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NONHOMOGENEITY OF REMAINDERS

A. V. ARHANGEL’SKII AND J. VAN MILL

(Communicated by Mirna Džamonja)

Abstract. We present a cardinal inequality for the number of homeomor-
phisms of the remainders of compactifications of nowhere locally compact
spaces. As a consequence, we obtain that if X is countable and dense in
itself, then the remainder of any compactification of X has at most continuum
many homeomorphisms.

1. Introduction

All topological spaces under discussion are Tychonoff.
A space X is homogeneous if for any two points x, y ∈ X there is a homeomor-

phism h from X onto itself such that h(x) = y.
In 1956, Walter Rudin [22] proved that the Čech-Stone remainder βω \ω, where

ω is the discrete space of nonnegative integers, is not homogeneous under CH. This
result was later generalized considerably by Froĺık [14] who showed in ZFC that
βX \X is not homogeneous, for any nonpseudocompact space X. For other results
that are in the same spirit, see e.g. [9], [10], [18].

Hence the study of (non)homogeneity of Čech-Stone remainders has a long his-
tory. In this note we are interested in homogeneity properties of arbitrary remain-
ders of topological spaces. We address the following general problem: when does a
space have a homogeneous remainder? If X is locally compact, then the Alexan-
droff one-point compactification αX of X has a homogeneous remainder. Hence
for locally compact spaces, our question has an obvious answer. If X is not locally
compact, however, then it need not have a homogeneous remainder, as the topo-
logical sum of the space of rational numbers Q and the space of irrational numbers
P shows (for details, see §5).

Hence we consider questions of the following type: if X is homogeneous, and
not locally compact, does X have a homogeneous remainder? In particular, special
attention is given to remainders of nonlocally compact topological groups. For
some recent facts on such remainders, see Arhangel’skii [4] and [5]. One of them,
established in [4], is: every remainder of a topological group is either Lindelöf or
pseudocompact.

However, the main result below concerns remainders of any nowhere locally
compact space, not necessarily homogeneous. The aim of this note is to show that if
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X is nowhere locally compact and bX is an arbitrary compactification ofX, then the
number of homeomorphisms of the remainder bX \X is bounded by |RO(X)|Hsw(X)

(for definitions, see §2), which in turn is bounded by 2|X|. So if X is countable and
dense in itself, then any remainder of X has at most c homeomorphisms, where
c denotes the cardinality of the continuum. From this we get several examples,
among them a countable topological group and a countably compact topological
group no remainders of which are homogeneous. We also get new and very simple
proofs that familiar Čech-Stone remainders such as βQ \ Q and βP \ P are not
homogeneous.

By Rudin [22], βω \ω has 2c homeomorphisms under CH. Hence the assumption
on nowhere local compactness in our results is essential. (Interestingly, Shelah
[23, §41] proved the consistency that every homeomorphism of βω \ ω is trivial,
hence in his model there are only c of them; see also [25].)

2. Preliminaries

For a space X, we let H (X) denote its group of homeomorphisms. If A ⊆ X,
then clX(A) and intX(A) denote its closure and interior, respectively. Similarly, A
denotes the closure of A if no confusion can arise.

We let RO(X) denote the complete Boolean algebra of all regular open subsets of
X, where a set is regular open if it is the interior of its own closure. By Pierce [20],
it follows that |RO(X)|ω = |RO(X)|. Moreover, it is easy to see (and well known)
that for every space X we have

(†) |RO(X)| ≤ 2d(X),

where d(X) denotes the density of X.
For a space X, let τ (X) denote its topology and put o(X) = |τ (X)|. The super

cardinality of a space X is the minimum cardinality of a compactification of X. Let
βX denote the Čech-Stone compactification of X.

A space X can be condensed on a space Y if there is a continuous bijection from
X onto Y .

The Hausdorff separating weight of a space X, abbreviated Hsw(X), is the least
infinite cardinal κ for which there exists a family U of open subsets of X such
that for all distinct x, y ∈ X, there exist disjoint U, V ∈ U such that x ∈ U and
y ∈ V . Observe that Hsw(X) is rather “small” since it is obviously bounded by |X|.
There is a related cardinal function called the i-weight of a space X, abbreviated
iw(X), which is the minimal weight of all spaces onto which X can be condensed
(Arhangel’skii [3]). It is clear that Hsw(X) ≤ iw(X) for all spaces X. Example 1
in Popov [21] has the property that its Hausdorff separation weight is countable,
while its i-weight is uncountable (since it does not have a Gδ-diagonal). So the
inequality in Hsw(X) ≤ iw(X) cannot be replaced by equality.

A collection of subsets N of a space X is called a network for X if every open
subset of X is the union of a subfamily of N . The netweight, nw(X), of X is
the least infinite cardinal κ for which there exists a network for X of cardinal-
ity κ. Since 1959 (Arhangel’skii [1] and [2]), it is known that iw(X) ≤ nw(X)
(see also [7, 5.2.10]). Clearly, nw(X) ≤ |X|.

Hence for the cardinal functions Hsw(X), iw(X) and nw(X) for a given space
X, the following inequalities hold:

(‡) Hsw(X) ≤ iw(X) ≤ nw(X) ≤ |X|.
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We have already seen that the first inequality cannot be replaced by equality. The
same is true for the second inequality. To see this, let D be a discrete space of
size ω1. Then iw(D) = ω but nw(D) = ω1. That the third inequality cannot be
replaced by equality is trivial.

If f : X → Y is a multivalued function, and A ⊆ Y , then f−1(A) = {x ∈ X :
f(x) ⊆ A}. We say that f is upper semi-continuous provided that f−1(U) is open
in X for every open subset U of Y .

We refer to Juhász [16] for undefined terminology on cardinal functions.

3. A bound on the number of homeomorphisms of remainders

We will use the following triviality: if D is dense in X, and U ⊆ X is nonempty
and open, then clX(U) ∩D = clD(U ∩D).

Here is the main result in this note. In its proof, we make use of an idea in
Krivoručko [17] (see also Hodel [15, §10]). We are indebted to Tony Hager for
bringing Krivoručko’s paper to our attention.

Theorem 3.1. Let X be a nowhere locally compact space with a compactification
bX. Then

|H (bX \X)| ≤ |RO(X)|Hsw(X) ≤ 2d(X)Hsw(X) ≤ 2nw(X) ≤ 2|X|.

Proof. First observe that both X and the remainder Y = bX \X are dense in bX.
If x ∈ X, then Ux denotes the family of all neighborhoods of x in bX. Now let
f ∈ H (Y ) be arbitrary, and define for every x ∈ X, the set f#(x), as follows:

f#(x) =
⋂

U∈Ux

f(U ∩ Y )

(here “closure” denotes closure in bX). Observe that by the denseness of Y in bX
we have that the collection

{f(U ∩ Y ) : U ∈ Ux}

has the finite intersection property, hence f#(x) is a nonempty compact subset of
bX.

Claim 1. f#(x) ⊆ X.

Indeed, pick an arbitrary p ∈ Y , and consider the point q = f−1(p). There is an
open neighborhood U of x such that q �∈ U . Hence q �∈ U ∩ Y , and so

p �∈ f(U ∩ Y ) = f(clY (U ∩ Y )) = clY (f(U ∩ Y )) = f(U ∩ Y ) ∩ Y,

as required.
Hence f# : X → X is a well-defined compact-valued multivalued function.

Claim 2. f# is upper semi-continuous.

Pick x ∈ X, and let V be an open subset of X such that f#(x) ⊆ V . Let V ′ be
an open subset of bX such that V ′ ∩ X = V . Since f#(x) is compact (Claim 1),

there is an element U ∈ Ux such that f(U ∩X) ⊆ V ′, hence f#(U ∩X) ⊆ V .

Claim 3. If f, g ∈ H (Y ) and f �= g, then there exists x ∈ X such that f#(x) ∩
g#(x) = ∅.
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Pick p ∈ Y such that f(p) �= g(p). Let U and V be disjoint closed neighborhoods
of f(p) and g(p) in bX. Let W be an open neighborhood of p in Y such that
f(W ) ⊆ U and g(W ) ⊆ V . Let W ′ be an open subset of bX such that W ′∩Y = W .
Pick x ∈ W ′ ∩X. Then, clearly, f#(x) ∩ g#(x) = ∅.

Now take a family U of open subsets of X which separates the points of X in
the Hausdorff sense, and assume that |U | = Hsw(X). We may assume without
loss of generality that U is closed under finite intersections and finite unions. For
every U ∈ U and f ∈ H (Y ), let H(U, f) = intX(clX((f#)−1(U))). Clearly,
H(U, f) ∈ RO(X). Denote the function U → RO(X) that assigns to U ∈ U the
set H(U, f) ∈ RO(X) by Ff .

Claim 4. The function H (Y ) → RO(X)U defined by f 	→ Ff is one-to-one.

Take distinct f, g ∈ H (Y ). By Claim 3, there exists x ∈ X such that f#(x) ∩
g#(x) = ∅. Since U is closed under finite intersections and finite unions, the
compactness of f#(x) and g#(x) implies that there exist disjoint U, V ∈ U such
that f#(x) ⊆ U and g#(x) ⊆ V . Then x ∈ (f#)−1(U) and so x ∈ Ff (U). We
will show that x �∈ Fg(U) from which it will follow that Ff �= Fg. Striving for a
contradiction, assume that x ∈ Fg(U) ⊆ clX((g#)−1(U)). Since x ∈ (g#)−1(V ) and
(g#)−1(V ) is open, there exists p ∈ (g#)−1(V ) ∩ (g#)−1(U). Hence ∅ �= g#(p) ⊆
U ∩ V , which is a contradiction.

So this completes the proof of the inequality |H (Y )| ≤ |RO(X)|Hsw(X).
For every space X we have

|RO(X)|Hsw(X) ≤ 2d(X)Hsw(X) ≤ 2nw(X) ≤ 2|X|.

This is a direct consequence of the inequalities (†) and (‡) in Section 2 and the
trivial observation that d(X) ≤ nw(X). So we are done. �

Our cardinal inequality |H (bX \ X)| ≤ |RO(X)|Hsw(X) raises several natural
questions. The first one is whether it is possible to replace |RO(X)| by the weight
w(X) of X. The following example shows that this is impossible.

Example 3.2. There is a nowhere locally compact spaceX with a compactification
bX such that |H (bX \X)| = 2c, while Hsw(X) = ω and w(X) = c.

Indeed, let D be a discrete space of cardinality c, and let αD = D∪{∞} denote
its Alexandroff one-point compactification. Put Z = αD × I, where I denotes the
closed unit interval [0, 1]. Let

X = {(d, q) : d ∈ D, q ∈ Q ∩ I}, Y = Z \X.

Then X is homeomorphic to the topological sum of c many copies of Q, hence is
nowhere locally compact and w(X) = c. It is clear that the real line R can be
split into c many disjoint copies of Q. Hence X can be condensed onto R, and so
Hsw(X) = iw(X) = ω. Any permutation π of D induces a homeomorphism π̄ of Z
in the obvious way and satisfies π̄(X) = X and π̄(Y ) = Y . Hence H (Y ) = 2c >
w(X)Hsw(X) = w(X)iw(X) = c.

Another interesting inequality for the number of homeomorphisms of remainders
can be obtained along the following lines. LetX be a nowhere locally compact space
with a compactification bX. Then

|H (bX \X)| ≤ o(X ×X).
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The proof is parallel to the proof of Theorem 3.1 until the end of the proof of
Claim 3. It can then be completed as follows.

Consider the graph Γ(f) of the function f#, i.e.,

Γ(f) = {(x, y) ∈ X ×X : y ∈ f#(x)}.
Since f# is upper-semicontinuous, Γ(f) is a closed subset of X ×X. For complete-
ness sake, we present the easy proof. Assume that (x, y) �∈ Γ(f). Then y �∈ f#(x),
and hence there is a closed neighborhood V of f#(x) that does not contain y. Let
U be a neighborhood of x such that for every z ∈ U we have f#(z) ⊆ V . Then
U×(X\V ) is a neighborhood of (x, y) that misses Γ(f). The assignment f# 	→ Γ(f)
is clearly one-to-one by Claim 3, which completes the proof.

This result prompts the following open problem.

Problem 3.3. Let X be a nowhere locally compact space with a compactification
bX. Is it true that |H (bX \X)| ≤ o(X)?

If Hsw(X) = ω, in particular if X has a countable network, then the answer to
Problem 3.3 is in the affirmative. Simply observe that by Theorem 3.1, inequality
(‡) in Section 2 and the result of Pierce quoted in Section 2, we have

|H (bX \X)| ≤ |RO(X)|Hsw(X) ≤ |RO(X)|nw(X) = |RO(X)|ω = |RO(X)| ≤ o(X).

If X is uncountable, then the inequality |H (bX \ X)| ≤ |RO(X)|Hsw(X) seems
sharper than the inequality |H (bX \X)| ≤ o(X×X). As an illuminating example,
consider the Sorgenfrey line S and its compactification bS. Clearly, |RO(S)| = c and
Hsw(S) = ω, hence |H (bS \ S)| ≤ c. But o(S× S) = 2c.

The netweight is naturally related to the bound o(X ×X) by the inequalities

o(X) ≤ o(X ×X) ≤ 2nw(X×X) = 2nw(X),

so that
H (bX \X) ≤ o(X ×X) ≤ 2nw(X).

4. Applications to spaces with a countable network

In this section, we prove some results for spaces with countable netweight.
If X has a countable network and is nowhere locally compact, and bX is any

compactification of X, then |H (bX \X)| ≤ c by Theorem 3.1. This will show that
it is very rare that such a space has a homogeneous remainder.

Theorem 4.1 (2ω < 2ω1). If X has a countable network and is nowhere locally
compact, and bX is a compactification of X such that bX \X is homogeneous, then
bX \X is first-countable and |bX| ≤ c.

Proof. We have already observed that |bX \X| ≤ c. But also |X| ≤ c by Juhász [16,
2.3(a)].

Pick an arbitrary p ∈ Y = bX \X. There clearly is a compact Gδ-subset S of
bX such that p ∈ S ⊆ bX \X. Since S is compact, and has cardinality at most c, it
must have a point at which it is first-countable. This is a (well-known) consequence
of our assumptions and the classical Čech-Pospǐsil Theorem (see [16, 3.16]) that if
Z is compact and if for some κ, χ(q, Z) ≥ κ for every q ∈ Z, then |S| ≥ 2κ. Hence
S is first-countable at some point, and since S is a compact Gδ in bX, this means
that bX is first-countable at some point of S. So we conclude that bX \X, being
homogeneous, is first-countable. �
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Unfortunately, this is not true in ZFC, as we will now show.

Theorem 4.2 (MA+¬CH). For every countable dense subset X of the Cantor cube
2ω1 , the remainder 2ω1 \X is homogeneous.

Proof. It was shown by Steprāns and Zhou [24] that 2ω1 is countable dense homo-
geneous under MA+¬CH. That is, if A and B are arbitrary countable dense subsets
of 2ω1 , then there is a homeomorphism f : 2ω1 → 2ω1 such that f(A) = B. Hence
we may assume without loss of generality that the countable dense subset X in our
theorem is a subgroup of 2ω1 . Now take arbitrary elements x, y ∈ Y = 2ω1 \X. Let
ξ and η be homeomorphisms of 2ω1 such that ξ(X∪{x}) = X and η(X∪{y}) = X.
SinceX is a subgroup of 2ω1 , there is a translation γ of 2ω1 such that γ(ξ(x)) = η(y).
Observe that γ(X) = X. Hence the function

f = η−1 ◦ γ ◦ ξ
is a homeomorphism of 2ω1 such that f(x) = y and f(Y ) = Y . �

So we arrive at the conclusion that the “concrete” space 2ω1 \ X, where X is
any countable dense subset of 2ω1 , behaves very differently in various models of
set theory. Under MA+¬CH it is homogeneous, but not so under CH. See also
van Mill [19], where a “concrete” compact space was constructed that behaves
similarly.

Problem 4.3. Assume that 2ω < 2ω1 . If X is hereditarily Lindelöf and nowhere
locally compact, and bX is a compactification ofX such that bX\X is homogeneous,
is bX \X first-countable?

If bX \ X in this problem is a topological group, then from Arhangel’skii [5]
we get in ZFC that bX \ X is separable metrizable and X is separable. Hence
Problem 4.3 is “really” about homogeneous spaces that do not have the structure
of a topological group.

The authors recently found another bound for the number of homeomorphisms
of remainders that implies the following: if X is nowhere locally compact, Lindelöf,
separable and of pseudo-character ω, then for any compactification bX of X we
have that |H (bX \X)| ≤ c. This implies that the answer to Problem 4.3 is in the
affirmative provided that X is separable. Details will appear elsewhere.

5. Examples

We now present some examples.

Example 5.1. There is a countable topological group, no remainder of which is
homogeneous.

Let X be a countable space of super cardinality 2c. That such a space exists is
due to Efimov [13]. See also van Douwen and Przymusiński [11]. Now let G denote
the free topological group F (X) over X, [7, Chapter 7]. Then G is countable, and
contains a closed copy of X. Hence G has super cardinality 2c and so no remainder
of it can be homogeneous by Theorem 3.1.

There has been quite an interest in pseudocompact topological groups in the last
decades. We contribute to the topic by constructing an example of a pseudocompact
topological group no remainder of which is homogeneous.
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Theorem 5.2. No pseudocompact separable topological group of cardinality c whose
character is also equal to c has a homogeneous remainder.

Proof. Let G be a topological group which has the properties stated in the theorem.
By Comfort and Ross [8], βG has the structure of a topological group and G is a
subgroup of it. A compact group of character c has cardinality 2c by [7, 5.2.7],
hence G is not compact since G has cardinality c. So G is not locally compact
either since otherwise G would be an open subgroup of βG and hence G would be
closed in βG and compact, a contradiction.

We conclude that G is nowhere locally compact and hence the remainder G∗

is dense in βG. Since G∗ contains a translate of G, it also follows that G∗ is
C∗-embedded in βG, i.e., βG∗ = βG.

Now let bG denote an arbitrary compactification of G such that R = bG \ G
is homogeneous. Let f : βG → bG denote the canonical continuous mapping that
restricts to the identity on G. We first claim that the remainder R is C∗-embedded
in bG. (This is a consequence of Arhangel’skii [6, Theorem 2.1], for completeness
sake we include the argument.) Indeed, let Z0 and Z1 be any two disjoint zero-sets
in R. Then f−1(Z0) and f−1(Z1) are disjoint zero-sets of G∗, hence their closures

f−1(Z0) and f−1(Z1) in βG∗ = βG are disjoint as well. Since f is the identity on
G, this obviously implies that

f(f−1(Z0)) ∩ f(f−1(Z1)) = ∅,

hence Z0 and Z1 have disjoint closures in bG. From this we conclude that βR = bG.
This implies that every element h ∈ H (R) can be extended to a homeomorphism

h̄ ∈ H (bG). Hence h̄ restricts to a homeomorphism of G. The assignment h 	→ h̄ �
G is clearly one-to-one, hence |H (R)| ≤ c since G is separable and has cardinality c.
The homogeneity of R consequently implies that |R| ≤ c.

We conclude that |bG| = c. Suppose that for every p ∈ R we have that
χ(p, bG) = c. Then χ(x, bG) = c for every x ∈ bG. Hence by the classical Čech-
Pospǐsil Theorem (see [16, 3.16]) it would follow that |bG| ≥ 2c, which is a con-
tradiction. Hence there exists p ∈ R such that χ(p, bG) < c. Put κ = χ(p, bG).
Since R is homogeneous, and every homeomorphism of R can be extended to a
homeomorphism of bG, this implies that χ(q, bG) = κ for every q ∈ R.

By the famous Ivanovskij-Kuzminov Theorem ([7, §4.1]), bG is dyadic, being a
continuous image of the compact topological group βG. Since R is dense in bG, by
Efimov [12], we obtain that the weight of bG is at most κ < c. Hence the weight
of G is at most κ < c. But the character of G is c, and hence we have reached a
contradiction. �

This leads us to:

Example 5.3. There is a countably compact topological group, no remainder of
which is homogeneous.

We endow the Tychonoff cube 2c with its standard Boolean group structure.
Since 2c is separable, a standard closure argument gives a countably compact sep-
arable subgroup of 2c of cardinality c. Hence by Theorem 5.2, this is the example
we are looking for.
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Example 5.4. βQ \Q and βP \ P are not homogeneous.

This is clear from Theorem 3.1 since both remainders have cardinality 2c. As
we wrote in the introduction, this is not new since it is a consequence of Froĺık’s
Theorem. It also follows from van Douwen’s Theorem from [9] that |X| ≤ 2π(X) for
every homogeneous space X since obviously both βQ\Q and βP\P have countable
π-weight.

Example 5.5. If X is the topological sum of Q and P, then no remainder of X is
homogeneous.

Indeed, let X = A∪B, where A and B are disjoint clopen subsets of X such that
A ≈ Q and B ≈ P. Fix a compactification bX of X. There are disjoint open subsets
U and V of bX such that U∩X = A and V ∩X = B. Since neither A nor B is locally
compact, we may pick p ∈ U\A and q ∈ V \B. Let E and F be closed neighborhoods
of p and q in bX such that E ⊆ U and V ⊆ F . Then E is a compactification of
E ∩ A which is homeomorphic to Q. Hence E \ A is Čech-complete and hence a
Baire space, A being countable. Similarly, F is a compactification of F ∩B which
is homeomorphic to P. Hence F \ B is first category in itself, P being completely
metrizable. It is hence clear that no homeomorphism of bX \X can take p onto q.
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