ A and |B| ≤ ω} for any set A ⊂ X .

A space X is k-separable if it has a dense σ -compact subspace. A compact space is called
dyadic if it is a continuous image of the Cantor discontinuum D

κ for some cardinal κ .
The rest of our terminolofy is standard and follows [4]; the survey of Hodel [7] can be

consulted for definitions of cardinal invariants.
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3 Subcompactness in Čech-complete spaces

Our purpose is to find nice classes in which every Čech-complete space is subcompact. We
will show that k-separable spaces form such a class; this fact implies that every Gδ-subset of
a dyadic compact space is subcompact.

The proof of the following two lemmas is an easy exercise.

Lemma 3.1 Suppose that X is a space and B ⊂ τ ∗(X) is a regular filterbase. If there exists
a compact set K ⊂ X such that U ∩ K �= ∅ for any U ∈ B then

⋂ B �= ∅.

Lemma 3.2 If X is a space and U is a regular filterbase in X then

(a) for any set U ∈ U the family GU = {
G ∈ U : G ⊂ U

}
is a regular filterbase in X;

(b) for every U ∈ U , we have
⋂ U �= ∅ if and only if

⋂ GU �= ∅.

The next statement formalizes the idea of the proof of the main result of this paper.

Lemma 3.3 Suppose that K is a compact space and we have an increasing sequence {Ln :
n ∈ ω} of closed subspaces of K . Let X = K\ (⋃

n∈ω Ln
)

and assume that for every n ∈ ω

we have a family Un of open subsets of X such that clK (U ) ∩ Ln = ∅ for each U ∈ Un.
Assume additionally that we have a regular filterbase B ⊂ U = ⋃

n∈ω Un with the following
property:

(∗) for any U ∈ B and m ∈ ω there exists a set V ∈ B such that V ⊂ U and V /∈ ⋃
i≤m Ui .

Then
⋂ B �= ∅.

Proof Using (∗) it is easy to construct a sequence {Un : n ∈ ω} ⊂ B such that U n+1 ⊂ Un

and Un+1 /∈ ⋃
i≤n Ui for each n ∈ ω. Therefore Un+1 ∈ Uk for some k > n and hence

clK (Un+1) ∩ Ln = ∅ for each n ∈ ω. This shows that the non-empty compact set F =⋂{clK (Un) : n ∈ ω} is contained in X . Therefore
F = F ∩ X = ⋂{clK (Un) ∩ X : n ∈ ω} = ⋂{U n : n ∈ ω} = ⋂

n∈ω Un .
If clK (U )∩F = ∅ for some U ∈ B then there exists n ∈ ω such that clK (U )∩clK (Un) = ∅

and hence U ∩ Un = ∅ which is a contradiction. This shows that clK (U ) ∩ F = clK (U ) ∩
X ∩ F = U ∩ F �= ∅ for any U ∈ B and hence we can apply Lemma 3.1 to conclude that⋂ B �= ∅. 	


The proof of the following two statements is straightforward and can be left to the reader.

Proposition 3.4 Suppose that X is a space and U is a regular filterbase in X. If U =
U0 ∪ . . . ∪ Uk for some k ∈ ω then there exists i ≤ k such that Ui is a regular filterbase.

Proposition 3.5 If X is a space and Y ⊂ X suppose that U is a regular filterbase in X such
that U ∩ Y �= ∅ for any U ∈ U . Then UY = {U ∩ Y : U ∈ U} is a regular filterbase in Y .

Theorem 3.6 Suppose that X is a Čech-complete space and {Yi : i ∈ ω} is a family of
subcompact subspaces of X.

(a) If every Yi is closed in X and Y = ⋃
i∈ω Yi is dense in X then X is subcompact.

(b) If X = ⋃
i∈ω Yi then X is subcompact.

Proof We will give a simultaneous proof for both statements (a) and (b). Choose first a
sequence {Ki : i ∈ ω} of increasing compact subsets of β X\X such that β X\X = ⋃

i∈ω Ki .
Fix a subcompact base Ci in the space Yi and consider the family Ui = {U ∈ τ(X) : U ∩ Xi ∈
Ci and clβ X (U ) ∩ Ki = ∅} for any i ∈ ω.
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To see that the family U = ⋃
i∈ω Ui is a base in X take any point x ∈ X and U ∈ τ(x, X).

If we are proving (a) then we pick a number n ∈ ω with Yn ∩ U �= ∅. In the proof of (b) we
observe that there exists n ∈ ω such that x ∈ Yn . Choose a set V ∈ τ(x, X) such that V ⊂ U
and clβ X (V ) ∩ Kn = ∅. We have two cases:

(i) x ∈ Yn . The proof of this case goes for both (a) and (b). Find a set H ∈ Cn with
x ∈ H ⊂ V ; it is easy to find G ∈ τ(X) such that G ⊂ V and G ∩ Yn = H . It is
immediate that G ∈ Un and x ∈ G ⊂ U .

(ii) x /∈ Yn . This can occur only if we prove (a). Take a point y ∈ U ∩ Yn and a set
W ∈ τ(y, X) such that W ⊂ U and clβ X (W ) ∩ Kn = ∅. It is easy to find a set
H ∈ τ(X) such that H ⊂ W and y ∈ H ∩ Yn ∈ Cn . Then G = (V \Yn) ∪ H ∈ Un and
x ∈ G ⊂ U so U is, indeed, a base in X .
The proof that U is subcompact goes for both (a) and (b).
Suppose that B ⊂ U is a regular filterbase and

⋂ B = ∅. If the property (∗) from
Lemma 3.3 holds for B then

⋂ B �= ∅ which is a contradiction so we can assume,
without loss of generality, that there exist U ∈ B and m ∈ ω for which we have the
inclusion GU = {V ∈ B : V ⊂ U } ⊂ ⋃

i≤m Ui .
Since GU ⊂ B is a regular filterbase and

⋂ GU = ∅ by Lemma 3.2, it follows from
GU ⊂ ⋃

i≤m Ui that we can forget about the set U and consider that B ⊂ ⋃{Ui : i ∈ A}
where A ⊂ ω is a finite set and n = |A| is the minimal number for which there exists a
regular filterbase V ⊂ B such that

⋂ V = ∅ and V is contained in the union of n-many
families Ui .
If n = 1 then A = {i} for some number i ∈ ω and hence we can apply Proposition 3.5
to see that the family W = {V ∩ Xi : V ∈ B} ⊂ Ci is a regular filterbase and hence⋂ W �= ∅ which implies

⋂ B �= ∅. Therefore n > 0; let Bi = B ∩ Ui for all i ∈ A. By
Proposition 3.4, there exists i ∈ A such that Bi is a regular filterbase. Proposition 3.5
shows that B′

i = {U ∩ Xi : U ∈ Bi } ⊂ Ci is a regular filterbase so P = ⋂ B′
i �= ∅.

If P ⊂ U for any U ∈ B then
⋂ B �= ∅ so there exists U ∈ B such that P is not

contained in U . Since no element of GU contains P and P is contained in every element
of Bi , we have the inclusion GU ⊂ ⋃{U j : j ∈ A\{i}} which, together with

⋂ GU = ∅
(Lemma 3.2) gives a contradiction with the choice of the number n. 	


Corollary 3.7 Suppose that a Čech-complete space X has a dense subset which is a count-
able union of closed locally compact subsets of X. Then X is subcompact.

Proof This is because every locally compact space is subcompact so Theorem 3.6(a) can be
applied. 	

Corollary 3.8 If X is a Čech-complete space which has a dense subspace representable as
the countable union of closed discrete subsets of X then X is subcompact.

The conclusion of Corollary 3.7 is new even if the locally compact summands are compact.
Recall that a space is called k-separable if it has a dense σ -compact subspace.

Corollary 3.9 Any Čech-complete k-separable space is subcompact.

Proof If X is Čech-complete and {Kn : n ∈ ω} is a family of compact subspaces of X such
that

⋃
n∈ω Kn is dense in X then every Kn is locally compact and closed in X so Corollary

3.7 does the rest. 	

Corollary 3.10 Every separable Čech-complete space is subcompact.
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The following lemma might be known but we could not find the respective reference.

Lemma 3.11 If X is a dyadic compact space then every non-empty Gδ-subset of X is k-
separable.

Proof Take any sequence {Kn : n ∈ ω} of compact subsets of X such that Y =
X\⋃

n∈ω Kn �= ∅; we must prove that the space Y is k-separable. For some cardinal κ

there exists a continuous onto map ϕ : D
κ → X . Let Fn = ϕ−1

n (Kn) for any n ∈ ω. Then
Y = ϕ(Y ′) where Y ′ = D

κ\(⋃n∈ω Fn).
Call a subset F ⊂ D

κ standard if there exists a countable set A ⊂ κ and f ∈ D
A such

that F = { f } × D
κ\A. It is clear that every standard set is compact and, for any f ∈ Y ′ there

exists a standard set S f such that f ∈ S f ⊂ Y ′. We will use the following property of the
space D

κ :
(T ) if G is a family of Gδ-subsets of D

κ , then there is a countable G′ ⊂ G such that
⋃ G′

is dense in
⋃ G.

The property (T ) was established directly for D
κ in Statement (8) of the proof of Theorem

14 of the paper [3]. Since the paper [3] is in Russian, it is worth mentioning that a stronger
theorem was proved in [9, Corollary 1.8]. The paper [9] shows that the property (T ) holds
for any product of Lindelöf 	-groups. It relies on the paper [10] where the property (T ) was
established for one Lindelöf 	-group. Both articles [9] and [10] are in English and, taken
together, they contain a complete proof of the property (T ) in a much more general situation.

It follows from Y ′ = ⋃{S f : f ∈ Y ′} that we can apply the property (T ) to conclude that
there exists a countable set A ⊂ Y ′ such that

⋃{S f : f ∈ A} is dense in Y ′, which shows
that Y ′ is k-separable. Thus Y is k-separable being a continuous image of Y ′. 	


The following corollary gives a positive answer to Problem 3.13 from [5].

Corollary 3.12 If X is a dyadic compact space then any non-empty Gδ-subset of X is
subcompact.

Proof If Y is a non-empty Gδ-subset of X then Y must be Čech-complete and k-separable
by Lemma 3.11 so Y is subcompact by Corollary 3.9. 	

Corollary 3.13 If G is a compact topological group then every non-empty Gδ-subset of G
is subcompact.

Corollary 3.14 If X is a compact space and πw(X) ≤ ω, then every dense Gδ-subset of X
is subcompact.

Proof If Y is a dense Gδ-subset of X then πw(Y ) = πw(X) = ω and hence Y is a Čech-
complete separable space. Corollary 3.10 does the rest. 	

Proposition 3.15 Suppose that X is a compact space of countable tightness. If A ⊂ X is
countable then X\A = S ∪ L where S is a separable Čech-complete space and L is locally
compact.

Proof Observe that X\A = X\A\(A ∩ X\A) so passing to X\A and A ∩ X\A if necessary,
we can assume, without loss of generality, that Y = X\A is dense in X . It follows from
t (X) ≤ ω that there is a countable set B ⊂ Y such that A ⊂ B. As a consequence,
Y = (B ∩ Y ) ∪ (X\A), i.e., the sets S = B ∩ Y and L = X\A are as promised. 	

Theorem 3.16 Suppose that X is a compact space such that A has countable tightness for
any countable set A ⊂ X. Then X\A is subcompact for any countable A ⊂ X.



70 J. van Mill, V. V. Tkachuk

Proof Fix an arbitrary countable set A ⊂ X and observe that we have the equality X\A =
(X\A) ∪ (A\A). Recall that subcompactness is finitely additive by [5, Theorem 2.5]; the set
X\A is locally compact and hence subcompact so it suffices to prove that A\A is subcompact.

Since t (A) = ω, we can apply proposition 3.15 to find a separable Čech-complete set
S ⊂ A and a locally compact set L ⊂ A such that A\A = S ∪ L . The space L is subcompact
being locally compact and the space S is subcompact by Corollary 3.10; apply Theorem 2.5
of [5] once again to see that A\A is subcompact. 	


The following fact gives a positive answer to Questions 3.5 and 3.6 of the paper [5].

Corollary 3.17 If X is a compact space of countable tightness then X\A is subcompact for
any countable A ⊂ X.

In the paper [5] a very complicated proof was given that X\A is subcompact if X is a
linearly ordered compact space and A ⊂ X is countable. Our methods make it possible to
give a much simpler proof.

Corollary 3.18 ([5]) If X is a linearly ordered compact space then X\A is subcompact for
any countable A ⊂ X.

Proof It suffices to observe that A is perfectly normal and hence has countable tightness for
any countable set A ⊂ X ; Theorem 3.16 does the rest. 	


It was proved in [5, Theorem 2.1] that every scattered space is subcompact. Since every
locally compact space is also subcompact, it is natural to try to find a class P such that
all scattered spaces and all locally compact spaces belong to P and every element of P is
subcompact.

Definition 3.19 Say that a space X is locally-compact-scattered (or simply lc-scattered) if
every non-empty closed subspace of X has a point of local compactness.

It is clear that locally compact spaces and scattered spaces are lc-scattered so the following
fact generalizes Theorem 2.1 of [5].

Theorem 3.20 If X is an lc-scattered space then every closed subspace of X is subcompact.

Proof The lc-property is, evidently, preserved by closed subspaces so it suffices to show that
X is subcompact. Let X0 be the set of all points of local compactness of X . The set X0 is
open in X because X0 = ⋃{U : U ∈ τ ∗(X) and U is compact}. Proceeding inductively, if
β is an ordinal and we have disjoint sets {Xα : α < β} then let Xβ be the set of points of
local compactness of X\ ⋃{Xα : α < β}.

Since the space X is lc-scattered, there is a minimal ordinal μ such that X = ⋃{Xα : α <

μ}. Say that a set U ∈ τ(X) is adequate if there exists α < μ such that U ⊂ ⋃{Xβ : β ≤ α}
while the set U ∩ Xα is non-empty and has compact closure; let id(U ) = α.

It is straightforward that the family U of all adequate subsets of X is a base of X . To see
that U is subcompact, suppose that B ⊂ U is a regular filterbase and consider the ordinal
γ = min{id(U ) : U ∈ B}. Take any U ∈ B with id(U ) = γ . The set K = U ∩ Xγ is
compact; assume that V ∈ B and V ∩ K = ∅. Pick a set W ∈ B such that W ⊂ U ∩ V ; then
W ∩ Xγ = ∅ and hence W ⊂ ⋃{Xα : α < γ }, i.e., id(W ) < γ which is a contradiction.
Therefore V ∩ K �= ∅ for any V ∈ B so we can apply Lemma 3.1 to conclude that

⋂ B �= ∅.
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4 Open problems

The current paper and [5] contain a lot of information about subcompactness of Čech-
complete spaces. However, some natural questions remain open.

Question 4.1 Suppose that a Čech-complete space has a dense set of isolated points. Must
it be subcompact?

Question 4.2 Suppose that X is a Čech-complete space and c(X) ≤ ω. Must X be subcom-
pact?

Question 4.3 Suppose that X is a Čech-complete space and ω1 is a caliber of X. Must X
be subcompact?

Question 4.4 Suppose that X is a Lindelöf Čech-complete space. Must X be subcompact?

Question 4.5 Suppose that X is a hereditarily Lindelöf Čech-complete space. Must X be
subcompact?

Question 4.6 Suppose that X is a first countable Čech-complete space. Must X be subcom-
pact?

Question 4.7 Suppose that X is a hereditarily Lindelöf Čech-complete space. Must X have
a dense σ -compact subspace?

Question 4.8 (D.J. Lutzer) Suppose that X is a Čech-complete space with a dense σ -discrete
subspace. Must X be subcompact?
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