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Kurt Gödel Research Center for Mathematical Logic, University of Vienna

Währinger Straße 25, A-1090 Wien, Austria

e-mail: andrea.medini@univie.ac.at

URL: http://www.logic.univie.ac.at/˜medinia2/

AND

Jan van Mill∗∗

KdV Institute for Mathematics, University of Amsterdam

Science Park 904, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands

e-mail: j.vanMill@uva.nl

URL: http://staff.fnwi.uva.nl/j.vanmill/

AND

Lyubomyr Zdomskyy∗ †
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ABSTRACT

We construct a homogeneous subspace of 2ω whose complement is dense

in 2ω and rigid. Using the same method, assuming Martin’s Axiom, we

also construct a countable dense homogeneous subspace of 2ω whose com-

plement is dense in 2ω and rigid.

Introduction

All spaces are assumed to be separable and metrizable. Our reference for general

topology will be [vM4]. Given a space X , we will denote by H(X) the group of

homeomorphisms of X with the operation of composition. Recall that a space

X is rigid if H(X) = {id}. We refer the reader to [vD, Section 13] for the early

history of rigid spaces. Let us only mention that the first non-trivial example of

rigid space was the zero-dimensional subspace of R constructed by Kuratowski

in [Kur].

Recall the following definitions. A space X is homogeneous if for every pair

(x, y) of points of X there exists h ∈ H(X) such that h(x) = y. A space X is

countable dense homogeneous if for every pair (A,B) of countable dense

subsets of X there exists h ∈ H(X) such that h[A] = B. These are classical

notions, and they have been studied in depth (see, for example, the survey

[AvM]).

Examples of rigid spaces abound in the literature. See [dGW] for exam-

ples of rigid continua of positive finite dimension. Other examples of this type

were given in [AS] and [ADS], with the additional property that their square is

a manifold, hence homogeneous and countable dense homogeneous (see [vM4,

Theorem 1.6.9 and Corollary 1.6.8]). For a non-trivial “very” rigid contin-

uum, see [Co]. A rigid space whose square is homeomorphic to the Hilbert

cube [0, 1]ω, hence homogeneous and countable dense homogeneous (see [vM4,

Theorem 1.6.6 and Theorem 1.6.9]), was given in [vM1]. For other infinite-

dimensional examples, see [Di2] and [Di1]. A non-trivial zero-dimensional rigid

space whose square is homogeneous was given in [La].1 However, by [vEMS],

there are no non-trivial rigid zero-dimensional Borel spaces.

1 On the other hand, the existence of a non-trivial zero-dimensional rigid space whose

square is countable dense homogeneous is an open problem (see [Me, Question 1.11]).
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The interest in most of the above examples lies in the fact that rigid spaces

have as few homeomorphisms as possible, while homogeneous spaces and count-

able dense homogeneous spaces must have “many” homeomorphisms. In this

article, we will show how to obtain both extremes simultaneously. More pre-

cisely, we will construct subspaces of 2ω with a prescribed homogeneity-type

property, while making sure at the same time that their complements are dense

in 2ω and rigid. Our main results are Theorem 6 and Theorem 8, whose proofs

are both based on the general method given by Theorem 5. For other examples

of a similar flavor, see [vE], [vEvM], [vMW] and [Sh].

We will say that a subspace X of 2ω is relatively homogeneous if for ev-

ery pair (x, y) of points of X there exists h ∈ H(2ω) such that h[X ] = X and

h(x) = y. Every relatively homogeneous subspace of 2ω is obviously homoge-

neous, and Corollary 7 gives a ZFC counterexample to the reverse implication.

Similarly, we will say that a subspace X of 2ω is relatively countable dense

homogeneous if for every pair (A,B) of countable dense subsets of X there

exists h ∈ H(2ω) such that h[X ] = X and h[A] = B. Every relatively countable

dense homogeneous subspace of 2ω is obviously countable dense homogeneous,

and Corollary 10 shows that the reverse implication is not provable in ZFC.

This answers a question raised by the referee of the recent paper [KMZ], which

was the original motivation for the research contained in this article.

1. Preliminaries

Recall that a space is crowded if it is non-empty and has no isolated points.

We will write X ≈ Y to mean that the spaces X and Y are homeomorphic.

Given a subset X of a space Z and a subgroup H of H(Z), we will let

H[X ] =
⋃

h∈H
h[X ]

be the closure of X under the action of H. Notice that H[H[X ]] = H[X ]. For

simplicity, we will let H(x) = H[{x}]. Furthermore, given a group H and a

subset S of H, we will denote by 〈S〉 the subgroup of H generated by S.
Given a surjection π : X −→ Y , we will say that a subset S of X is saturated

with respect to π, if π−1[π[S]] = S. The proof of the following simple lemma is

left to the reader.
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Lemma 1: Let π : X −→ Y be a continuous surjection between compact spaces.

If A ⊆ X is saturated with respect to π, then π � A : A −→ π[A] is a closed

continuous surjection.

The following lemma, which originally appeared as [vM2, Theorem 2.3] in a

slightly different form, will allow us to ensure the homogeneity of the example

given by Theorem 6. We need some notation, which will be used throughout

the entire paper. Let

Q = {x ∈ 2ω : there exists m ∈ ω such that xn = xm whenever n ≥ m}.

Given q ∈ Q, let hq ∈ H(2ω) be the homeomorphism defined by hq(x) = x + q

for x ∈ 2ω, where + denotes coordinatewise addition modulo 2. Let V =

{hq : q ∈ Q}, and observe that V is a subgroup of H(2ω).

Lemma 2: Assume that X is a subspace of 2ω such that V [X ] = X . Then X

is homogeneous.

Proof. Fix the usual metric d on 2ω defined by d(x, y) =
∑

n∈ω(|xn − yn|/2n).
By [vM2, Lemma 2.1] (see also [vM4, Corollary 1.9.2]), it will be enough to show

that if x, y ∈ X then x and y have arbitrarily small homeomorphic clopen neigh-

borhoods. This is straightforward, using the fact that each hq is an isometry

with respect to d.

The following classical result, which is a well-known tool for “killing” homeo-

morphisms (see [vM3] for other applications), will be the key to obtaining rigid

spaces. For a proof of Lemma 3, see [Ke, Theorem 3.9 and Exercise 3.10].

Lemma 3 (Lavrentiev): Let f : W −→ W be a homeomorphism, where W is a

subspace of some Polish space Z. Then there exists a Gδ subset T of Z and a

homeomorphism g : T −→ T such that f ⊆ g.

Our reference for set theory will be [Kun]. We will denote by MA(σ-centered)

the statement that Martin’s Axiom for σ-centered posets holds. Recall that

add(meager) is the minimum cardinal κ such that there exists a collection C
of size κ consisting of meager subsets of 2ω such that

⋃
C is non-meager in

2ω.2 It is clear that ω1 ≤ add(meager) ≤ c. Furthermore, it is well-known

2 In [Kun, Definitions III.1.2 and III.1.6], Kunen uses R instead of 2ω . Since R\Q ≈ ωω ≈
2ω \Q, it is easy to see that this makes no difference.
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that MA(σ-centered) implies add(meager) = c (see, for example, [Kun, Lemmas

III.3.22, III.3.26 and III.1.25]).

The following lemma, which first appeared as [BB, Lemma 3.2], will allow us

to ensure the countable dense homogeneity of the example given by Theorem

8. See [Me, Corollary 2.2] for a simpler version of the proof. Given an infinite

cardinal λ ≤ c and a subset D of 2ω, we will say that D is λ-dense if |D∩U | = λ

for every non-empty open subset U of 2ω.

Lemma 4 (Baldwin, Beaudoin): Assume MA(σ-centered). Let κ < c be a cardi-

nal. Suppose that Aα and Bα are λα-dense subsets of 2
ω for α < κ, where each

λα < c is an infinite cardinal. Also assume that Aα ∩Aβ = ∅ and Bα ∩Bβ = ∅

whenever α �= β. Then there exists f ∈ H(2ω) such that f [Aα] = Bα for every

α < κ.

2. The general method

The following theorem gives a general method for embedding suitable zero-

dimensional spaces into 2ω, so that their complement will be non-trivial and

rigid. The strategy of its proof is to combine Lemma 3 with the idea of “splitting

points” in a linearly ordered space, which dates back to the classical double

arrow space of Alexandroff and Urysohn (see [AU]).

Theorem 5: Assume that the following requirements are satisfied:

• X is a subspace of 2ω.

• Y = 2ω \X .

• H is a subgroup of H(2ω).

• D is a countable dense subset of 2ω such that D ⊆ Y and D ∩Q = ∅.

• G is the collection of all homeomorphisms g such that dom(g) and ran(g)

are Gδ subspaces of 2ω.

Furthermore, assume that the following conditions hold:

(1) H[X ] = X .

(2) If h ∈ H \ {id} then h[D] ∩D = ∅.

(3) If g ∈ G and |{x ∈ dom(g) : g(x) /∈ S(x)}| = c for every subgroup S of

H such that |S| < add(meager), then there exists z ∈ dom(g) ∩X such

that g(z) /∈ X .
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Then there exists a subspace X∗ ≈ X of 2ω such that 2ω \ X∗ is dense in 2ω

and rigid.

Proof. Let Z = 2ω. First, we will show that Y ∩U is uncountable for every non-

empty open subset U of Z. Condition (2) implies that h[D]∩g[D] = ∅ whenever

h, g ∈ H and h �= g. In particular, since H[D] ⊆ H[Y ] = Y by condition (1), the

desired conclusion holds if H is uncountable. Now assume that H is countable.

We will actually show that X is a Bernstein set.3 Fix a nowhere dense perfect

subset K of Z. Notice that Z\H[K] is a comeager subset of Z, hence it contains

a perfect subset K ′. Fix a homeomorphism g : K −→ K ′, and notice that g ∈ G.
Since |{x ∈ dom(g) : g(x) /∈ H(x)}| = |K| = c and |H| = ω < add(meager),

condition (3) shows that X ∩ K �= ∅. The same reasoning, applied to g−1,

shows that Y ∩K �= ∅.

Let D∗ = {d− : d ∈ D} ∪ {d+ : d ∈ D}, where we use the notation d− =

〈d,−1〉 and d+ = 〈d, 1〉 for d ∈ D. Define

Z∗ = (Z \D) ∪D∗.

Consider the function π : Z∗ −→ Z defined by the following two conditions:

• π(d−) = π(d+) = d for every d ∈ D.

• π � (Z \D) = id.

Let ≺ denote the linear ordering on Z∗ defined by the following two conditions:

• d− is the immediate predecessor of d+ for every d ∈ D.

• x ≺ y whenever x, y ∈ Z∗ and π(x) < π(y), where < denotes the usual

lexicographic order on Z.

Consider the order topology induced by ≺ on Z∗. Since D ∩ Q = ∅, it is

easy to check that Z∗ is a compact crowded zero-dimensional space. Therefore

Z∗ ≈ 2ω. Furthermore, it is easy to check that π is a continuous surjection.

Let X∗ be the subspace of Z∗ whose underlying set is X , and notice that X∗

is saturated with respect to π. Observe that π � X∗ : X∗ −→ X is a closed

continuous surjection by Lemma 1. Since it is also injective (in fact, it is the

identity), it follows that X∗ ≈ X .

Let Y ∗ = Z∗ \ X∗, and notice that Y ∗ ⊇ D∗ is dense in Z∗. Assume that

f∗ : Y ∗ −→ Y ∗ is a homeomorphism. Let B∗ =
⋃

k∈Z
(f∗)k[D∗] and B = π[B∗].

3 Recall that a subset X of 2ω is a Bernstein set if X ∩ K �= ∅ and (2ω \ X) ∩ K �= ∅

for every perfect subset K of 2ω . Notice that the complement of a Bernstein set is also

a Bernstein set. Since 2ω ≈ 2ω × 2ω , every Bernstein set is c-dense in 2ω .
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Let W = Y ∗ \ B∗ = Y \ B ⊆ Z, and notice that f = f∗ � W : W −→ W

is a homeomorphism. By Lemma 3, there exists a Gδ subspace T of Z and a

homeomorphism g : T −→ T such that f ⊆ g. Notice that g ∈ G. Furthermore,

since T ′ = T \
⋃

k∈Z
gk[T ∩B] ⊇ W is still a Gδ and g′ = g � T ′ : T ′ −→ T ′ is still

a homeomorphism, we can assume without loss of generality that T ∩B = ∅.

First assume that |{x ∈ T : g(x) /∈ S(x)}| < c for some subgroup S of H such

that |S| < add(meager), and fix such a subgroup. Notice that T is a crowded

Polish space because it is a dense Gδ subset of Z. Let Th = {x ∈ T : g(x) =

h(x)} for h ∈ S, and notice that each Th is closed in T . Since |S| < add(meager),

it follows that at least one Th has non-empty interior in T . Assume, in order to

get a contradiction, that Th has non-empty interior for some h ∈ S \ {id}, and
fix such an h. Fix a, b ∈ Z such that a < b and ∅ �= (a, b) ∩ T ⊆ Th.

Fix d ∈ D∩ (a, b). Since D∩Q = ∅ and Y ∩U is uncountable for every non-

empty open subset U of Z, it is possible to fix a sequence 〈an : n ∈ ω〉 consisting
of elements of (a, d)∩W = (a, d)∩(Y \B) and a sequence 〈bn : n ∈ ω〉 consisting
of elements of (d, b) ∩ W = (d, b) ∩ (Y \ B) such that an → d and bn → d in

Z. Observe that an → d− and bn → d+ in Y ∗. In particular, since f∗ is a

homeomorphism, the sequences 〈f∗(an) : n ∈ ω〉 and 〈f∗(bn) : n ∈ ω〉 should

converge to different limits in Y ∗, hence in Z∗.
Notice that h(an) → h(d) and h(bn) → h(d) in Z because h is continuous.

Since h �= id, condition (2) guarantees that h(d) /∈ D. Furthermore, the fact

that each an ∈ (a, b) ∩ W ⊆ (a, b) ∩ T ⊆ Th implies that h(an) = g(an) =

f(an) = f∗(an) /∈ D. Therefore f∗(an) = h(an) → h(d) in Z∗ as well. Using

a similar argument, one sees that f∗(bn) = h(bn) → h(d) in Z∗, which is a

contradiction. In conclusion, Th has non-empty interior if and only if h = id.

As one can easily check, this implies that Tid is dense in T . Therefore, the

function g is the identity on T , which implies that f∗ is the identity on Y ∗.
This shows that Y ∗ is rigid.

Now assume that |{x ∈ T : g(x) /∈ S(x)}| = c for every subgroup S of H such

that |S| < add(meager). Then, by condition (3), we can fix z ∈ T ∩X such that

g(z) /∈ X . Since T ∩B = ∅, it is clear that T = dom(g) = ran(g) is the disjoint

union of T ∩ X and W . It follows that g(z) ∈ W . This is a contradiction,

because it implies that z = g−1(g(z)) = f−1(g(z)) ∈ W .
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3. The homogeneous example

Theorem 6: There exists a homogeneous subspace of 2ω whose complement is

dense in 2ω and rigid.

Proof. Our plan is to apply Theorem 5 with H = V . Let G = {gα : α ∈ c} be

an enumeration. Using the fact that V is countable, it is easy to construct a

countable dense subset D of 2ω such that D ∩ Q = ∅ and h[D] ∩ D = ∅ for

every h ∈ V \ {id}.
Using transfinite recursion, we will construct increasing sequences 〈Xα : α ∈

c〉 and 〈Yα : α ∈ c〉 consisting of subsets of 2ω so that the following conditions

are satisfied for every α ∈ c:

(I) |Xα| < c and |Yα| < c.

(II) Xα ∩ Yα = ∅.

(III) V [Xα] = Xα.

(IV) If |{x ∈ dom(gα) : gα(x) /∈ V(x)}| = c, then there exists z ∈ dom(gα) ∩
Xα+1 such that gα(z) ∈ Yα+1.

Start by setting X0 = ∅ and Y0 = D. Take unions at limit stages. At a

successor stage α+ 1, suppose that Xα and Yα have already been constructed.

Assume that |{x ∈ dom(gα) : gα(x) /∈ V(x)}| = c. Then, it is possible to fix

z ∈ dom(gα) \ (V [Yα] ∪ g−1
α [Xα])

such that gα(z) /∈ V(z). Set Xα+1 = V [Xα ∪ {z}] and Yα+1 = Yα ∪ {gα(z)}.
Conclude the construction by setting X =

⋃
α∈cXα.

Since V [X ] = X by condition (III), it follows from Lemma 2 that X is ho-

mogeneous. It is clear that conditions (1) and (2) of Theorem 5 are satisfied.

To see that condition (3) holds, assume that g ∈ G and |{x ∈ dom(g) : g(x) /∈
S(x)}| = c for every subgroup S of V such that |S| < add(meager). Since V is

countable, this trivially implies that |{x ∈ dom(gα) : gα(x) /∈ V(x)}| = c, where

α ∈ c is such that gα = g. It follows from conditions (IV) and (II) that there

exists z ∈ dom(g) ∩X such that g(z) /∈ X .

Corollary 7: There exists a homogeneous subspace of 2ω that is not relatively

homogeneous.
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4. The countable dense homogeneous example

Theorem 8: Assume MA(σ-centered). Then there exists a countable dense

homogeneous subspace of 2ω whose complement is dense in 2ω and rigid.

Proof. Once again, we plan to apply Theorem 5. Let G = {gα : α ∈ c} be an

enumeration. Enumerate as {(Aα, Bα) : α ∈ c} all pairs of countable dense

subsets of 2ω, making sure to list each pair cofinally often. Fix a countable

dense subset D of 2ω such that D ∩Q = ∅.

Using transfinite recursion, we will construct an increasing sequence 〈Hα :

α ∈ c〉 consisting of subgroups of H(2ω), together with increasing sequences

〈Xα : α ∈ c〉 and 〈Yα : α ∈ c〉 consisting of subsets of 2ω, so that the following

conditions are satisfied for every α ∈ c:

(I) |Xα| < c and |Yα| < c.

(II) Xα ∩ Yα = ∅.

(III) |Hα| < c.

(IV) Hα[Xα] = Xα.

(V) If h ∈ Hα \ {id}, then h[D] ∩D = ∅.

(VI) If |{x ∈ dom(gα) : gα(x) /∈ Hα(x)}| = c, then there exists z ∈ dom(gα)∩
Xα+1 such that gα(z) ∈ Yα+1.

(VII) If Aα ∪Bα ⊆ Xα, then there exists f ∈ Hα+1 such that f [Aα] = Bα.

Start by setting H0 = {id}, X0 = ∅ and Y0 = D. Take unions at limit stages.

At a successor stage α + 1, suppose that Hα, Xα and Yα have already been

constructed. Assume that |{x ∈ dom(gα) : gα(x) /∈ Hα(x)}| = c. Then, it is

possible to fix

z ∈ dom(gα) \ (Hα[Yα] ∪ g−1
α [Xα])

such that gα(z) /∈ Hα(z). First we will construct Hα+1. If Aα ∪ Bα � Xα,

set Hα+1 = Hα. If Aα ∪ Bα ⊆ Xα, let f ∈ H(2ω) be obtained by applying

Lemma 9 with H = Hα, X = Xα ∪ {z}, Y = Yα ∪ {gα(z)}, A = Aα and

B = Bα, then set Hα+1 = 〈Hα ∪ {f}〉. Finally, set Xα+1 = Hα+1[Xα ∪ {z}]
and Yα+1 = Yα ∪ {gα(z)}. Conclude the construction by setting X =

⋃
α∈c Xα

and H =
⋃

α∈cHα.

Notice that H[X ] = X by condition (IV). Using condition (VII), it is straight-

forward to check that X is countable dense homogeneous. It is clear that con-

ditions (1) and (2) of Theorem 5 are satisfied. To see that condition (3) holds,

assume that g ∈ G and |{x ∈ dom(g) : g(x) /∈ S(x)}| = c for every subgroup
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S of H such that |S| < add(meager). Fix α ∈ c such that gα = g, and notice

that |{x ∈ dom(gα) : gα(x) /∈ Hα(x)}| = c because |Hα| < c = add(meager)

by condition (III) and MA(σ-centered). It follows from conditions (VI) and (II)

that there exists z ∈ dom(g) ∩X such that g(z) /∈ X .

Lemma 9: Assume MA(σ-centered). Furthermore, assume that the following

requirements are satisfied:

• X and Y are subsets of 2ω of size less than c.

• H is a subgroup of H(2ω) of size less than c.

• H[X ] ∩ Y = ∅.

• D is a countable dense subset of 2ω such that D ⊆ Y .

• h[D] ∩D = ∅ for every h ∈ H \ {id}.
• A and B are countable dense subsets of 2ω such that A ∪B ⊆ X .

Then there exists f ∈ H(2ω) such that the following conditions hold:

(1) f [A] = B.

(2) 〈H ∪ {f}〉[X ]∩ Y = ∅.

(3) h[D] ∩D = ∅ for every h ∈ 〈H ∪ {f}〉 \ {id}.

Proof. Let λ = max{|X |, |H|}, and notice that ω ≤ λ < c. Start by constructing

X∗ ⊇ X so that X∗ \ (A∪B) is λ-dense in 2ω and H[X∗]∩Y = ∅. Notice that

H[X∗]\(A∪B) is λ-dense in 2ω because |H| ≤ λ. We claim that any f ∈ H(2ω)

that satisfies the following conditions will also satisfy conditions (1) and (2).

(I) f [A] = B.

(II) f [H[X∗] \A] = f [H[X∗] \B].

In fact, conditions (I) and (II) immediately imply that f [H[X∗]] = H[X∗], and
therefore

〈H ∪ {f}〉[X ] ⊆ 〈H ∪ {f}〉[H[X∗]] = H[X∗],

which is disjoint from Y by construction.

Let H∗ = H \ {id}. Define Th = {x ∈ 2ω : h(x) = x} for h ∈ H, and observe

that each Th is closed. Furthermore, if h ∈ H∗ then Th is nowhere dense, since

D ⊆ 2ω \ Th. Define

C = {x ∈ 2ω : h(x) �= x for every h ∈ H∗}.

Since |H∗| < c = add(meager) by MA(σ-centered), one sees that C = 2ω \⋃
h∈H∗ Th is comeager in 2ω. In particular, C is c-dense in 2ω, so it is possible
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to fix a collection D of size λ consisting of countable dense subsets of 2ω such

that the following conditions hold:

•
⋃
D ⊆ C \ H[X∗ ∪ Y ].

• E ∩ F = ∅ whenever E,F ∈ D and E �= F .

• H(x) ∩H(y) = ∅ whenever x, y ∈
⋃
D and x �= y.

Given arbitrary E,F ∈ D and h, g ∈ H, one can easily verify that h[E]∩g[F ] =

∅ unless E = F and h = g.

Let T be the set of all s ∈ (H∗∪{−1, 1})<ω such that the following conditions

hold whenever {k, k+1} ⊆ dom(s). For notational convenience, we will always

assume that s = 〈sn−1, . . . , s0〉, where n = dom(s).

• If sk ∈ H∗ then sk+1 ∈ {−1, 1}.
• If sk ∈ {−1, 1} then sk+1 ∈ {sk} ∪ H∗.

Notice that |T | ≤ λ < c. Suppose that some f ∈ H(2ω) has been chosen. Given

s ∈ T such that dom(s) = n, we will say that w ∈ 〈H ∪ {f}〉 is of type s if it

can be written as

w = hn−1 · · ·h1h0,

where hk = sk if sk ∈ H∗ and hk = f sk if sk ∈ {−1, 1}. In particular, id is the

only element of type ∅.

Define Ds for s ∈ T so that the following conditions hold:

• D∅ = D.

• D〈h〉�s = h[Ds] whenever h ∈ H∗ and 〈h〉�s ∈ T .

• D = {D〈1〉�s : s ∈ T } ∪ {D〈−1〉�s : s ∈ T } is an injective enumeration.

Using the properties of D, it is straightforward to verify that Ds ∩ Dt = ∅

whenever s, t ∈ T and s �= t. Therefore, by Lemma 4, we can fix f ∈ H(2ω)

that satisfies the following conditions, together with conditions (I) and (II):

(III) f [Ds] = D〈1〉�s whenever 〈1〉�s ∈ T .

(IV) f [D〈−1〉�s] = Ds whenever 〈−1〉�s ∈ T .

In order to see that condition (3) holds, we will use induction on n = dom(s)

to prove that w[D] = Ds whenever w ∈ 〈H ∪ {f}〉 is of type s. The case n = 0

is trivial, so assume that n > 0. First assume that s = 〈h〉�s′ for some h ∈ H∗

and s′ ∈ T . This means that w = hw′ for some w′ of type s′. Using the

inductive assumption w′[D] = Ds′ , one sees that

w[D] = h[w′[D]] = h[Ds′ ] = D〈h〉�s′ = Ds.
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Now assume that s = 〈1〉�s′ for some s′ ∈ T . This means that w = fw′

for some w′ of type s′. Using condition (III) and the inductive assumption

w′[D] = Ds′ , one sees that

w[D] = f [w′[D]] = f [Ds′ ] = D〈1〉�s′ = Ds.

The case in which s = 〈−1〉�s′ for some s′ ∈ T can be dealt with similarly,

using the fact that f−1[Ds′ ] = D〈−1〉�s′ by condition (IV).

Corollary 10: Assume MA(σ-centered). Then there exists a countable dense

homogeneous subspace of 2ω that is not relatively countable dense homogeneous.

Question 11: Is it possible to prove in ZFC that there exists a countable dense

homogeneous subspace of 2ω whose complement is dense in 2ω and rigid?
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