ORIGINAL PAPER

Every *k*-separable Čech-complete space is subcompact

Jan van Mill • Vladimir V. Tkachuk

Received: 14 September 2013 / Accepted: 29 January 2014 / Published online: 13 February 2014 © Springer-Verlag Italia 2014

Abstract We establish that a Čech-complete space X must be subcompact if it has a dense subspace representable as the countable union of closed subcompact subspaces of X. In particular, if a Čech-complete space contains a dense σ -compact subspace then it is subcompact. This result is new even for separable Čech-complete spaces. Furthermore, if X is a compact space of countable tightness then $X \setminus A$ is subcompact for any countable set $A \subset X$. We also show that any G_{δ} -subset of a dyadic compact space is subcompact and give a comparatively simple proof of the fact that $X \setminus A$ is subcompact for any linearly ordered compact space X and any countable set $A \subset X$.

Keywords Subcompact space \cdot Čech-complete space \cdot *k*-separable space \cdot Separable space \cdot Countable tightness \cdot Dyadic compact space

Mathematics Subject Classification (2010) Primary: 54D65 · 54D70; Secondary: 54B05 · 54E50

1 Introduction

It is a classical theorem that the topology of a metrizable space X can be generated by a complete metric if and only if X is Čech-complete. In the last century it was a motivation

J. van Mill

V. V. Tkachuk (🖂)

Departamento de Matemáticas, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco, 186, Col. Vicentina, 09340 Mexico, DF, Mexico e-mail: vova@xanum.uam.mx

Vladimir V. Tkachuk: Research supported by Promep 912011, Proyecto 12611768 (Mexico). Research supported by CONACyT grant CB-2012-01-178103 (Mexico).

Department of Mathematics, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands e-mail: j.van.mill@vu.nl

for quite a few attempts to generalize completeness of a metric space by weakening Čechcompleteness or considering analogous properties.

For example, pseudocompleteness defined by Oxtoby [8] is weaker than Čechcompleteness and for metric spaces it is equivalent to the existence of a dense Čech-complete subspace. The class of pseudocomplete spaces has many nice properties and contains the class of pseudocompact spaces. There are several famous open problems about pseudocompleteness: it is unknown whether it is preserved by open mappings and dense G_{δ} -subspaces (see [1]). However, it is not difficult to prove that every Čech-complete space is pseudocomplete.

Subcompactness, the weakest of so called Amsterdam properties defined by de Groot (see [6]) is another example of a generalization of completeness of metric spaces. A metrizable space is subcompact if and only if it is Čech-complete. It is known that subcompactness is preserved by open subspaces, free unions and arbitrary products but it is still an open question whether it is preserved by dense G_{δ} -subspaces (see [2]). In particular, it is not known whether every Čech-complete space is subcompact.

It is also an open question (see [5]) whether $K \setminus A$ is subcompact if K is a compact space and $A \subset X$ is countable. Fleissner, Tkachuk and Yengulalp proved in [5] that $K \setminus A$ is subcompact if K is a compact linearly ordered space and $A \subset K$ is countable. The same conclusion is true (see [5, Corollary 2.8]) if K is an ω -monolithic compact space.

In this paper we establish that a Čech-complete space X must be subcompact provided that it has a dense subspace representable as the countable union of closed subcompact subspaces of X. In particular, if X has a dense subspace which is the countable union of closed locally compact subspaces of X then X is subcompact. This conclusion is new even if X is k-separable, i.e., has a dense σ -compact subspace.

Therefore every k-separable (and hence every separable) Čech-complete space is subcompact. These results help to solve three open questions formulated in [5]. We show that $X \setminus A$ is subcompact if X is a compact space of countable tightness and $A \subset X$ is countable. This gives a positive answer to questions 3.5 and 3.6 from the paper [5]. If X is a dyadic compact space then any G_{δ} -subset of X is subcompact: this solves [5, Problem 3.13]. Our methods also give a much simpler proof than in [5] of the fact that $K \setminus A$ is subcompact if K is a compact linearly ordered space and $A \subset K$ is countable.

2 Notation and terminology

All spaces are assumed to be Tychonoff. Given a space X, the family $\tau(X)$ is its topology and $\tau^*(X) = \tau(X) \setminus \{\emptyset\}$. Let $\tau(x, X) = \{U \in \tau(X) : x \in U\}$ for any $x \in X$; if $A \subset X$ then $\tau(A, X) = \{U \in \tau(X) : A \subset U\}$. All ordinals are identified with the set of their predecessors and are assumed to carry the interval topology. A space is Čech-complete if it is homeomorphic to a G_{δ} -subset of a compact space. We denote by \mathbb{D} the set $\{0, 1\}$ with the discrete topology.

Given a space Y, a non-empty family $\mathcal{U} \subset \tau^*(Y)$ is called *a regular filterbase* if, for any $U, V \in \mathcal{U}$ there is $W \in \mathcal{U}$ such that $\overline{W} \subset U \cap V$. The space Y is *subcompact* if it has a base $\mathcal{B} \subset \tau^*(Y)$ such that every regular filterbase $\mathcal{U} \subset \mathcal{B}$ has non-empty intersection; such a base is also called *subcompact*. A space X has countable tightness (this is denoted by $t(X) \leq \omega$) if $\overline{A} = \bigcup \{\overline{B} : B \subset A \text{ and } |B| \leq \omega\}$ for any set $A \subset X$.

A space *X* is *k*-separable if it has a dense σ -compact subspace. A compact space is called *dyadic* if it is a continuous image of the Cantor discontinuum \mathbb{D}^{κ} for some cardinal κ .

The rest of our terminolofy is standard and follows [4]; the survey of Hodel [7] can be consulted for definitions of cardinal invariants.

3 Subcompactness in Čech-complete spaces

Our purpose is to find nice classes in which every Čech-complete space is subcompact. We will show that *k*-separable spaces form such a class; this fact implies that every G_{δ} -subset of a dyadic compact space is subcompact.

The proof of the following two lemmas is an easy exercise.

Lemma 3.1 Suppose that X is a space and $\mathcal{B} \subset \tau^*(X)$ is a regular filterbase. If there exists a compact set $K \subset X$ such that $\overline{U} \cap K \neq \emptyset$ for any $U \in \mathcal{B}$ then $\bigcap \mathcal{B} \neq \emptyset$.

Lemma 3.2 If X is a space and U is a regular filterbase in X then

(a) for any set $U \in U$ the family $\mathcal{G}_U = \{ G \in U : \overline{G} \subset U \}$ is a regular filterbase in X; (b) for every $U \in U$, we have $\bigcap U \neq \emptyset$ if and only if $\bigcap \mathcal{G}_U \neq \emptyset$.

The next statement formalizes the idea of the proof of the main result of this paper.

Lemma 3.3 Suppose that K is a compact space and we have an increasing sequence $\{L_n : n \in \omega\}$ of closed subspaces of K. Let $X = K \setminus (\bigcup_{n \in \omega} L_n)$ and assume that for every $n \in \omega$ we have a family \mathcal{U}_n of open subsets of X such that $cl_K(U) \cap L_n = \emptyset$ for each $U \in \mathcal{U}_n$. Assume additionally that we have a regular filterbase $\mathcal{B} \subset \mathcal{U} = \bigcup_{n \in \omega} \mathcal{U}_n$ with the following property:

(*) for any $U \in \mathcal{B}$ and $m \in \omega$ there exists a set $V \in \mathcal{B}$ such that $\overline{V} \subset U$ and $V \notin \bigcup_{i \leq m} \mathcal{U}_i$. Then $\bigcap \mathcal{B} \neq \emptyset$.

Proof Using (*) it is easy to construct a sequence $\{U_n : n \in \omega\} \subset \mathcal{B}$ such that $U_{n+1} \subset U_n$ and $U_{n+1} \notin \bigcup_{i \le n} \mathcal{U}_i$ for each $n \in \omega$. Therefore $U_{n+1} \in \mathcal{U}_k$ for some k > n and hence $cl_K(U_{n+1}) \cap L_n = \emptyset$ for each $n \in \omega$. This shows that the non-empty compact set $F = \bigcap \{cl_K(U_n) : n \in \omega\}$ is contained in X. Therefore

 $F = F \cap X = \bigcap \{ cl_K(U_n) \cap X : n \in \omega \} = \bigcap \{ \overline{U}_n : n \in \omega \} = \bigcap_{n \in \omega} U_n.$

If $\operatorname{cl}_K(U) \cap F = \emptyset$ for some $U \in \mathcal{B}$ then there exists $n \in \omega$ such that $\operatorname{cl}_K(U) \cap \operatorname{cl}_K(U_n) = \emptyset$ and hence $U \cap U_n = \emptyset$ which is a contradiction. This shows that $\operatorname{cl}_K(U) \cap F = \operatorname{cl}_K(U) \cap X \cap F = \overline{U} \cap F \neq \emptyset$ for any $U \in \mathcal{B}$ and hence we can apply Lemma 3.1 to conclude that $\bigcap \mathcal{B} \neq \emptyset$.

The proof of the following two statements is straightforward and can be left to the reader.

Proposition 3.4 Suppose that X is a space and U is a regular filterbase in X. If $U = U_0 \cup \ldots \cup U_k$ for some $k \in \omega$ then there exists $i \leq k$ such that U_i is a regular filterbase.

Proposition 3.5 If X is a space and $Y \subset X$ suppose that U is a regular filterbase in X such that $U \cap Y \neq \emptyset$ for any $U \in U$. Then $U_Y = \{U \cap Y : U \in U\}$ is a regular filterbase in Y.

Theorem 3.6 Suppose that X is a Čech-complete space and $\{Y_i : i \in \omega\}$ is a family of subcompact subspaces of X.

(a) If every Y_i is closed in X and $Y = \bigcup_{i \in \omega} Y_i$ is dense in X then X is subcompact. (b) If $X = \bigcup_{i \in \omega} Y_i$ then X is subcompact.

Proof We will give a simultaneous proof for both statements (a) and (b). Choose first a sequence $\{K_i : i \in \omega\}$ of increasing compact subsets of $\beta X \setminus X$ such that $\beta X \setminus X = \bigcup_{i \in \omega} K_i$. Fix a subcompact base C_i in the space Y_i and consider the family $U_i = \{U \in \tau(X) : U \cap X_i \in C_i \text{ and } cl_{\beta X}(U) \cap K_i = \emptyset\}$ for any $i \in \omega$. To see that the family $\mathcal{U} = \bigcup_{i \in \omega} \mathcal{U}_i$ is a base in *X* take any point $x \in X$ and $U \in \tau(x, X)$. If we are proving (a) then we pick a number $n \in \omega$ with $Y_n \cap U \neq \emptyset$. In the proof of (b) we observe that there exists $n \in \omega$ such that $x \in Y_n$. Choose a set $V \in \tau(x, X)$ such that $V \subset U$ and $cl_{\beta X}(V) \cap K_n = \emptyset$. We have two cases:

- (i) $x \in Y_n$. The proof of this case goes for both (a) and (b). Find a set $H \in C_n$ with $x \in H \subset V$; it is easy to find $G \in \tau(X)$ such that $G \subset V$ and $G \cap Y_n = H$. It is immediate that $G \in U_n$ and $x \in G \subset U$.
- (ii) $x \notin Y_n$. This can occur only if we prove (a). Take a point $y \in U \cap Y_n$ and a set $W \in \tau(y, X)$ such that $W \subset U$ and $cl_{\beta X}(W) \cap K_n = \emptyset$. It is easy to find a set $H \in \tau(X)$ such that $H \subset W$ and $y \in H \cap Y_n \in C_n$. Then $G = (V \setminus Y_n) \cup H \in U_n$ and $x \in G \subset U$ so \mathcal{U} is, indeed, a base in X.

The proof that \mathcal{U} is subcompact goes for both (a) and (b).

Suppose that $\mathcal{B} \subset \mathcal{U}$ is a regular filterbase and $\bigcap \mathcal{B} = \emptyset$. If the property (*) from Lemma 3.3 holds for \mathcal{B} then $\bigcap \mathcal{B} \neq \emptyset$ which is a contradiction so we can assume, without loss of generality, that there exist $U \in \mathcal{B}$ and $m \in \omega$ for which we have the inclusion $\mathcal{G}_U = \{V \in \mathcal{B} : \overline{V} \subset U\} \subset \bigcup_{i \le m} \mathcal{U}_i$.

Since $\mathcal{G}_U \subset \mathcal{B}$ is a regular filterbase and $\bigcap \mathcal{G}_U = \emptyset$ by Lemma 3.2, it follows from $\mathcal{G}_U \subset \bigcup_{i \leq m} \mathcal{U}_i$ that we can forget about the set U and consider that $\mathcal{B} \subset \bigcup \{\mathcal{U}_i : i \in A\}$ where $A \subset \omega$ is a finite set and n = |A| is the minimal number for which there exists a regular filterbase $\mathcal{V} \subset \mathcal{B}$ such that $\bigcap \mathcal{V} = \emptyset$ and \mathcal{V} is contained in the union of *n*-many families \mathcal{U}_i .

If n = 1 then $A = \{i\}$ for some number $i \in \omega$ and hence we can apply Proposition 3.5 to see that the family $\mathcal{W} = \{V \cap X_i : V \in \mathcal{B}\} \subset \mathcal{C}_i$ is a regular filterbase and hence $\bigcap \mathcal{W} \neq \emptyset$ which implies $\bigcap \mathcal{B} \neq \emptyset$. Therefore n > 0; let $\mathcal{B}_i = \mathcal{B} \cap \mathcal{U}_i$ for all $i \in A$. By Proposition 3.4, there exists $i \in A$ such that \mathcal{B}_i is a regular filterbase. Proposition 3.5 shows that $\mathcal{B}'_i = \{U \cap X_i : U \in \mathcal{B}_i\} \subset \mathcal{C}_i$ is a regular filterbase so $P = \bigcap \mathcal{B}'_i \neq \emptyset$.

If $P \subset U$ for any $U \in \mathcal{B}$ then $\bigcap \mathcal{B} \neq \emptyset$ so there exists $U \in \mathcal{B}$ such that P is not contained in U. Since no element of \mathcal{G}_U contains P and P is contained in every element of \mathcal{B}_i , we have the inclusion $\mathcal{G}_U \subset \bigcup \{\mathcal{U}_j : j \in A \setminus \{i\}\}$ which, together with $\bigcap \mathcal{G}_U = \emptyset$ (Lemma 3.2) gives a contradiction with the choice of the number n.

Corollary 3.7 Suppose that a Čech-complete space X has a dense subset which is a countable union of closed locally compact subsets of X. Then X is subcompact.

Proof This is because every locally compact space is subcompact so Theorem 3.6(a) can be applied.

Corollary 3.8 If X is a Cech-complete space which has a dense subspace representable as the countable union of closed discrete subsets of X then X is subcompact.

The conclusion of Corollary 3.7 is new even if the locally compact summands are compact. Recall that a space is called *k-separable* if it has a dense σ -compact subspace.

Corollary 3.9 Any Čech-complete k-separable space is subcompact.

Proof If *X* is Čech-complete and $\{K_n : n \in \omega\}$ is a family of compact subspaces of *X* such that $\bigcup_{n \in \omega} K_n$ is dense in *X* then every K_n is locally compact and closed in *X* so Corollary 3.7 does the rest.

Corollary 3.10 Every separable Čech-complete space is subcompact.

The following lemma might be known but we could not find the respective reference.

Lemma 3.11 If X is a dyadic compact space then every non-empty G_{δ} -subset of X is k-separable.

Proof Take any sequence $\{K_n : n \in \omega\}$ of compact subsets of X such that $Y = X \setminus \bigcup_{n \in \omega} K_n \neq \emptyset$; we must prove that the space Y is k-separable. For some cardinal κ there exists a continuous onto map $\varphi : \mathbb{D}^{\kappa} \to X$. Let $F_n = \varphi_n^{-1}(K_n)$ for any $n \in \omega$. Then $Y = \varphi(Y')$ where $Y' = \mathbb{D}^{\kappa} \setminus (\bigcup_{n \in \omega} F_n)$.

Call a subset $F \subset \mathbb{D}^{\kappa}$ standard if there exists a countable set $A \subset \kappa$ and $f \in \mathbb{D}^{A}$ such that $F = \{f\} \times \mathbb{D}^{\kappa \setminus A}$. It is clear that every standard set is compact and, for any $f \in Y'$ there exists a standard set S_f such that $f \in S_f \subset Y'$. We will use the following property of the space \mathbb{D}^{κ} :

(*T*) if \mathcal{G} is a family of G_{δ} -subsets of \mathbb{D}^{κ} , then there is a countable $\mathcal{G}' \subset \mathcal{G}$ such that $\bigcup \mathcal{G}'$ is dense in $\bigcup \mathcal{G}$.

The property (*T*) was established directly for \mathbb{D}^{κ} in Statement (8) of the proof of Theorem 14 of the paper [3]. Since the paper [3] is in Russian, it is worth mentioning that a stronger theorem was proved in [9, Corollary 1.8]. The paper [9] shows that the property (*T*) holds for any product of Lindelöf Σ -groups. It relies on the paper [10] where the property (*T*) was established for one Lindelöf Σ -group. Both articles [9] and [10] are in English and, taken together, they contain a complete proof of the property (*T*) in a much more general situation.

It follows from $Y' = \bigcup \{S_f : f \in Y'\}$ that we can apply the property (T) to conclude that there exists a countable set $A \subset Y'$ such that $\bigcup \{S_f : f \in A\}$ is dense in Y', which shows that Y' is k-separable. Thus Y is k-separable being a continuous image of Y'. \Box

The following corollary gives a positive answer to Problem 3.13 from [5].

Corollary 3.12 If X is a dyadic compact space then any non-empty G_{δ} -subset of X is subcompact.

Proof If Y is a non-empty G_{δ} -subset of X then Y must be Čech-complete and k-separable by Lemma 3.11 so Y is subcompact by Corollary 3.9.

Corollary 3.13 If G is a compact topological group then every non-empty G_{δ} -subset of G is subcompact.

Corollary 3.14 If X is a compact space and $\pi w(X) \leq \omega$, then every dense G_{δ} -subset of X is subcompact.

Proof If *Y* is a dense G_{δ} -subset of *X* then $\pi w(Y) = \pi w(X) = \omega$ and hence *Y* is a Čech-complete separable space. Corollary 3.10 does the rest.

Proposition 3.15 Suppose that X is a compact space of countable tightness. If $A \subset X$ is countable then $X \setminus A = S \cup L$ where S is a separable Čech-complete space and L is locally compact.

Proof Observe that $X \setminus A = \overline{X \setminus A} \setminus (A \cap \overline{X \setminus A})$ so passing to $\overline{X \setminus A}$ and $A \cap \overline{X \setminus A}$ if necessary, we can assume, without loss of generality, that $Y = X \setminus A$ is dense in X. It follows from $t(X) \leq \omega$ that there is a countable set $B \subset Y$ such that $\overline{A} \subset \overline{B}$. As a consequence, $Y = (\overline{B} \cap Y) \cup (X \setminus \overline{A})$, i.e., the sets $S = \overline{B} \cap Y$ and $L = X \setminus \overline{A}$ are as promised. \Box

Theorem 3.16 Suppose that X is a compact space such that A has countable tightness for any countable set $A \subset X$. Then $X \setminus A$ is subcompact for any countable $A \subset X$.

Proof Fix an arbitrary countable set $A \subset X$ and observe that we have the equality $X \setminus A = (X \setminus \overline{A}) \cup (\overline{A} \setminus A)$. Recall that subcompactness is finitely additive by [5, Theorem 2.5]; the set $X \setminus \overline{A}$ is locally compact and hence subcompact so it suffices to prove that $\overline{A} \setminus A$ is subcompact.

Since $t(\overline{A}) = \omega$, we can apply proposition 3.15 to find a separable Čech-complete set $S \subset \overline{A}$ and a locally compact set $L \subset \overline{A}$ such that $\overline{A} \setminus A = S \cup L$. The space L is subcompact being locally compact and the space S is subcompact by Corollary 3.10; apply Theorem 2.5 of [5] once again to see that $\overline{A} \setminus A$ is subcompact.

The following fact gives a positive answer to Questions 3.5 and 3.6 of the paper [5].

Corollary 3.17 If X is a compact space of countable tightness then $X \setminus A$ is subcompact for any countable $A \subset X$.

In the paper [5] a very complicated proof was given that $X \setminus A$ is subcompact if X is a linearly ordered compact space and $A \subset X$ is countable. Our methods make it possible to give a much simpler proof.

Corollary 3.18 ([5]) If X is a linearly ordered compact space then $X \setminus A$ is subcompact for any countable $A \subset X$.

Proof It suffices to observe that \overline{A} is perfectly normal and hence has countable tightness for any countable set $A \subset X$; Theorem 3.16 does the rest.

It was proved in [5, Theorem 2.1] that every scattered space is subcompact. Since every locally compact space is also subcompact, it is natural to try to find a class \mathcal{P} such that all scattered spaces and all locally compact spaces belong to \mathcal{P} and every element of \mathcal{P} is subcompact.

Definition 3.19 Say that a space X is locally-compact-scattered (or simply *lc*-scattered) if every non-empty closed subspace of X has a point of local compactness.

It is clear that locally compact spaces and scattered spaces are *lc*-scattered so the following fact generalizes Theorem 2.1 of [5].

Theorem 3.20 If X is an lc-scattered space then every closed subspace of X is subcompact.

Proof The *lc*-property is, evidently, preserved by closed subspaces so it suffices to show that X is subcompact. Let X_0 be the set of all points of local compactness of X. The set X_0 is open in X because $X_0 = \bigcup \{U : U \in \tau^*(X) \text{ and } \overline{U} \text{ is compact}\}$. Proceeding inductively, if β is an ordinal and we have disjoint sets $\{X_\alpha : \alpha < \beta\}$ then let X_β be the set of points of local compactness of $X \setminus \bigcup \{X_\alpha : \alpha < \beta\}$.

Since the space X is *lc*-scattered, there is a minimal ordinal μ such that $X = \bigcup \{X_{\alpha} : \alpha < \mu\}$. Say that a set $U \in \tau(X)$ is *adequate* if there exists $\alpha < \mu$ such that $U \subset \bigcup \{X_{\beta} : \beta \le \alpha\}$ while the set $U \cap X_{\alpha}$ is non-empty and has compact closure; let $id(U) = \alpha$.

It is straightforward that the family \mathcal{U} of all adequate subsets of X is a base of X. To see that \mathcal{U} is subcompact, suppose that $\mathcal{B} \subset \mathcal{U}$ is a regular filterbase and consider the ordinal $\gamma = \min\{id(U) : U \in \mathcal{B}\}$. Take any $U \in \mathcal{B}$ with $id(U) = \gamma$. The set $K = \overline{U \cap X_{\gamma}}$ is compact; assume that $V \in \mathcal{B}$ and $V \cap K = \emptyset$. Pick a set $W \in \mathcal{B}$ such that $W \subset U \cap V$; then $W \cap X_{\gamma} = \emptyset$ and hence $W \subset \bigcup \{X_{\alpha} : \alpha < \gamma\}$, i.e., $id(W) < \gamma$ which is a contradiction. Therefore $V \cap K \neq \emptyset$ for any $V \in \mathcal{B}$ so we can apply Lemma 3.1 to conclude that $\bigcap \mathcal{B} \neq \emptyset$.

4 Open problems

The current paper and [5] contain a lot of information about subcompactness of Čechcomplete spaces. However, some natural questions remain open.

Question 4.1 Suppose that a Čech-complete space has a dense set of isolated points. Must it be subcompact?

Question 4.2 Suppose that X is a Čech-complete space and $c(X) \le \omega$. Must X be subcompact?

Question 4.3 Suppose that X is a Čech-complete space and ω_1 is a caliber of X. Must X be subcompact?

Question 4.4 Suppose that X is a Lindelöf Čech-complete space. Must X be subcompact?

Question 4.5 Suppose that X is a hereditarily Lindelöf Čech-complete space. Must X be subcompact?

Question 4.6 Suppose that X is a first countable Čech-complete space. Must X be subcompact?

Question 4.7 Suppose that X is a hereditarily Lindelöf Čech-complete space. Must X have a dense σ -compact subspace?

Question 4.8 (D.J. Lutzer) Suppose that X is a Čech-complete space with a dense σ -discrete subspace. Must X be subcompact?

References

- Aarts, J.M., Lutzer, D.J.: Completeness properties designed for recognizing Baire spaces. Diss. Math. 116, 1–48 (1974)
- Bennett, H., Lutzer, D.: Strong completeness properties in topology. Question Answ. Gen. Topol. 27, 107–124 (2009)
- 3. Efimov, B.A.: Dyadic bicompacta. Trans. Moscow Math. Soc. 14, 229–267 (1965)
- 4. Engelking, R.: General Topology. PWN, Warszawa (1977)
- Fleissner, W., Tkachuk, V.V., Yengulalp, L.: Every scattered space is subcompact. Topol. Appl. 160, 1305–1312 (2013)
- 6. de Groot, J.: Subcompactness and the Baire Category Theorem. Indag. Math. 22, 761–767 (1963)
- Hodel R.E.: Cardinal functions I, Handbook of set-theoretic topology. In: Kunen K., Vaughan J.E. (ed.), North Holland, Amsterdam, pp. 1–61, (1984)
- 8. Oxtoby, J.: Cartesian products of Baire spaces. Fund. Math. 49, 157–166 (1961)
- Tkačenko, M.G.: Factorization theorems for topological groups and their applications. Topol. Appl. 38, 21–37 (1991)
- Uspenskij, V.V.: On continuous images of Lindelöf topological groups. Soviet Math. Dokl. 32, 802–806 (1985)