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NONHOMOGENEITY OF REMAINDERS, III

A. V. ARHANGEL’SKII AND J. VAN MILL

Abstract. We present a cardinal inequality on the number of
homeomorphisms of remainders of nowhere locally compact spaces.
We also discuss the question when the complement of a Σ-product
in an arbitrary Cantor cube is homogeneous, or a topological group.

1. Introduction

All topological spaces under discussion are Tychonoff.
A space X is homogeneous if for any two points x, y ∈ X there is a

homeomorphism h from X onto itself such that h(x) = y. If bX is a
compactification of a space X, then bX \X is called its remainder.

In this note we continue our study begun in [1, 2] concerning the
(non)homogeneity of arbitrary remainders of topological spaces. We present
a variation of a recent cardinal inequality in [1] on the number of homeo-
morphisms of remainders of nowhere locally compact spaces. By examples
we demonstrate that both inequalities are independent. We also discuss
the question when the complement of a Σ-product in an arbitrary Cantor
cube is homogeneous, or a topological group.
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2. Preliminaries

For a space X, we let H (X) denote its group of homeomorphisms. If
A ⊆ X, then clX(A) and intX(A) denote its closure and interior, respec-
tively. Similarly, A denotes the closure of A if no confusion can arise.

We let RO(X) denote the complete Boolean algebra of all regular open
subsets of X, where a set is regular open if it is the interior of its own
closure. It is easy to see (and well-known) that for every space X we have
|RO(X)| ≤ 2d(X), where d(X) denotes the density of X.

Let βX denote the Čech-Stone compactification of X.
The Hausdorff separating weight of a space X, abbreviated Hsw(X),

is the least infinite cardinal κ for which there exists a family U of open
subsets of X such that the cardinality of U does not exceed κ while
moreover for all distinct x, y ∈ X there exist disjoint U, V ∈ U such that
x ∈ U and y ∈ V . Observe that Hsw(X) is rather ‘small’ since it is
obviously bounded by |X|.

If f : X → Y is a multivalued function, and A ⊆ Y , then f−1(A) =
{x ∈ X : f(x) ⊆ A}. We say that f is upper semi-continuous provided
that f−1(U) is open in X for every open subset U of Y .

We refer to Juhász [6] for undefined terminology on cardinal functions.

3. Another bound on the number of homeomorphisms
of remainders

In [1], we proved the following: let X be a nowhere locally compact
space with a compactification bX, then

(†) |H (bX \X)| ≤ |RO(X)|Hsw(X) ≤ 2d(X)Hsw(X) ≤ 2nw(X) ≤ 2|X|.

Here nw(X) denotes the netweight of X. This implies that if X in addition
is countable, then |H (bX \X)| ≤ c. The aim of this section is to present
a variation of this inequality and to show that it is independent of the
previous one.

Theorem 3.1. Let X be a nowhere locally compact space with a com-
pactification bX. Then

(‡) |H (bX \X)| ≤ |X|d(X) ≤ 2|X|.

Proof. First observe that both X and the remainder Y = bX \ X are
dense in bX. If x ∈ X, then Ux denotes the family of all neighborhoods
of x in bX. Now let f ∈ H (Y ) be arbitrary, and define for every x ∈ X,
the set f#(x), as follows:

f#(x) =
∩

U∈Ux

f(U ∩ Y )
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(here ‘closure’ denotes closure in bX.) It was shown in the proof of
[1, Theorem 3.1] that the following statements hold:

(1) For every x ∈ X, f#(x) is a nonempty compact subset of X.
(2) f# is upper semi-continuous.
(3) If f, g ∈ H (Y ) and f ̸= g, then there exists x ∈ X such that

f#(x) ∩ g#(x) = ∅.
Let D ⊆ X be dense.

Claim 1. If f, g ∈ H (Y ) and f ̸= g, then there exists d ∈ D such that
f#(d) ∩ g#(d) = ∅.

By (3), there exists x ∈ X such that f#(x)∩ g#(x) = ∅. Hence by (1)
we may pick disjoint open subsets U and V of X such that f#(x) ⊆ U
and g#(x) ⊆ V . By (2), there is an open neighborhood E of x such that
for each y ∈ E we have f#(y) ⊆ U and g#(y) ⊆ V . Hence any d ∈ E is
as desired.

Let ≺ be a well-ordering on X. Now for f ∈ H (bX \ X) we define
f̃ : D → X by f̃(d) = min f#(d). Here the minimum of course refers to
the well-ordering ≺. It follows by Claim 1, that the assignment f 7→ f̃ is
one-to-one. Hence |H (bX \X)| ≤ |X||D|, and so we are done. �

We will now show that the two bounds (†) and (‡) are independent.
That is, for a nowhere locally compact space X, there is in general no
relation between |RO(X)|Hsw(X) and |X|d(X).

Example 3.2. There is a nowhere locally compact space X such that

|RO(X)|Hsw(X) < |X|d(X).

Proof. Indeed, let X = F [R] denote the Pixley-Roy hyperspace of the
real numbers R ([7]; see also [5]). Hence F [R] has the set of all nonempty
finite subsets of R as its underlying set. For F,U ⊆ R, where F ∈ F [R]
and U is an open neighborhood of F in the euclidean topology on R, put

[F,U ] = {G ∈ F [R] : F ⊆ G ⊆ U}.

The topology on F [R] is generated by the base of all such [F,U ]’s.
Observe that F [R] is nowhere locally compact.
It is known that the topology on X is finer than the Vietoris topol-

ogy on the the set of all nonempty subsets of R ([5, Proposition 2.1]).
This topology has countable weight, hence Hsw(X) = ω. Moreover, X
satisfies the countable chain condition, [7], and clearly, w(X) = c. As a
consequence,

|RO(X)| ≤ w(X)c(X) = cω = c,
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and so

(1) |RO(X)|Hsw(X) = cω = c.

On the other hand, d(X) = c. To see this, assume that G is any subset of
X of size less than c. Pick x ∈ R \

∪
G . Then the nonempty open subset

[{x}, (x−1, x+1)] of X misses G , i.e., G is not dense (this argument is
definately well-known). Hence

|X|d(X) = cc = 2c > c,

as required. �

Question 3.3. Does F [R] have a homogeneous remainder? Is a homoge-
neous remainder of F [R] first-countable (what if CH)?

Observe that by inequality (†) in §3 and (1) above it follows that if R
is a homogeneous remainder of F [R], then |R| ≤ c.

Example 3.4. There is a nowhere locally compact space X such that

|X|d(X) < |RO(X)|Hsw(X).

Proof. We may assume that the ordinal space Y = W (c) is a subspace
of 2c. Let D be a countable dense subspace of 2c, and put X = Y ∪D.
Then |X| = c and d(X) = ω, hence |X|d(X) = c.

We claim that Hsw(X) ≥ cf(c), the cofinality of c. Striving for a
contradiction, let U be an open collection in X of size less than cf(c).
We may assume that U is closed under finite intersections and unions.
Let V = {U ∈ U : U ∩W (c) ̸= ∅}. For every V ∈ V , pick an arbitrary
element α(V ) ∈ V ∩ W (c). The set S = {α(V ) : V ∈ V } has size less
than cf(c), hence has compact closure in W (c). Let S denote that closure.
Pick an element p ∈ W (c) \ S. Then {p} and S cannot be separated by
disjoint elements of U since the element of U that would contain p would
miss S. Hence indeed, Hsw(X) ≥ cf(c), from which it follows that

|RO(X)|Hsw(X) ≥ 2cf(c) > c,

as required. �

4. Applications

Inequalities such as (†) and (‡) in the previous section allow one to
conclude that many spaces are not homogeneous. Consider e.g., the case
of a Cantor cube 2κ and its dense subset Xκ. Here κ is an infinite cardinal
number. We assume throughout that Xκ is nowhere locally compact so
that its complement Yκ = 2κ \X is dense as well.
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Let us first assume that Xκ is countable. Then Yκ is not homogeneous if
2κ > c. This is easy. Indeed, by Theorem 3.1 it follows that |H (Yκ)| ≤ c,
while |Yκ| = 2κ > c.

As a consequence, if κ ≥ ω1, then Yκ is not homogeneous under 2ω1 > c.
Interestingly, 2ω1 \ Xω1 is homogeneous under MA+¬CH by [1, Theo-
rem 4.2]. Also observe that 2ω \Xω is homogeneous, being homeomorphic
to the space of irrational numbers.

Let us now pass to the potentially more complicated case where Xκ is
uncountable. A particularly interesting case is when Xκ is the standard
Σ-product Σκ in 2κ, i.e,

Σκ = {f ∈ 2κ : |{α < κ : f(α) = 1}| ≤ ω}.
Observe that each permutation of κ induces a homeomorphism of 2κ under
which Σκ is invariant. This implies that for Xκ = Σκ we have |H (Xκ)| =
|H (Yκ)| = 2κ. Hence Yκ cannot be shown to be nonhomogeneous by
having too few homeomorphisms. Observe that Xκ is homogeneous being
a subgroup of 2κ.

Proposition 4.1. Assume that κ > ω1. Then 2κ\Σκ is not homogeneous.

Proof. It will be convenient to adopt the above notation Xκ = Σκ and
Yκ = 2κ\Xκ. Consider the points f, g ∈ 2κ defined by f(α) = 1 ⇔ α ≤ ω1

and g is the constant function 1. It is clear that there is a subset A ⊆ Xκ

such that |A| = ω1 and f ∈ A. Striving for a contradiction, assume
that there is a homeomorphism ξ : Yκ → Yκ sending f onto g. Since Yκ

contains the Σ-product in 2κ with base point g and κ is uncountable, it
follows that βYκ = 2κ. Hence ξ can be extended to a homeomorphism
βξ : 2κ → 2κ. So g is in the closure of βξ(A) which is a subset of Xκ. But
this is clearly impossible since |βξ(A)| = ω1 and ω1 < κ; just observe that
any limit point of βξ(A) will have many coordinates equal to 0. �

Hence the situation for complements of Σ-products is completely set-
tled for κ ̸= ω1: 2κ \Σκ is homogeneous if κ = ω (for it is empty) and not
if κ > ω1. For κ = ω1, we have no idea. But we do know that 2ω1 \ Σω1

is not (homeomorphic to) a topological group under 2ω < 2ω1 , which is a
consequence of our final result.

Theorem 4.2. Suppose that κ is of uncountable cofinality such that κω <
2κ and Z = 2κ. Then, for any X ⊆ Z such that X is dense in Z and
|X| < |Z|, the complement Z \X is not (homeomorphic to) a topological
group.

Proof. Put Y = Z \X. Clearly, X and Y are both dense in Z.
For each a ∈ Z, let Za be the Σ-product in Z with the base-point a.
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We have: |Za| = κω < 2κ = |Z|. For distinct a and b in Z, the sets Za

and Zb are either disjoint or coincide. Therefore, there exists a subset
A of Z such that the family γ = {Za : a ∈ A} is disjoint and covers Z.
Clearly, |A| = 2κ.

Since |γ| = 2κ and |X| < 2κ, there exists b ∈ A such that Zb ⊆ Y .
This shows that Y is pseudocompact since Xb is countably compact and
dense in Z (and hence in Y ), and κ has uncountable cofinality. And also
Z = βY since Z = βZb.

Let us now assume that Y is homeomorphic to a topological group.
We will bring this assumption to a contradiction. By pseudocompactness
of Y and the fact that βY = Z, there exists a group operation on the
space Z which turns Z into a topological group and Y into a subgroup
of Z (Comfort and Ross [4]). Hence, the space X = Z \ Y contains
a dense topological copy of Y . As a consequence, |X| ≥ |Y | = 2κ, a
contradiction. �

Notice that there are plenty of subspaces X of Z such that X is dense
in Z and |X| < |Z|.

It was shown in [1, Theorem 5.2] that there are pseudocompact topo-
logical groups no remainder of which is homogeneous. From Proposi-
tion 4.1 we conclude that there are many pseudocompact (even countably
compact) subgroups of Cantor cubes whose complements are not homo-
geneous. This prompts an obvious question, which is answered by the
following result.

Example 4.3. There is a pseudocompact noncompact group G with a
compactification bG such that bG \G is homogeneous.

Proof. Let A ⊆ 2ω1 be the standard Σ-product. Pick a point p ∈ 2ω1 \A,
and let M be a maximal subgroup of 2ω1 containing A but not containing
p. It is easy to see that M has index 2. �

Can there be a countably compact such topological group? This is so
if there is an Ulam-measurable cardinal κ. Let p be a κ-complete non-
principal ultrafilter on κ. Consider p to be a subset of the Cantor group
2κ. Then its complement, the dual ideal of p, is a countably compact
subgroup of 2κ of index 2. This observation can be found e.g. in Comfort
and Remus [3].

5. Questions

In this section we formulate some open problems.

Question 5.1. Suppose that X = 2c, is the Cantor group with weight c,
and Z ⊆ X be dense in X with |Z| < 2c. Then can the complement X \Z
be homogeneous?
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Theorem 4.2 and Question 5.1 motivate the next concrete question:

Question 5.2. Suppose that X = 2ω1 , and Z the standard Σ-product
contained in X. Then can the complement X \ Z be homogeneous?

For x ∈ 2ω1 we put A(x) = x−1({0}) and B(x) = ω1 \A(x). We claim
that X \Z has only two types of points (which might be the same types).
Indeed, put

S = {x ∈ X \ Z : |A(x)| ≤ ω}, and T = {x ∈ X \ Z : |A(x)| = ω1}.
We will show that all points of S are of the same type in X \ Z and,
similarly, for T .

Observe that for every x ∈ X \ Z we have that B(x) has size ω1.
Now if x and y in X \ Z are such that both A(x) and A(y) have the

same cardinality, then there is a permutation of ω1 which sends B(x) onto
B(y) and A(x) onto A(y). The homeomorphism of X that is induced by
this permutation then takes x onto y and X \ Z is invariant under this
homeomorphism.

This proves that all points of T are of the same type in X \ Z.
Now take arbitrary x, y ∈ S. We will show that we may assume without

loss of generality that both A(x) and A(y) are infinite. Assume that A(x)
is finite, and let T ⊆ B(x) be countably infinite. Define a homeomorphism
f of 2ω1 by

f(p)(α) =

{
p(α) (α ̸∈ T ),

1 + p(α)(mod 2) (α ∈ T ).

Then X\Z is invariant under f , and f(x) has the property that |A(f(x))| =
ω. There similarly is a homeomorphism g of 2ω1 such that X \Z is invari-
ant under g, and g(y) has the property that |A(g(y))| = ω. Now by the
above, there is a homeomorphism h of 2ω1 such that X \ Z is invariant
under h, and h(f(x)) = g(y). Hence all points of S are of the same type
as well.

Observe that under 2ω < 2ω1 we have by Theorem 4.2 that X \ Z is
not a topological group.

A similar question for Cantor cubes 2κ with κ greater than ω1 was
answered in the negative by Proposition 4.1.

Question 5.3. Is there a noncompact countably compact topological group
G with a compactification bG such that bG \G is homogeneous?
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(1994), 203–210.

[4] W. W. Comfort and K. A. Ross, Pseudocompactness and uniform continuity in
topological groups, Pac. J. Math. 16 (1966), 483–496.

[5] E. K. van Douwen, The Pixley-Roy topology on spaces of subsets, Set-theoretic
topology (G. M. Reed, ed.), Academic Press, New York, 1977, pp. 111–134.

[6] I. Juhász, Cardinal functions in topology–ten years later, Mathematical Centre
Tract, vol. 123, Mathematical Centre, Amsterdam, 1980.

[7] C. Pixley and P. Roy, Uncompletable Moore spaces, Proceedings of the Auburn
Topology Conference (Auburn Univ., Auburn, Ala., 1969; dedicated to F. Burton
Jones on the occasion of his 60th birthday), Auburn Univ., Auburn, Ala., pp. 75–
85.

(Arhangel’skii) MGU and MPGU, Moscow, Russia
E-mail address: arhangel.alex@gmail.com

(van Mill) KdV Institute for Mathematics, University of Amsterdam, Sci-
ence Park 105-107, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands

E-mail address: j.vanMill@uva.nl

URL: http://staff.fnwi.uva.nl/j.vanmill/


