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1. Introduction

All spaces under discussion are Tychonoff.
Let κ ≥ 2 be a cardinal. A space X is called κ-resolvable if there is a family of κ-many pairwise disjoint 

dense subsets of X. By a resolvable space we mean a space that is 2-resolvable. Observe that a resolvable 
space is crowded, i.e., has no isolated points. A space is called irresolvable if it is not resolvable. The 
notion of (κ-)resolvability is due to Hewitt [4] and Ceder [1], respectively. It is known that every locally 
compact crowded space is c-resolvable, where c denotes the cardinality of the continuum (for details and 
some historical comments, see Comfort and García-Ferriera [2]). It is also known that there are irresolvable 
crowded spaces (Hewitt [4]).

Kunen, Szymanśki and Tall [6] proved assuming V = L, that every crowded Baire space is resolvable. 
Moreover, they showed that if ZFC is consistent with the existence of a measurable cardinal, then ZFC is 
consistent with the existence of an irresolvable (zero-dimensional) crowded Baire space.
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It was shown in Comfort and García-Ferriera [2, Theorem 6.9] that every countably compact crowded 
space is ω-resolvable. This result was improved by Pytkeev [8] (see also [5, Theorem 3.6]). He showed that any 
countably compact crowded space is ω1-resolvable, and Juhász, Soukup and Szentmiklóssy [5, Theorem 3.6]
left open the question whether ω1 can be improved to c. It was asked by Comfort and García-Ferriera [2, 
§7] whether every pseudocompact crowded space is resolvable. Since every pseudocompact space is Baire, 
the answer is yes if one assumes V = L.

We prove here that every pseudocompact crowded space which satisfies the countable chain condition 
(abbreviated: ccc) is c-resolvable. This is a partial answer to the aforementioned problems of Comfort and 
García-Ferriera, and Juhász, Soukup and Szentmiklóssy.

2. Preliminaries

A space satisfies the countable chain condition (abbreviated: ccc) provided that any family consisting of 
pairwise disjoint nonempty open subsets of it is countable. A space is crowded if it has no isolated points.

Lemma 2.1. Let X be crowded ccc space, and let W be a nonempty open subset of X. Then there is a 
countably infinite family U of open Fσ-subsets of X such that

(1) for every U ∈ U , U ⊆ W ,
(2) if U, V ∈ U are distinct, then U ∩ V = ∅,
(3)

⋃
U is dense in W .

Proof. Pick an arbitrary point x ∈ W . Since X is Tychonoff, its open Fσ-subsets form a base. Hence we 
simply let U be a maximal family of open Fσ-subsets of X satisfying (1) and (2) and with the additional 
condition that for every U ∈ U , x /∈ U . Then (3) follows by maximality, and U is countable by ccc. It is 
clear that U is infinite since X is crowded. �

It is a well-known result of Souslin that every uncountable completely metrizable separable space contains 
a copy of the Cantor set 2ω [7, p. 437].

A space is pseudocompact if every real valued continuous function on X is bounded. A subspace Y of X
is called Gδ-dense in X provided that every nonempty Gδ-subset of X meets Y . A useful characterization 
of pseudocompactness was obtained by Gillman and Jerison [3, p. 95, 6I.1]. They showed that a space X is 
pseudocompact if and only X is Gδ-dense in βX. Here βX denotes the Čech–Stone-compactification of X. 
If X is a space, then a subset Z of X is called a zero-set of X if there is a continuous function f : X → [0, 1]
such that f−1({0}) = Z. See [3] for more information on these concepts.

Lemma 2.2. Let X be pseudocompact space and let Z be a zero-set of X. Then clβX(Z) is a zero-set of βX.

Proof. This is Gillman and Jerison [3, 8B.5]. �
Corollary 2.3. Let X be pseudocompact and let Z be a zero-set of X. If f : X → K is continuous, and K is 
metrizable, then f(Z) is compact.

Proof. Observe that f(X) is compact, so the function f extends (uniquely) to a continuous function 
βf : βX → K. Pick an arbitrary x ∈ f(Z). Consider the set (βf)−1({x}). It is a compact Gδ-subset of 
βX. If (βf)−1({x}) ∩ clβX(Z) = ∅, then x /∈ βf(clβX(Z)) ⊆ f(Z), which is a contradiction. Since X is 
Gδ-dense in βX, it consequently follows by Lemma 2.2 that

∅ �= ((βf)−1({x}) ∩ clβX(Z)) ∩X = f−1({x}) ∩ Z,

hence x ∈ f(Z). �
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Lemma 2.4. Let X be pseudocompact and let A be a countable collection of closed subsets of X. If U ⊆ X

is open and nonempty and U ⊆
⋃

A , then there exists A ∈ A such that A ∩U has nonempty interior in X.

Proof. Assume that for every A ∈ A we have that A ∩U has empty interior in X. List A as {An : n < ω}. 
Observe that U \ A0 is nonempty and open, hence there is a nonempty open subset U0 of X such that 
U0 ⊆ U0 ⊆ U \ A0. Similarly, U0 \ A1 �= ∅. Hence there is a nonempty open subset U1 of X such that 
U1 ⊆ U1 ⊆ U0 \ A1. Continuing in this way inductively, we obtain a decreasing sequence of nonempty 
open set (Un)n such that Un ⊆ Un ⊆ Un−1 \ An. By Gillman and Jerison [3, Lemma 9.13] we have that ⋂

n<ω Un �= ∅ since X is pseudocompact. But this contradicts the fact that A covers U . �
Observe that this lemma implies the well-known fact that every pseudocompact space is Baire.
If X is a space, then τX denotes its topology. A family A of subsets of X is called cellular if its members 

are pairwise disjoint.
Let I denote the closed interval [0, 1]. Let κ denote an infinite cardinal. If A ⊆ B ⊆ κ, then πB

A : IB → I
A

denotes the projection. If B = κ, then πB
A will be denoted by πA.

Let X be a separable metrizable space. A subset A of X is called a Bernstein set in X if A and X \ A
intersect every uncountable compact subset of X. The following lemma and its proof are well-known, it is 
included for the sake of completeness.

Lemma 2.5. Every separable metrizable space can be partitioned into a family {Aη : η < c} consisting of 
Bernstein subsets of X (some members of this family may be empty).

Proof. If X contains no uncountable compact subsets, then we can split X into |X| singleton sets. This 
gives us the sets Aη for η < |X|. If |X| < c, then the other Aη’s are defined to be empty.

Hence assume that there is at least one uncountable compact subset of X. Then there are exactly c
Cantor sets in X since each Cantor set contains c Cantor subsets and by Souslin’s Theorem, X contains a 
Cantor set. Let {Kξ : ξ < c} enumerate all uncountable compact sets in X such that each of them is listed 
c times. By transfinite induction on ξ < c, we pick

xξ ∈ Kξ \ {xη : η < ξ}.

The set Sξ = {xη : xη ∈ Kξ} has size c for each ξ < c. Redefine S0 as

S0 ∪ (X \ {xξ : ξ < c}).

Enumerate Sξ for ξ < c in a one-to-one way as {yξη : η < c}, and for η < c, put Aη = {yξη : ξ < c}. It is clear 
that {Aη : η < c} is as required. �

Observe that if X in the above lemma contains an uncountable compact subset K, then every Aη is 
nonempty since it has to meet K.

3. Countable chain condition spaces

In this section we present the proof of our main result that every pseudocompact crowded ccc space is 
c-resolvable. We will first construct a certain tree of nonempty open sets in a given compact ccc space Z. If 
Z is 2ω1 , then the height of the tree is ω, while it is ω1 if Z is a (compact) Souslin line. So in general we do 
not know what its height is, but we do know that it is either ω or ω1. Then for a crowded ccc pseudocompact 
space X, we use the tree for Z = βX to split X into c-many pairwise disjoint dense subsets. The tree gives 
us an inverse system of compact metrizable spaces and the actual splitting is done using that system and 
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partitions of its members into Bernstein sets. An important ingredient in our proof is Souslin’s Theorem 
that we formulated in §2.

(A) compact ccc spaces. We let Z denote any compact crowded ccc space. We assume that Z is a subspace 
of Iκ, for some infinite cardinal κ.

The following lemma is well-known and its proof is included for the sake of completeness.

Lemma 3.1. For every nonempty open Fσ-subset U of Z there are a countable A(U) ⊆ κ and an open subset 
V of IA(U) such that π−1

A(U)(V ) ∩ Z = U .

Proof. Write U as 
⋃

n<ω Sn, where each Sn is compact. By compactness, for each n there exists a finite 
subset F (n) of κ such that πF (n)(Sn) ∩ πF (n)(Z \ U) = ∅. Now put A(U) =

⋃
n<ω F (n), and let V =

I
A(U) \ πA(U)(Z \ U). �

Let U0 be a family of open Fσ-subsets of Z given by Lemma 2.1 with W = Z. For each U ∈ U0, let A(U)
be the countable subset of κ we get from Lemma 3.1 for U , and put A0 =

⋃
U∈U0

A(U). Let Y0 = πA0(Z), 
and let f0 : Z → Y0 denote the restriction of the projection πA0 to Z.

The crucial property of Y0 is that it is compact and metrizable while moreover for every U ∈ U0 there 
exists an open subset V 0

U in Y0 such that f−1
0 (V 0

U ) = U .
Observe that if we enlarge A0 to a countable subset B of κ, then πB(Z) has the same ‘crucial’ property.
Put F0 = Y0 \

⋃
U∈U0

V 0
U and observe that F0 and f−1

0 (F0) are nowhere dense in Y0 respectively Z.
Now consider a fixed U ∈ U0. Let U1(U) be the family of open Fσ-subsets of Z given by Lemma 2.1 with 

W = U . Put U1 =
⋃

U∈U0
U1(U). Then U1 is a countable cellular family in Z consisting of open Fσ-subsets 

of Z and it ‘refines’ U0. Now do the same construction as above to obtain Y1 = πA1(Z) and f1 and make 
sure that A0 ⊆ A1. Hence there is a continuous surjection f1

0 : Y1 → Y0 such that the diagram

Z
f0 f1

Y0 Y1
f1
0

commutes. The crucial property of Y1 is that for every U ∈ U1 there exists an open subset V 1
U in Y1 such 

that f−1
1 (V 1

U ) = U . Since the diagram commutes, for every U ∈ U0 there also exists an open subset V 1
U in 

Y1 such that f−1
1 (V 1

U ) = U . Put F1 = Y1 \
⋃

U∈U1
V 1
U and observe that F1 and f−1

0 (F1) are nowhere dense 
in Y1 respectively Z. Moreover, (f1

0 )−1(F0) ⊆ F1.
We continue this process in exactly the same way for all n < ω, thus obtaining an increasing sequence 

of countable subsets A0 ⊆ A1 ⊆ · · · ⊆ An ⊆ · · · of κ, collections of open subsets Un of Z which refine 
one another, spaces Y0, Y1, . . . corresponding to A0, A1, . . . , and mappings such that all subdiagrams of the 
following diagram commute:

Z
f0 fn

Y0 Y1
f1
0

Y2
f2
1

· · · Yn−1 Yn
fn
n−1

· · ·

For every n > 1 and U ∈ Un, let V n
U ⊆ Yn be open such that f−1

n (V n
U ) = U , and put Fn = Yn \

⋃
U∈Un

V n
U . 

Observe that Fn and f−1
n (Fn) are nowhere dense in Yn respectively Z and that (fn

n−1)−1(Fn−1) ⊆ Fn.
Put A =

⋃
n<ω An, and let Y ω = πA(Z). Observe that Y ω is the inverse limit of the sequence {Yn : n < ω}

and hence the restriction of the projection πA to Z ‘completes’ the above diagram.
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The collections Un for n < ω form an ω-branching tree under reverse inclusion. The intersection of each 
path trough the tree is a closed Gδ-subset of Z. Moreover, these closed Gδ-subsets are obviously pairwise 
disjoint. By ccc, there are at most countably many of them that have nonempty interior. If there are no such 
paths, the process stops and we put Yω = Y ω. If there are such paths, we continue the construction exactly 
in the same way with each of the countably many nonempty interiors. The collection Uω of pairwise disjoint 
nonempty open Fσ-subsets of Z that we obtain ‘refines’ Un for every n < ω. Now enlarge A to a countable 
subset B of κ that ‘deals’ with every element of Uω, and put Yω = πB(Z) and let fω be the restriction of 
the projection πB to Z. The crucial property of Yω is that for every U ∈

⋃
n≤ω Un there exists an open 

subset V ω
U in Yω such that f−1

ω (V ω
U ) = U . Observe that Yω is the inverse limit of the previous Y ’s precisely 

when the process stop at stage ω. Put Fω = Yω \
⋃

U∈Uω
V ω
U . There is no reason that that Fω should be 

nowhere dense, but it is obvious that for every n < ω we have (fω
n )−1(Fn) ⊆ Fω. Since Z is crowded, the 

process does not stop at stage ω + 1, ω + 2, . . . , etc. Hence this brings us to stage ω+ω and we test again 
whether there are paths in our tree corresponding to an intersection with nonempty interior. If there are 
no such paths, the process stops and Yω+ω is the inverse limit of the previous Y ’s. If there are such paths, 
we continue until the next limit ordinal. The process definitely stops at stage ω1, since by ccc, each path in 
our tree ‘dies’ before ω1. But there is no reason why there could not be paths of arbitrarily large countable 
length.

In any case, the process stops at an infinite limit ordinal λ ≤ ω1. This brings us to the following inverse 
system

Z
f0 fλ

Y0 Y1
f1
0

Y2
f2
1

· · · Yα Yα+1
fα+1
α

· · · Yλ

and the corresponding tree of open subsets T = {U : (∃ α < λ)(U ∈ Uα)}, ordered in the obvious way. 
Observe that T does not have uncountable chains nor anti-chains. Also observe that Yα for α < λ is compact 
metrizable, and that Yλ may have weight ω1.

As before, for every α < λ and U ∈ Uα, let V α
U in Yα be open such that f−1

α (V α
U ) = U , and put 

Fα = Yα \
⋃

U∈Uα
V α
U . Observe that f−1

α (Fα) = Z \
⋃

Uα, and that (fα
β )−1(Fβ) ⊆ Fα if α > β.

Lemma 3.2. If λ = ω1, then {f−1
α (Fα) : α < λ} covers Z.

Proof. If there exists an x ∈ Z \
⋃

α<λ f
−1
α (Fα), then for each α < λ there exists Uα ∈ Uα such that x ∈ Uα. 

But then (Uα)α<λ is an uncountable chain in T. �
Lemma 3.3. If p ∈ Fα \

⋃
β<α(fα

β )−1(Fβ) for some α < λ, then f−1
α ({p}) has empty interior in Z.

Proof. If α = 0, then there is nothing to prove since f−1
0 (F0) is nowhere dense by construction. Assume 

therefore that α > 0. Let q ∈ Z be such that fα(q) = p. Then fβ(q) /∈ Fβ for every β < α. Hence for 
every β < α there exists Uβ ∈ Uβ such that q ∈ Uβ . For every β < α there also exists an open subset Vβ

of Yα such that f−1
α (Vβ) = Uβ . Since fα(q) = p, this means that f−1

α ({p}) ⊆
⋂

β<α Uβ . If f−1
α ({p}) has 

nonempty interior, then there exists U ∈ Uα such that U ⊆
⋂

β<α Uβ and U ∩ f−1
α ({p}) �= ∅. But then 

fα(q) = p ∈ V α
U ⊆ Yα \ Fα, which is a contradiction. �

(B) Pseudocompact ccc spaces. Now let X be an arbitrary crowded ccc pseudocompact space. We put 
Z = βX and assume that we created for this Z the inverse system in (A). If A ⊆ X, then A and clZ(A)
denote the closures of A in X and Z, respectively.
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Observe that X is Gδ-dense in Z. (Here we use Gillman and Jerison [3, p. 95, 6I.1], see §2.)
Let Z ′(X) be the collection of all zero-sets of X with nonempty interior (in X).
For every nonempty open subset V of X, we let κ(V ) < ω1 be the least ordinal μ < ω1 for which 

f−1
μ (Fμ) ∩ V has nonempty interior if such an ordinal exists, and ∞ otherwise.

Lemma 3.4. Let V ⊆ X be nonempty and open and assume that κ = κ(V ) < ω1. Then there exists μ ≤ κ

such that fμ(V ) ∩
(
Fμ \

⋃
δ<μ(fμ

δ )−1(Fδ)
)

contains a Cantor set.

Proof. Pick B ∈ Z ′(X) such that B ⊆ V and fκ(B) ⊆ Fκ. By Corollary 2.3, fμ(B) is compact for every 
μ ≤ κ. Assume that for every μ ≤ κ we have that

Aμ = fμ(B) ∩
(
Fμ \

⋃

δ<μ

(fμ
δ )−1(Fδ)

)

is countable. By Lemma 3.3 it consequently follows that B is a first category subset of X, which contradicts 
the fact that X is Baire. Hence there exists μ ≤ κ such that Aμ is uncountable. But then the Gδ-set Aμ

contains a Cantor set by Souslin’s Theorem [7, p. 437]. �
Lemma 3.5. Suppose that some nonempty open set V ⊆ X has the following property: for every B ∈ Z ′(X)
such that B ⊆ V and every α < λ, the interior of B in X meets 

⋃
Uα. Then if λ < ω1,

fλ(V ) ∩ (Yλ \
⋃

β<λ

(fλ
β )−1(Fβ)) contains a Cantor set,

and if λ = ω1,

fα(V ) ∩ (Fα \
⋃

β<α

(fα
β )−1(Fβ)) contains a Cantor set

for some α < ω1.

Proof. Pick B ∈ Z ′(X) such that B ⊆ V and let E be a nonempty open subset of X that is contained 
in B.

Claim 1. For every β < λ there exist β < α < λ and disjoint elements W 0
α, W

1
α ∈ Uα that both meet E.

For every ξ < λ, pick Uξ ∈ Uξ such that Uξ ∩ E �= ∅. If E ⊆ clZ(Uα) for every β < α < λ, then 
clZ(E) ⊆

⋂
β<α<λ Uα. This is a contradiction if λ < ω1 since clZ(E) has nonempty interior in Z. It is also 

a contradiction if λ = ω1 since in that case (Uα)β<α<λ is an uncountable chain in T. Hence there exists 
β < α < λ such that E′ = E \ clZ(Uα) �= ∅. By assumption, there exists an element W ∈ Uα that meets E′. 
Then clearly W �= Uα. Hence we conclude that there exist disjoint elements W 0

α and W 1
α in Uα that both 

meet E.
Pick α0 as in Claim 1 for β = 0. Observe that for any x ∈ W 0

α0
and y ∈ W 1

α0
we have that fα0(x) �= fα0(y).

Let V0 and V1 be nonempty open subsets of X such that Vi ⊆ V i ⊆ W i
α0

∩ E for i = 0, 1. By Claim 1, 
there are a countable ordinal number α0 < ξ0 < λ and elements W 00

ξ0
, W 01

ξ0
∈ Uξ0 such that W 00

ξ0
, W 01

ξ0

are disjoint and both meet V0. Again by Claim 1, there are a countable ordinal number α0 < ξ1 < λ and 
elements W 10

ξ1
, W 11

ξ1
∈ Uξ1 such that W 10

ξ1
, W 11

ξ1
are disjoint and both meet V1. We may assume without 

loss of generality that ξ0 ≤ ξ1. There exist by our assumptions elements W 00
ξ1
, W 01

ξ1
∈ Uξ1 such that W 00

ξ1
∩

(V0 ∩W 00
ξ0

) �= ∅ and W 01
ξ1

∩ (V0 ∩W 01
ξ0

) �= ∅. Since Uξ1 ‘refines’ both Uξ0 and Uα0 and Uξ0 ‘refines’ Uα0 , we 
get W 10

ξ ∪ W 11
ξ ⊆ W 1

α and W 00
ξ ∪ W 01

ξ ⊆ W 00
ξ ∪ W 01

ξ ⊆ W 0
α . Hence the collection W 00

ξ , W 01
ξ , W 10

ξ , W 11
ξ
1 1 0 1 1 0 0 0 1 1 1 1
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is pairwise disjoint. Put α1 = ξ1. Now pick nonempty open sets V00, V01, V10, V11 of X such that V 00 ⊆
V0 ∩W 00

α1
, V 01 ⊆ V0 ∩W 01

α1
, V 10 ⊆ V1 ∩W 10

α1
, and V 11 ⊆ V1 ∩W 11

α1
. Observe that for a ∈ V00, b ∈ V01, c ∈ V10, 

and d ∈ V11, the elements fα1(a), fα1(b), fα1(c), fα1(d) are pairwise distinct.
Continuing in this way inductively, we build a Cantor tree of open subsets of X in the standard way 

and a sequence of countable ordinals β < α0 < α1 < · · · < αn < · · · each corresponding to a level of the 
tree. Let α = supn<ω αn; we can easily arrange that α = λ if λ < ω1. Each path in the Cantor tree has 
nonempty intersection, again by pseudocompactness of X and Gillman and Jerison [3, p. 95, 6I.1]. Also, 
each path in the Cantor tree corresponds to a chain in T. Only countably many intersections of these chains 
have nonempty interior in Z. The intersections of all but these countably many chains are contained in 
f−1
α (Fα) \

⋃
β<α f−1

β (Fβ) if λ = ω1, and in Z \
⋃

β<λ(fβ)−1(Fβ) if λ < ω1. This shows that

fα(B) ∩
(
Fα \

⋃

β<α

(fα
β )−1(Fβ)

)

is uncountable if λ = ω1, and

fλ(B) ∩
(
Yλ \

⋃

β<λ

(fλ
β )−1(Fβ)

)

is uncountable if λ < ω1. But an uncountable Gδ-set contains a Cantor set by Souslin’s Theorem [7, 
p. 437]. �

(C) The proof. We will now present the proof of our main theorem. To this end, let X be any pseudo-
compact crowded ccc space. We adopt the notation in the previous sections for X and Z = βX. We will use 
the following fact several times. Suppose that B ∈ Z ′(X) and there exists β < λ such that fβ(B) contains 
a Cantor set. Then fα(B) contains a Cantor set for every β ≤ α < λ. The proof is easy. Simply observe that 
fα(B) is compact by Corollary 2.3 and uncountable since it maps onto fβ(B). As a consequence, fα(B)
contains a Cantor set, again by Souslin’s Theorem [7, p. 437].

As to be expected, we have to distinguish between two subcases.

Case 1. λ < ω1.

This is the easy case.

Lemma 3.6. For each nonempty open subset V ⊆ X we have that fλ(V ) contains a Cantor set.

Proof. By Lemma 3.5 we may assume without loss of generality that there exist B ∈ Z ′(X) and α < λ

such that B ⊆ V and the interior of B misses 
⋃

Uα. By shrinking B if necessary, we may assume that B
misses 

⋃
Uα from which it follows that fα(B) ⊆ Fα. Hence we are done by Lemma 3.4. �

Now split Yλ into a family A consisting of c nonempty Bernstein sets in Yλ (Lemma 2.5). There are 
many Cantor sets in Yλ by the previous result. Hence this is indeed possible.

Lemma 3.7. For every A ∈ A , f−1
λ (A) ∩X is dense in X.

Proof. Indeed, let V ⊆ X be dense and open, and pick an arbitrary A ∈ A . By Lemma 3.6, fλ(V ) ∩A �= ∅, 
and so V ∩ (f−1

λ (A) ∩X) �= ∅. �
We now turn to the more complicated case.
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Case 2. λ = ω1.

For every α < ω1, let {Aα
ξ : ξ < c} be a partition of Fα \

⋃
β<α(fα

β )−1(Fβ) into c Bernstein sets in 
Fα \

⋃
β<α(fα

β )−1(Fβ) (recall that some members of this family may be empty). For ξ < c, put

Bξ =
⋃

α<ω1

f−1
α (Aα

ξ ) ∩X.

Then B = {Bξ : ξ < c} partitions X by Lemma 3.2. We claim that every Bξ is also dense. To this end, pick 
arbitrary ξ < c and nonempty open V ⊆ X. By Lemma 3.5 we may assume without loss of generality that 
there exist B ∈ Z ′(X) and α < λ such that B ⊆ V and the interior of B misses 

⋃
Uα. By shrinking B if 

necessary, we may assume that B misses 
⋃

Uα from which it follows that fα(B) ⊆ Fα. Hence by Lemma 3.4
there exists γ ≤ α such that fγ(B) \

⋃
β<γ(fγ

β )−1(Fβ) contains a Cantor set and consequently meets Aα
ξ .
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