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Egoroff, σ, and convergence properties in
some archimedean vector lattices

by

A. W. Hager (Middletown, CT) and J. van Mill (Amsterdam)

Abstract. An archimedean vector lattice A might have the following properties:

(1) the sigma property (σ): For each {an}n∈N ⊆ A+ there are {λn}n∈N ⊆ (0,∞) and
a ∈ A with λnan ≤ a for each n;

(2) order convergence and relative uniform convergence are equivalent, denoted (OC⇒
RUC): if an ↓ 0 then an → 0 r.u.

The conjunction of these two is called strongly Egoroff.
We consider vector lattices of the formD(X) (all extended real continuous functions on

the compact space X) showing that (σ) and (OC⇒ RUC) are equivalent, and equivalent
to this property of X: (E) the intersection of any sequence of dense cozero-sets contains
another. (In case X is zero-dimensional, (E) holds iff the clopen algebra clopX of X is a
‘Egoroff Boolean algebra’.)

A crucial part of the proof is this theorem about any compact X: For any countable
intersection of dense cozero-sets U , there is un ↓ 0 in C(X) with {x ∈ X : un(x) ↓ 0} = U.
Then, we make a construction of many new X with (E) (thus, dually, strongly Egoroff
D(X)), which can be F-spaces, connected, or zero-dimensional, depending on the input
to the construction. This results in many new Egoroff Boolean algebras which are also
weakly countably complete.

1. Preliminaries. We list the numerous relevant definitions, with some
commentary.

All vector lattices (Riesz spaces) will be archimedean (see [16]) and all
topological spaces will be Tychonoff ([6], [9]).

Let A be a vector lattice.
In A, for a (countable) sequence (un)n∈N in A: un ↓ 0 means un↓, i.e.,

u1 ≥ u2 ≥ · · · , and
∧A un = 0 (

∧A is the infimum in A);
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un → 0 r.u. (relatively uniformly) means there is q ∈ A with un → 0 (q),
which means that for every ε > 0 there exists n(ε) for which n ≥ n(ε) ⇒
|un| ≤ εq. (This ‘r.u. convergence’ was introduced for RR in [20].)

(σ) and (OC⇒ RUC) are defined in the Abstract. The origins of these
conditions are discussed in [16, §16 and Chap. 10]. There, (OC⇒ RUC) is
also called ‘order convergence is stable’ and ‘order convergence and r.u. con-
vergence are equivalent’. (We add: (σ) in RR seems to have been introduced
in the remarkable [20].)

A is called strongly Egoroff (s.E.) if in A a certain double sequence
condition holds, and [16] shows (archimedean) A is s.E. iff A has (σ) and
(OC⇒ RUC). We use this as the definition of s.E. (‘Egoroff’ is another
double sequence condition, which we need not mention.)

Now let X be a topological space (usually compact). Much of the fol-
lowing is explained in [9] and [6].

C(X) is the vector lattice (and ring) {f ∈ RX : f continuous}. For
f ∈ C(X) the cozero-set of f is

coz f = {x ∈ X : f(x) 6= 0}

(and Zf = X \ coz f = {x ∈ X : f(x) = 0}). Moreover,

cozX = {coz f : f ∈ C(X)}, dcozX = {S ∈ cozX : S dense}.

Generally, for X any set and A ⊆ P(X), the power set of X,

Aδ =
{⋂
n∈N

An : (∀n ∈ N)(An ∈ A)
}
.

Thus we have dcozδX (which we write for (dcozX)δ).

Various properties of an X will be involved.

X is called (or has the property)

• F if each S ∈ cozX is C∗-embedded;
• QF (quasi-F) if each S ∈ dcozX is C∗-embedded;
• almost P if dcozX = {X}, equivalently, each nonempty Gδ has non-

empty interior;
• P if each Gδ is open;
• BD (basically disconnected) if each S ∈ cozX has S open;
• ED (extremally disconnected) if each open S has S open;
• ZD (zero-dimensional) if clopX is a base for the topology;
• ccc (countable chain condition) if each pairwise disjoint family of non-

empty open sets is countable (or finite);
• (E) if dcozX is co-initial in dcozδ, in the inclusion order (i.e., for any
S1, S2, . . . ∈ dcozX, there exists S0 ∈ dcozX with S0 ⊆

⋂
n∈N Sn).
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These properties are related as follows:
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And (almost P)∩BD = P [2], BD∩ ccc ⊆ ED [22]; X is QF (resp. BD, ED)
iff the Čech–Stone compactification βX is [5, 9]; X almost P ⇒ βX is QF
(simply observe that for every S ∈ dcozβX we have X ⊆ S).

In case X is compact ZD, the Boolean algebra clopX is a base, and X
is ED (resp. BD, F, (E)) iff clopX qua Boolean algebra (BA) is complete
(resp. σ-complete, weakly countably complete, Egoroff).

Important examples of Egoroff BAs are those BAs associated with the
M/N mentioned in the second paragraph below, and any Maharam algebra.
See [22, 8] and §9 below.

Now let D(X) be the set

{f ∈ C(X, [−∞,+∞]) : f−1(−∞,+∞) dense}.
(Here (−∞,+∞) is the reals R, [−∞,+∞] its two-point compactification
R ∪ {±∞} with the obvious order. D(X) is denoted C∞(X) sometimes.)

In the pointwise order D(X) is a lattice, and is closed under scalar mul-
tiplication. In D(X), f +g = h means f(x)+g(x) = h(x) when all three are
real. This + (and the analogous ·) is only partially defined (given f, g there
may be no h). The + (or the ·) is fully defined iff X is QF; then D(X) is an
archimedean vector lattice. See [12] and [5].

An important example of a strongly Egoroff vector lattice is M/N (mea-
surable functions modulo null functions) for σ-finite measures, as discussed
in [13] (‘the Egoroff Theorem holds’) and [16] (it is strongly Egoroff). Here
M/N ≈ D(X), withX ED and ccc, as a consequence of the Yosida Represen-
tation Theorem, which we now describe. (See §6 below for further discussion
of these M/N .)

Suppose that A is an archimedean vector lattice with a distinguished
positive weak unit eA (which means eA ∧ |a| = 0 implies a = 0); we write
‘A ∈W ’.

The Yosida representation of A ∈ W is: There is a compact YA and

an injection A
η→ D(YA) such that η(eA) = the constant function 1, η(A)

separates the points of YA, η(A) is closed under the operations in D(YA)

requisite for being a vector lattice, and A
η
≈ η(A) as vector lattices. We will

usually view A as a sublattice of D(YA). Then A−1R denotes {a−1(R) : a ∈
A ≤ D(YA)}. Of course, A−1R ⊆ dcozYA.
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The (usual) Yosida representation of A being any C(X), or any D(X)
with X QF, uses eA = the constant function 1, has YA = βX, with η(a)
= βa, the Čech–Stone extension, and η(C∗(X)) = C(βX), η(D(X)) =
D(βX). Here, C(X)−1R = {S ∈ dcozβX : S ⊇ X} and D(X)−1R =
dcozβA.

Evidently, a general YA need not be QF. The Y = M/N mentioned
above is BD, since M/N is σ-complete, has ccc because of the measure, and
hence is ED. Then M/N = D(YM/N ) by using the lateral σ-completeness
[3, 3.3].

2. RN

Theorem 2.1. The vector lattice RN has the properties (σ) and (OC⇒
RUC). That is, RN is strongly Egoroff.

Proof. (σ) Denote n ∈ N as xn. Given {bn} ⊆ RN+
, replace bn by bn

defined as bn(x) =
∨
{bn(y) : y ≤ x}, then replace bn by bn =

∨
{bk : k ≤ n}

∨ 1. Then

(i) bn is an increasing function of x,

(ii) 1 ≤ bn ≤ bn+1 for all n.

Clearly, if {bn} ‘has the σ-property’, so does the original {bn}.
Simplify the notation back to {bn}, assuming the features (i) and (ii).
Now set λn ≡ 1/bn(xn), and define b as b(xn) ≡ bn(xn). It is easy to

verify that λnbn ≤ b for all n.
(OC⇒ RUC) Note that, in RN, un ↓ 0 iff un(x) ↓ 0 for all x ∈ N.
So, suppose the latter. Then, for all [0, k] ⊆ N, un → 0 uniformly on

[0, k] (since that set is finite). Thus, for every k there is n(k) for which
un(k) ≤ 1/k2 on [0, k]. We can suppose that n(1) < n(2) < · · · . Note that
k ≤ x implies un(k) ≤ x.

For x ∈ N define, s(x) ≡
∨
i≤x un(i)(x)∨ 1, and then g(x) ≡ xs(x). Then

(we claim) for all k, kun(k) ≤ g. This will prove uk → 0 (g).

To prove the claim, take x ∈ N. If x ≤ k, then un(k)(x) ≤ 1/k2, so
kun(k)(x) ≤ 1/k ≤ 1 ≤ g(x). If k < x, then un(k)(x) ≤ s(x), so kun(k)(x) ≤
xs(x) = g(x).

Remarks 2.2. (i) 2.1 is a special case of [16, 71.5 and 71.4].
(ii) 2.1(σ) is a special case of [10, 2.1]: RI has (σ) iff |I| < b (the bounding

number). With our main Theorem 5.1, it follows that RI is strongly Egoroff
iff |I| < b. See also our remarks on Boolean algebras in §8.

3. C(S), S locally compact and σ-compact. Properties of RN will
imply properties of such C(S) (but not (OC⇒ RUC)) via the following.
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Lemma 3.1. Suppose S is locally compact and σ-compact.

(a) If X is compact and S is dense in X, then S = cozw for some
(various) w ∈ C(X)+.

Using X = βS in (a), set g = 1/w ∈ C(S), and Xn = g−1[0, k+1] for
k ∈ N. Then

(b) each Xk is compact, Xk ⊆ IntXk+1, and S =
⋃
k∈NXk;

(c) for each {rk} ⊆ (0,+∞), there is f ∈ C(S) such that, for all k,
x ∈ Xk \Xk−1 ⇒ f(x) ≥ rk.

Proof. (a) See [6].

(b) is obvious.

(c) Let Zk ≡ g−1[k−1, k+1] ⊆ g−1(k−2, k+2) ≡ Uk. There is vk ∈
C(S, [0, 1]) with

vk = [1 on Zk; 0 on S \ Uk]

(because Zk and S\Uk are disjoint zero-sets [9]). Now {Uk} is a locally finite
cozero cover of S, and so f ≡

∑
k∈N rrvk ∈ C(S). Evidently, f(x) ≥ rk for

x ∈ Zk, and Xk \Xk−1 ⊆ Zk.

Theorem 3.2. Suppose S is locally compact and σ-compact. The vector
lattice C(S) has the following properties:

(a) C(S) has (σ).
(b) C(S) has (PWC⇒ RUC). That is, if un(x) ↓ 0 for all x ∈ S, then

un ↓ 0 r.u.
(c) Suppose S is dense in a compact X. Then there is un ↓ 0 in C(X)

with S = {x ∈ X :
∧
n∈N un(x) = 0}.

Proof. For (a) and (b), write S =
⋃
k∈NXk as in 3.1(b), (c). For

κ ∈ C(S)+ define κ∗ ∈ RN as κ∗(k) ≡
∨
{κ(x) : x ∈ Xk}.

(a) Suppose {fn} ⊆ C(S)+. Then {f∗n} ⊆ RN+
, so by 2.1, there are {λn}

and b with λnf
∗
n ≤ b for all n. Use rk = b(k) in 3.1(c), finding f ∈ C(S)

with f(x) ≥ b(k) for x ∈ Xk \Xk−1. It follows that λnfn ≤ f for all n.

(b) Suppose in C(S) that fn ↓ 0 and
∧
n∈N fn(x) = 0 for all x ∈ S. Then

fn(x) ↓ 0 for all x ∈ Xk, so by Dini’s Theorem [21, 7.13], fn → 0 uniformly
on each Xk. It follows that for the {f∗n} ⊆ RN, we have f∗n ↓ 0, and thus by
2.1, there is g ∈ RN for which f∗n → 0 (g).

Now by 3.1(c) with rk = g(k), there is f ∈ C(S) for which we have
x ∈ Xk \Xk−1 ⇒ f(x) ≥ g(k). We claim that for every p > 0 there is n(p)
with pfn(p) ≤ f , which means fn → 0 (f).

So fix p > 0. There is n(p) for which pf∗n(p) ≤ g in RN, which means

pf∗n(p) ≤ f(x) for all x ∈ S, because given x and letting k be the first index
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with x ∈ Xk \Xk−1, we have

pfn(p)(x) ≤ pf∗n(p)(k) ≤ g(k) ≤ f(x).

(c) (This is very easy.) From 3.1, S ≡ cozw for w ∈ C(X)+, Then, for
each n, Zw and {x : w(x) ≥ 1/n} ≡ Zn are disjoint zero-sets and there
is uk ∈ C(X, [0, 1]) with u−1k {1} = Zw and u−1k {0} = Zn. We can arrange
u1 ≥ u2 ≥ · · · , and then S = {x ∈ X :

∧
n∈N un(x) = 0}.

Remarks 3.3. (a) 3.2(a) is a simpler case of [10, 1.2], which says that
C(S) has (σ) if S is locally compact and paracompact with Lindelöf number
(see [6]) ≤ b.

(b) If S is compact, then in C(S) all functions are bounded, r.u. con-
vergence is ordinary uniform convergence (regulated by the constant func-
tion 1), and 3.2(b) is Dini’s Theorem.

(c) In 3.2(b) we cannot conclude (OC⇒ RUC). That property of C(S)
requires that S be almost P; see 7.3 below.

(d) The very simple 3.2(c) is a special case of the not-so-simple 4.3 below,
which says (in effect) that S Lindelöf and Čech-complete suffices.

4. Sets of pointwise convergence. We make some observations nec-
essary for our main Theorem 5.1.

Proposition 4.1. Suppose G∈W , viewing G ≤ D(YG). Suppose {ai}i∈N
⊆ G, and set Z ≡ {x ∈ YG :

∧
i∈N ui(x) = 0}. Then

(a) Z is cozδ YG.

(b)
∧G ui = 0 iff Z is dense in YG (i.e., Z ∈ dcozδ YG).

Corollary 4.2. Suppose X is compact. If
∧C(X)
i∈N ui = 0, then {x ∈ X :∧

i∈N ui(x) = 0} ∈ dcozX.

A crucial point of our main Theorem 5.1 requires the converse of 4.1.

Theorem 4.3. Suppose X is compact. If S ∈ dcozδX, then there is
ui ↓ 0 in C(X) for which {x ∈ X :

∧
i∈N ui(x) = 0} = S.

Proof of 4.1. Sni = {x ∈ X : ui(x) < 1/n} is cozYG (even cozG) and
Sn ≡

⋃
i∈N Sni is cozYG (perhaps not cozG). So

⋂
n∈N Sn is cozδ YG and

evidently
⋂
n∈N Sn = Z.

Now, if Z is dense then
∧G
i∈N ui = 0 (in fact

∧D(YG)
i∈N ui = 0 by continuity).

Suppose
∧D(YG)
i∈N ui = 0. Then Sn is dense for each n and therefore⋂

n∈N Sn is dense by the Baire Category Theorem. For suppose some Sn
is not dense. Then there is an open V 6= ∅ with V ∩ Sn = ∅ and thus
V ∩ Sni = ∅ for all i, i.e., x ∈ V ⇒ ui(x) ≥ 1/n for all i. Take g ∈ G+ with
0 ≤ g ≤ 1/n, {x ∈ X : g(x) = 1/n} ⊆ V and x 6∈ V ⇒ g(x) = 0. Then
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ui ≥ g > 0 for all i so
∧G
i∈N ui 6= 0. (G 0-1 separates disjoint compact sets

in YG, since G separates points and G is a vector lattice.)

Proof of 4.2. The presentation of C(X) is its Yosida representation.
Apply 4.1.

Let Q =
∏
n∈N[0, 1]n denote the Hilbert cube. For every n, let πn : Q→

[0, 1]n denote the projection. For every 0 < t < 1, set K(t) =
∏
n∈N[t, 1]n.

For every n, define un : Q→ I by

un(x) = min{x1, . . . , xn}.
Then un ∈ C+(Q), and un+1 ≤ un for every n. Moreover, define u : Q→ I by

u(x) = inf{x1, x2, . . . }.
Observe that u =

∧
n∈N un, that u is not continuous, and that

P = u−1({0}) = {x ∈ Q : inf{x1, x2, . . . } = 0}
is a dense Gδ-subset of Q. Observe that Q \ u−1({0}) =

⋃
n∈NK(1/n).

We now come to the proof of 4.3. We present two proofs; one is based on
infinite-dimensional topology and the other one is direct and only uses stan-
dard facts. We will first present a reduction to compact metrizable spaces.

Let X be any compact space, and for every n, let Un be a dense cozero-
subset of X. Let αn : X → [0, 1] be a continuous function such that α−1n ({1})
= X \ Un. Let α : X → Q be defined by

α(x) = (α1(x), α2(x), . . . ).

Set Y = α(X). For every n, set Vn = π−1n ([0, 1)) ∩ Y . Then α−1(Vn) = Un,
hence Vn is a dense open subset of Y . Consequently, S =

⋂
n∈N Vn is a dense

Gδ-subset of Y such that α−1(S) = X \
⋂
n∈N Un.

We will show that we can re-embed Y in Q in such a way that Y ∩P = S.
Assume for a moment that Y has this property. Let wn : X → I be the
composition un ◦ α. Then clearly wn+1 ≤ wn for every n. Let f ∈ C+(X)
be such that f ≤ wn for every n. If x ∈

⋂
n Un, then α(x) ∈ S ⊆ P and so∧

n(un ◦α)(x) = 0. Hence we conclude that
∧
nwn(x) = 0, and so f(x) = 0.

This implies that f is identically 0 on the dense set
⋂
n Un, hence has to

be identically 0 everywhere. Finally, if x 6∈
⋂
n Un, then α(x) 6∈ P , and thus∧

nwn(x) > 0. This means that if we indeed succeed in re-embedding Y in
the way we described, we are done.

First proof of 4.3. By [18, Proposition 6.5.4], Σ′ = A \ P contains the
skeletoid Σ (defined in [18, p. 284]). Since it is clearly a countable union of
Z-sets in Q, it is an absorber [18, Corollary 6.5.3]. Hence by [18, Corollary
6.5.3], there is a homeomorphic β : Q→ Q such that

α(Σ′ ∪ S) = Σ′.

Then β(Y ) is a copy of Y such that β(Y ) ∩Σ′ = β(S).
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Second proof of 4.3. Write Y \S as
⋃
n∈NAn, where each An is compact

and A1 ⊆ A2 ⊆ · · · . Write Y \An as
⋃
i∈NBn,i, where each Bn,i is compact.

For every n, let Qn be a copy of Q. For 0 < t < 1 let Kn(t) denote the
copy of K(t) in Qn.

We may assume that Y ⊆ K1(1/2). For every n, i ∈ N, let fn,i : Y →
[1/(n+ 2), 1] be an Urysohn function such that fn,i(Bn,i) ⊆ {1/(n+ 2)} and
fn,i(An) ⊆ {1}. Now define α : Y →

∏
n∈NQn by

α(z) = (z, (f1,i(z))i, (f2,i(z))i, . . . , (fn,i(z))i, . . .).

Then α is clearly an embedding.

Fact 1. For every n, α(Y ) ∩
∏
i∈NKi(1/(n+ 1)) = α(An).

Indeed, let z ∈ An. Observe that α(z)1 = z and for every k ∈ N, zk ≥
1/2 ≥ 1/(n+ 1). For k < n and i ∈ N we clearly have

fk,i(z) ≥ 1/(k + 2) ≥ 1/(n+ 1).

Moreover, for k ≥ n and i ∈ N we have z ∈ An ⊆ Ak and so fk,i(z) = 1 ≥
1/(n+ 1). We conclude that α(z) ∈

∏
i∈NKi(1/(n+ 1)).

Conversely, assume that z ∈ Y has α(z) ∈
∏
i∈NKi(1/(n + 1)) but

z 6∈ An. There exists i ∈ N such that z ∈ Bn,i. Then fn,i(z) = 1/(n + 2) <
1/(n+ 1), which is a contradiction.

There is a natural homeomorphism between Q and
∏
n∈NQn by simply

rearranging coordinates. This homeomorphism sends every K(t) for 0<t<1
onto

∏
n∈NKn(t). Hence we are done.

Remarks 4.4. (a) 4.3 for just S ∈ dcozX is the very easy 3.2(c).
(b) 4.3 (for S ∈ dcozδX) appears to sharpen results of Hahn, Sierpiński,

and perhaps Hausdorff; see [11, pp. 307, 308].

5. D[QF]. The following is the main theorem of the paper. The proof
will use almost everything we have said so far. Further commentary appears
in 5.2, 5.3 and §7 below.

Theorem 5.1. Suppose X is QF. The following are equivalent:

(1) X has (E).
(2) D(X) has (σ).
(3) D(X) has (OC⇒ RUC).
(4) If S ∈ dcozδX, then there is {un}n∈N ⊆ C(X) with un ↓ 0 r.u. in

D(X) for which S ⊇ {x ∈ X :
∧
n∈N un = 0}.

(5) D(X) is strongly Egoroff (i.e., (2) and (3) hold).

Proof. (5) is just ‘(2) and (3)’. Everything revolves around (1): we shall
prove that each of (2), (3), (4) is equivalent to (1). This is probably not
the most efficient, but perhaps reveals more. Towards ‘revealing more’, for
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each of our implications, we shall write (x)
m.n
=⇒ (y) to indicate that Propo-

sition/Theorem m.n is an/the essential ingredient in the proof that (x) im-
plies (y).

At several points in these proofs, we use the fact (see §1) that

(†) for A = D(X), X compact QF, A−1R = dcozX.

(2)⇒(1). Suppose D(X) has (σ), and let {Sn}n∈N ⊆ dcozX; so for
each n, we have Sn = a−1n R for some an ∈ D(X). By (σ), there are {λn}n∈N
and a with λnan ≤ a for all n. Then (λnan)−1R = a−1n R ⊇ a−1R.

(1)
3.2

=⇒(2). Suppose X has (E), and {an}n∈N ⊆ D(X)+. There is S ∈
dcozX with S ⊆

⋂
n∈N a

−1
n R, and b ∈ D(X) with b−1R = S. Let ān and b̄

denote the restrictions to S, which lie in C(S). Now, S is locally compact
and σ-compact, so C(S) has (σ) (by 3.2), so there are {λn}n∈N and ā ∈ C(S)
with

(‡) λnān ≤ ā for all n (pointwise on S).

Then βS = X (because X is QF), and a = βā ∈ D(X), and of course
βān = an. Since S is dense in X, the inequalities (‡) entail λnan ≤ a for
all n.

(3)
4.2

=⇒(1). This is the hardest part, because of 4.3. Toward (E), take
S ∈ dcozδX. By 4.3, take un ↓ 0 inC(X) with S = {x ∈ X :

∧
n∈N un(x)=0}

(actually, ‘⊇’ suffices for the proof). Now un ↓ 0 in D(X) also, since the
inclusion C(X) ≤ D(X) preserves arbitrary infima (exercise). By (3), there
is g ∈ D(X) with un → 0 (g). But un → 0 (g) implies pointwise convergence
on g−1R, i.e., S ⊇ g−1R. Thus we have (E).

(4)⇒(1). Toward (E), take S ∈ dcozδX. Apply (4) to get {an} ⊆ C(X)
and g ∈ D(X) with un ↓ 0 (g), and S ⊇ {x ∈ X :

∧
n∈N un(x) = 0}. Again,

un → 0 (g) implies pointwise convergence on g−1R, so S ⊇ g−1R, and we
have (E).

(1)
3.2

=⇒(4). Toward (4), take S ∈ dcozδX. By (E), there is S0 ∈ dcozX
with S0 ⊆ S. By 3.2(c), there is un ↓ 0 in C(X) for which S0 = {x ∈ X :∧
n∈N un(x) = 0}. By 3.2(b), there is g ∈ C(S0) for which the restrictions

un|S0 have un|S0 → 0 (g) in C(S0). Since X is QF, we have βS0 = X, and
βg ∈ D(X). It follows that un → 0 (βg) in D(X).

(1)
4.1&3.1
=⇒ (3). Suppose un ↓ 0 in D(X). By 4.1, S ≡ {x ∈ X :

∧
n∈N un(x)

= 0} ∈ dcozδX. We have u1 ≥ u2 ≥ · · · , and S0 = u−11 R ∩ S ∈ dcozδX
also, and

∧
n∈N un(x) = 0 for all x ∈ S0. By (E), there is S1 ∈ dcozX with

S1 ⊆ S0, so
∧
n∈N un(x) = 0 for all x ∈ S1. Now, S1 is locally compact and

σ-compact, and the restrictions un|S1 are in C(S1) (since u1|S1 ∈ C(S1)
and u1 ≥ un for all n). By 3.1(b), there is g ∈ C(S1) with un|S1 → 0 (g) in
C(S1). As in ‘(1)⇒(4)’, it follows that un → 0 (βg) in D(X).
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Remarks 5.2. One may wonder to what extent 5.1, or a particular
condition (m) in 5.1, or a particular implication (m)⇒(n) in 5.1, generalizes
to wider classes of vector lattices. We ignore condition (4).

(i) [16, 15.19] shows Ck(N) (the functions of compact (finite) support
on N) has (OC⇒ RUC). But obviously (σ) fails. Here there is no weak unit.

(ii) While for D(X), (1) iff (2), for C(X), neither implies the other. For
any compact X, C(X) has (σ), but X = [0, 1] fails (E). On the other hand,
if X contains densely (a copy of) N, then X will have (E) (because N is the
minimum member of a dcoz X). Here is such an X with C(X) failing (σ) (see
of [10, 1.1(b)]). Let X =

∑
n∈NNn∪{ρ}, where a neighborhood of ρ contains∑

n≥k Nn for some k. Define bn ∈ C(X) as: if x 6∈ Nn, then bn(x) = 0;
if x ∈ Nn, then bn(x) = x. This {bn}n∈N witnesses C(X) failing (σ): if
{λn}n∈N ⊆ (0,+∞), choose xn ∈ Nn with xn ≥ n/λn. Note that xn → ρ.
The inequalities λnbn ≤ b for all n would force b(ρ) = +∞, so b 6∈ C(X).

(iii) The proof of 5.1((1)⇒(3)) comes very close to requiring being in a
D(X), X QF.

More Remarks 5.3. (a) We do not know what to make of condition
5.1(4) (nor whether the inclusion ⊇ there can be equality).

(b) For compact X not necessarily QF, one can write down the property
‘D(X) qua lattice has (σ)’. One sees that in 5.1, (2)⇒(1) does not require
X QF, while (2)⇐(1) seems to.

(c) As noted in §1, a vector lattice ‘Measurable mod Null’ for a σ-finite
measure, or just ‘M/N ’, has M/N ≈ D(X) for X extremally disconnected
with ccc. [16, 71.4] (resp. [16, 71.5]) proves separately that such M/N has
(OC⇒ RUC) (resp. (σ)). The proof of the former is rather complicated,
using the classical Egoroff Theorem. 5.1 shows these complications are in
some sense avoidable. Of course, this derivation uses M/N ≈ D(X), which
is a representation theorem, and the proofs alluded to just use the given
presentation of the M/N (and [16] avoids representation theorems wherever
possible).

(d) An example: In view of (c), one might ask if D(X) satisfies 5.1
whenever X is compact ED with ccc. The answer is ‘no’. Let Y be the

irrationals, and βY
π
� aβY = X the absolute (projective cover, Gleason

cover) of βY with irreducible map π. Here, Y is dcozδ βY , and it follows
that π−1Y is dcozδX, since irreducible maps inversely preserve density. If
X had (E), there would be S ∈ dcozX with S ⊆ π−1Y , so π(S) ⊆ Y . But
irreducible maps carry open sets to sets with dense interior, so Y would
contain densely an open set in βY , which it does not.

(e) Another example: One might ask whether D(X) satisfying 5.1 implies
X has ccc, or says anything about the Souslin number of X. First, RI for
|I| < b satisfies 5.1 (see 2.2; RI ≈ D(βI)) and ℵ0 < |I| means βI fails ccc.
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Second, the familar space λD = D∪{λ}, D discrete and neighborhoods of λ
with countable complement, is a Lindelöf P-space, βλD is BD, D(βλD) ≈
C(λD) and the latter has (σ) [10, §3]. But the Souslin number of βλD is |D|.

6. C(almost P): convergence properties. This section is ground-
clearing for §7.

Proposition 6.1. Suppose Y is almost P. Then βY is QF, C(Y ) ≈
D(βY ), and for C(Y ), the properties (σ), (OC⇒ RUC), and (E) are equiv-
alent.

Proof. If S ∈ dcozβY , then S ∩ Y ∈ dcozY so S ∩ Y = Y (since Y is
almost P), so S ⊇ Y and therefore S is C∗-embedded in βY .

C(Y ) 3 f 7→ βf ∈ D(βY ) is an injection, and is onto because Y is
almost P.

The last assertion is 5.1 for our C(Y ).

Theorem 6.2. C(Y ) has (OC⇒ PWC) (i.e., un ↓ 0 implies
∧
n∈N un(y)

= 0 for all y ∈ Y ) iff Y is almost P.

Proof. Suppose Y is almost P, and un ↓ 0 in C(Y ). Applying 5.1 to
C(Y ) ≤ D(βY ), one finds{

x ∈ βY :
∧
n∈N

βun(x) = 0
}
≡ T ∈ dcozδ βY.

Since Y is almost P, T ⊇ Y and therefore un(y) ↓ 0 for all y ∈ Y .
Suppose Y is not almost P, and f ∈ C(Y )+ has Zf 6= ∅, nowhere dense.

Then, for all n, Zf and {y ∈ Y : f(y) ≤ 1/n} ≡ Zn are disjoint zero-sets, so
there is vn ∈ C(Y, [0, 1]) with vn = [1 on Zf ; 0 on Zn]. Then un =

∧
i≤n vi

has un ↓ 0 in C(Y ), but
∧
n∈N un(x) = 1 for x ∈ Zf .

Theorem 6.3. If C(Y ) has (OC⇒ RUC), then Y is almost P.

Proof. Any C(Y ) has (RUC⇒ PWC) (because |un − u| ≤ εg implies
|un(y)− u(y)| ≤ εg(y) for all y ∈ Y ). So, if C(Y ) has (OC⇒ RUC), it also
has (OC⇒ RUC), and 6.2 applies.

The converse of 6.3 fails: see 6.5 below.

Theorem 6.4. Suppose G ∈W ∗ (which means the unit is strong). Then
G has (σ), and the following are equivalent:

(a) G has (OC⇒ RUC) (or, G is strongly Egoroff ),
(b) G has (OC⇒ PWC) (‘pwc’ means pointwise on YG),
(c) YG is almost P.

Proof. G ∈ W ∗ means all g ∈ G are bounded functions on YG. This
implies that G has (σ), thus in (a) we have the ‘(or, · · · )’. Also, gn → 0
r.u. in G iff gn → 0 uniformly on YG. This shows (a)⇒(b), and (b)⇒(a)
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by Dini’s Theorem [21, 7.13] on YA. Finally, (b)⇔(c) is proved exactly as
6.2; the vn there can be chosen from G because G separates compact sets
in YG.

Remarks 6.5. (a) Veksler [23] asserts (without proof) 6.2 and 6.3 for
compact Y , and 6.4 for G = C(Y ), Y compact. (We interpret his phrase—in
translation from Russian—‘double sequence Theorem’ to be the definition of
‘strongly Egoroff’ according to [16, p. 68], which for an archimedean vector
lattice is equivalent to what we are using, namely ‘(σ) and (OC⇒ RUC)’
[16, 68.8 and 70.2].)

(b) The converse of 6.3 is false; in fact, Y having P does not imply C(Y )
has (OC⇒ RUC). As noted in 2.1, RI (= C(I) ≈ D(βI), I discrete) has
(σ) (iff (OC⇒ RUC), by 5.1) iff |I| < (b). So |I| ≥ b (e.g., |I| = 2ℵ0) has
the discrete I a P-space and C(I) failing (OC⇒ RUC).

(c) Standard examples of compact almost P spaces are: one-point com-
pactifications of uncountable discrete spaces, and βX \ X for X locally
compact and realcompact [7].

(d) Let Y be compact almost P. If G ≤ C(Y ) is any point-separating
vector sublattice, then G is strongly Egoroff (by 6.4, because Y = YG). Thus,
if S is any subset of C(Y ) which separates points, then the vector lattice G
generated in C(Y ) by S is strongly Egoroff.

7. Examples in C(almost P). We now construct many examples of
the main Theorem 5.1, compact QF X with (E).

These spaces will be X = βT for T almost P so that D(X) = C(T ) (6.1).
Varying the input to the construction results in various properties of X: an
F-space, connected or zero-dimensional. When X is zero-dimensional, there
is the Boolean algebra clopX, which is a ‘Egoroff Boolean algebra’; see §8
for that discussion.

In the following, a P-set is a subset such that each Gδ containing it is a
neighborhood of it; and Y ∗ denotes βY \ Y .

Lemma 7.1. Suppose T =
⋃
n∈N Tn, with each Tn a closed P-set in T ,

and Tn ⊆ Tn+1. Then:

(a) T has the weak topology with respect to {Tn}n∈N.
(b) If each Tn is compact, then T ∗ is strongly ω-bounded (each σ-compact

subset has compact closure).

Proof. (a) This means that A ⊆ T is closed in T if for each n, A ∩ Tn is
closed in Tn. Suppose A satisfies this latter condition, and suppose x ∈ T \A,
say x ∈ T1 \A. Let U be a cozero-set in T with x ∈ U and U ∩ (A∩T1) = ∅.
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(The family {T1 ∩ U : U ∈ cozT} is a base in T1.) Observe that

A ∩ U =
⋃
n∈N

(A ∩ Tn ∩ U)

is an Fσ in T which misses T1. Since T1 is a P-set in T , we have A ∩ U ∩ T1
= ∅, so U \A ∩ U is a neighborhood of x that misses A.

(b) is an immediate consequence of (a) and van Douwen’s Lemma ([14,
3.5], [1, 3.8]). (Other proofs are possible.)

Theorem 7.2. Suppose that T =
⋃
n∈N Tn with each Tn almost P and

a compact P-set in T and Tn ⊆ Tn+1. Then T is σ-compact almost P, and
βT is QF with (E).

Proof. We will first show that T is almost P. To this end, let S be a
nonempty Gδ in T . We may assume that S ∩ T1 6= ∅. For every n, let Un be
the interior of S ∩ Tn in Tn. Clearly, Un is nonempty and open in Tn, and
Un+1 ∩ Tn ⊆ Un. Hence U =

⋃
n∈N Un has the property that U ∩ Tn is open

in Tn for all n. But this implies by 7.1 that U is open in T . So T is almost P,
and βT is QF (6.1).

Toward (E), suppose {Sn}n∈N ⊆ dcozβT . Then
⋂
n∈N Sn ⊇ T (because

T is almost P), so F ≡
⋃
n∈N(βT \Sn) ⊆ T ∗, so by 7.1(b), F (closure in T ∗)

is compact. So F is closed in βT and misses T , and since T is Lindelöf,
Smirnov’s Theorem [6, 3.12.25] yields a zero-set Z in βT with F ⊆ Z ⊆ T ∗.
Thus βT \ Z ⊆

⋂
n∈N Sn, as desired.

The simplest examples of this situation: for every n, let Kn be compact
almost P, and set Tn ≡

∑
i≤nKi and T ≡

∑
n∈NKn =

⋃
n∈N Tn. In this

case (E) is obvious because T is almost P, and being locally compact and
σ-compact, already a cozero-set in βT . In the construction which follows,
the T is not locally compact and the βT is even F. See also §9 below.

Lemma 7.3. Suppose S is locally compact and σ-compact.

(a) ([17, 1.25]; also [7], [9, 14.27]) S∗ is almost P, and has every σ-
compact subspace C∗-embedded, and hence is F.

(b) ([19, proof of 5.1]) If A is closed in S, then A ∩ S∗ is a P-set in S∗

(the closure in βS).

Theorem 7.4. Suppose K is compact, and for all n, Kn is a compact
subset of K with Kn ⊆ Kn+1. Suppose J is locally compact, σ-compact, not
compact. Let

Z = K × J, Sn = Kn × J, Tn = S∗n.

Then

S∗n ⊆ Z∗, S∗n ⊆ S∗n+1 ∀n,
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and T =
⋃
n∈N Tn (union in Z∗) has the properties: T is almost P and F,

and βT is F with property (E).

Proof. We verify the hypotheses in 7.1, use 7.3 and apply 7.2.

Z is locally compact and σ-compact, and each Sn is closed in Z.

First, Z is normal and Sn is C∗-embedded (Tietze–Urysohn). Thus by
a well-known argument, βSn is (equivalent to) Sn (closure in βZ), and by
7.3(b), S∗n = Z∗ ∩ Sn, and is a P-set in Z∗. This also shows that S∗n ⊆ S∗n+1

for all n, and we have the union in Z∗, T =
⋃
n∈N Tn. Next, each Sn is also

locally compact and σ-compact, hence (S∗n =) Tn is almost P, and so is T
by 7.2.

Now, T is a σ-compact subset of Z∗, hence T is C∗-embedded in Z∗ by
7.3(a). It follows that T is F [9, 14.26]. We finally claim that Tn is a P-set
in T . To see this, let {Um}m be any family of open neighborhoods of Tn
in T . Then T \ Um is σ-compact for every m, hence E = T \

⋃
m∈N Um is

σ-compact. But then Tn ∩ E = ∅, since Tn is a P-set in Z∗.

By 7.2, βT has (E).

Examples 7.5. (a) In 7.4, useKn=
∏
m∈N[1/n, 2−1/n]m ⊆

∏
m∈N[0, 2]m

= K, and J = [0, 1). Then βT is a connected F-space with (E).

(b) In 7.4, use K and J zero-dimensional. Then βT is a zero-dimensional
F-space with (E) (and the Boolean algebra clopβT is ‘weakly countably
complete’ and ‘Egoroff’—see §8).

Proof. Everything is obvious from 7.4, except perhaps that in (a), βT is
connected. Here, each Tn is connected (by an easy argument like [9, p. 92]).
And any union of an increasing sequence of connected spaces is again con-
nected.

Remark 7.6. In 7.5(b), the Boolean algebras clopβT are never σ-com-
plete, in contrast to the Egoroff BAs mentioned in §8 below. This is because
(almost P)∩BD = P (see §1), and a compact P-space is finite [9, 4K]. Thus,
in 7.2, if βT were BD, T would be, and then Tn would be also (a P-set in a
BD space is BD), and thus finite. But in 7.4, the Tn (= S∗n) are not finite.

8. Boolean algebras. Let A be a Boolean algebra (BA) with zero-
dimensional (ZD) Stone space SA (see [22] if necessary).

In [15], the ‘Egoroff property’ of a BA A is formulated in Boolean terms,
and attributed to ‘Nakano, though in a different form’. In [8, §316] the
property is reformulated, and dualized to SA, where it becomes the topo-
logical property (E). (Our (E) does not assume ZD, §7 here has connected
X with (E).) One might also compare the closely related discussion in [22,
§§19, 20, 30], where (E) is almost defined.
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If a compact QF X is also ZD, we have the BA clopX with S(clopX)
= X, and 5.1 says D(X) is strongly Egoroff iff X has (E).

Note that in §7 we have some compact F-spaces X which are ZD, so the
clopX are Egoroff BAs, and also ‘weakly countably complete’ (equivalent
to SA = X being F). See [17].

For the M/N ≈ D(X) mentioned in 5.3(c), which have X ED (thus ZD)
with ccc, [13] shows that clopX is a Egoroff BA.

Also, the Maharam algebras discussed in [8, §393] can be seen to be
Egoroff from the result of Todorčević [8, 393S].

[16] shows RI has the Egoroff property for vector lattices (which we have
not defined) iff P(I), the power set BA (≈ clopβI), is Egoroff (see also [13]),
and that for |I| = ℵ0 this holds, and conversely under CH (ℵ1 = 2ℵ0).

[4] shows P(I) is Egoroff iff |I| < b (the bounding number). We noted in
2.2 that [10] shows RI has (σ) (iff RI is strongly Egoroff, by 5.1) iff |I| < b.

9. Some new examples from old. We have exhibited many compact
QF X with (E) (with their dual D(X), which are strongly Egoroff): the
compact almost P from §6, the βT from §7; the Stone spaces SA from §8.

New examples are constructed (perhaps mixing the above types) as cer-
tain X =

∑
i∈I Xi, the Xi having (E) (hence the dual D(X) =

∏
i∈I D(Xi)).

There is certainly a restriction on |I| here, as evidenced by the fact
mentioned earlier several times that βI has (E) (i.e., RI is strongly Egoroff)
iff |I| < b. What we can say easily goes as follows; in the discussion we
always refer to X =

∑
i∈I Xi, and assume that |Xi| ≥ 2 for each i.

Lemma 9.1. X is almost P (resp. QF) iff each Xi is almost P (resp.
QF). In each case, βX is QF.

(This is easily proved.)

Lemma 9.2 ([10, §3]). Suppose all Xi are compact. Then C(X) has (σ)
iff each C(Xi) has (σ) and |I| < b.

Corollary 9.3. Suppose all Xi are compact almost P . Then βX has
(E) iff |I| < b.

Proof. Here, C(X) ≈ D(βX) (by 9.1 and 6.1), so this vector lattice has
(σ) iff βX has (E) (by 5.1). Each C(Xi) has (σ) of course, so C(X) has (σ)
iff |I| < b (by 9.2).

Now, analogous to 9.2, one would like to have

Conjecture 9.4. Suppose all Xi are compact QF. Then D(βX) has
(σ) (i.e., βX has (E)) iff each D(Xi) has (σ) (i.e., Xi has (E)) and |I| < b.

But we have proved neither implication (and similar issues arise in
[10, §3]). However, we have
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Proposition 9.5. Suppose all Xi are compact QF.

(a) If D(βX) has (σ), then each D(Xi) has (σ) (i.e., if βX has (E),
then each Xi does).

(b) If each Xi has (E) and |I| ≤ ℵ0, then βX has (E).

Proof. (a) The restriction mapD(X) 3 f 7→ f |Xi ∈ D(Xi) is a surjective
vector lattice homomorphism and such a map preserves (σ).

(b) Let I = N. If T ∈ dcozβX, then Tn ≡ T ∩Xn ∈ dcozXn, so by (E),
there is Sn ∈ dcozXn with Sn ⊆ Tn, so S ∈ dcozβX (because X ∈ dcozβX,
since |I| = ℵ0).
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References

[1] A. V. Arhangel’skii, First-countability, tightness, and other cardinal invariants in
remainders of topological groups, Topology Appl. 154 (2007), 2950–2961.

[2] F. Azarpanah, On almost P -spaces, Far East J. Math. Sci., Special Volume (2000),
Part I, 121–132.

[3] R. N. Ball and A. W. Hager, Epicompletion of Archimedean l-groups and vector
lattices with weak unit, J. Austral. Math. Soc. Ser. A 48 (1990), 25–56.

[4] A. Blass and T. Jech, On the Egoroff property of pointwise convergent sequences of
functions, Proc. Amer. Math. Soc. 98 (1986), 524–526.

[5] F. Dashiell, A. Hager, and M. Henriksen, Order-Cauchy completions of rings and
vector lattices of continuous functions, Canad. J. Math. 32 (1980), 657–685.

[6] R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989.
[7] N. J. Fine and L. Gillman, Extension of continuous functions in βN, Bull. Amer.

Math. Soc. 66 (1960), 376–381.
[8] D. H. Fremlin, Measure Theory. Vol. 3, Torres Fremlin, Colchester, 2004.
[9] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Prince-

ton, 1960.
[10] A. Hager, The σ-property in C(X), Comm. Math. Univ. Carolin., to appear.
[11] F. Hausdorff, Set Theory, 2nd English ed., Chelsea, New York, 1962.
[12] M. Henriksen and D. G. Johnson, On the structure of a class of archimedean lattice-

ordered algebras, Fund. Math. 50 (1961/1962), 73–94.
[13] J. A. R. Holbrook, Seminorms and the Egoroff property in Riesz spaces, Trans.

Amer. Math. Soc. 132 (1968), 67–77.
[14] I. Juhász, J. van Mill, and W. Weiss, Variations on ω-boundedness, Israel J. Math.

194 (2013), 745–766.
[15] W. A. J. Luxemburg, On finitely additive measures in Boolean algebras, J. Reine

Angew. Math. 213 (1963/1964), 165–173.
[16] W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces. Vol. I, North-Holland, Ams-

terdam, 1971.
[17] J. van Mill, An introduction to βω, in: Handbook of Set-Theoretic Topology,

K. Kunen and J. E. Vaughan (eds.), North-Holland, Amsterdam, 1984, 503–567.
[18] J. van Mill, Infinite-Dimensional Topology: Prerequisites and Introduction, North-

Holland, Amsterdam, 1989.

http://dx.doi.org/10.1016/j.topol.2007.05.013
http://dx.doi.org/10.1017/S1446788700035175
http://dx.doi.org/10.1090/S0002-9939-1986-0857955-3
http://dx.doi.org/10.4153/CJM-1980-052-0
http://dx.doi.org/10.1090/S0002-9904-1960-10460-0
http://dx.doi.org/10.1090/S0002-9947-1968-0228979-8
http://dx.doi.org/10.1007/s11856-012-0062-8


Egoroff and convergence properties 285

[19] J. van Mill and C. F. Mills, A topological property enjoyed by near points but not by
large points, Topology Appl. 11 (1980), 199–208.

[20] E. H. Moore, Introduction to a form of General Analysis, The New Haven Math-
ematical Colloquium (the 5th Colloquium of Amer. Math. Soc., 1906), Yale Univ.
Press, 1910, 1–150.

[21] W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, New York,
1976.

[22] R. Sikorski, Boolean Algebras, 3rd ed., Ergeb. Math. Grenzgeb. 25, Springer, New
York, 1969.

[23] A. I. Veksler, P ′-points, P ′-sets, P ′-spaces. A new class of order-continuous mea-
sures and functionals, Dokl. Akad. Nauk SSSR 212 (1973), 789–792 (in Russian).

A. W. Hager
Department of Mathematics
Wesleyan University
Middletown, CT 06459, U.S.A.
E-mail: ahager@wesleyan.edu

J. van Mill
KdV Institute for Mathematics

University of Amsterdam
Science Park 105-107

P.O. Box 94248
1090 GE Amsterdam, The Netherlands

E-mail: j.vanMill@uva.nl

http://dx.doi.org/10.1016/0166-8641(80)90008-5



	1 Preliminaries
	2 RN
	3 C(S), S locally compact and -compact
	4 Sets of pointwise convergence
	5 D[QF]
	6 C(almost P): convergence properties
	7 Examples in C(almost P)
	8 Boolean algebras
	9 Some new examples from old
	References

