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OF TORUŃCZYK’S CHARACTERIZATION THEOREMS

JAN J. DIJKSTRA, MICHAEL LEVIN, AND JAN VAN MILL

(Communicated by Martin Scharlemann)

Abstract. We present short proofs of Toruńczyk’s well-known characteriza-
tion theorems of the Hilbert cube and Hilbert space, respectively.

1. Introduction

All spaces under discussion are assumed to be separable and metrizable.
Recall that a compactum (complete space) Y is strongly universal if any map

f : X −→ Y from a compactum (complete space) can be approximated arbitrarily
closely by a (closed) embedding into Y . In the non-compact case the closeness is
measured by open covers of Y .

The aim of this note is to provide a short proof of the following results:

Theorem 1.1.

(1) A locally compact space is a Hilbert cube manifold if and only if it is an
ANR which is strongly universal (with respect to compact spaces).

(2) A complete space is a Hilbert space manifold if and only if it is an ANR
which is strongly universal (with respect to complete spaces).

This is a reformulation of the main results in Toruńczyk [20–22]. He showed in [20]
that a locally compact ANRX is a Hilbert cube manifold if and only if any two maps
I
k → X for k ∈ N can be approximated arbitrarily closely by maps having disjoint
images (here I denotes the closed unit interval I). This was subsequently named the
“disjoint cubes property”. A complete ANR space has the disjoint cubes property
if and only if it is strongly universal with respect to compact spaces ([17, Theorem
7.3.5]). Moreover, Toruńczyk showed in [21, 22] that a complete ANR is a Hilbert
space manifold if and only if any map

⊕
n∈N

I
n → X is approximable arbitrarily

closely by maps sending {In : n ∈ N} to discrete families. This was subsequently
named the “discrete cubes property”. If a complete ANR X has the discrete cubes
property, thenX is strongly universal with respect to complete spaces ([8, Theorem,
p. 127]). For more details, historical comments and references on these facts, see
the books [17] and [11].

Toruńczyk’s [20–22] results are widely known and were applied in diverse settings.
They also inspired the characterization results of the universal Menger spaces by
Bestvina [6] and the recent work on Nöbeling spaces [1–3], [19], [15, 16].
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A compactum (complete space) is said to be a Hilbert type compactum (Hilbert
type space) if it is strongly universal and an AR. A closed subset F of a space
X is said to be a Z-set in X if the identity map of X can be arbitrarily closely
approximated by a map f : X −→ X such that f(X) ∩ F = ∅.

Definition 1.2. We say that a Hilbert type compactum (space) H is a model space
for Hilbert type compacta (Hilbert type spaces) if it has the following properties:

(i) (stability) H ≈ H × I;
(ii) (Z-set unknotting theorem) given an open cover U of H, an open subset Ω

of H, homeomorphic Z-sets Z1 and Z2 of H contained in Ω and a homeomorphism
φ : Z1 −→ Z2 homotopic to the identity map of Z1 by a homotopy controlled by
U and supported by Ω there exists a homeomorphism Φ : H −→ H such that Φ
extends φ and Φ is controlled by U and supported by Ω.

The goal of this note is to present a complete and self-contained proof of the
fact that the existence of a model space for Hilbert type compacta (Hilbert type
spaces) implies the characterization theorem which says that every two Hilbert type
compacta (spaces) are homeomorphic. We also show how this characterization leads
to a proof of Theorem 1.1.

One would probably expect that our abstract approach will make the proofs
longer and more complicated and we were surprised to find out that this approach
can considerably shorten and simplify the proofs despite our use of already known
techniques and ideas. This was mainly achieved by carefully analyzing existing
proofs, extracting essential parts, avoiding unnecessary repetitions, splitting the
proofs into short parts and sometimes reversing the historical order of the results.
For example, we simplified the proof of Miller’s cell-like resolution theorem [18] by
using techniques introduced later for proving the characterization theorems.

It was known before the characterization theorems were proved that model spaces
for Hilbert type compacta and Hilbert type spaces exist (for example Hilbert cube
and Hilbert space respectively, see Chigogidze [11, §2,4] for details and references).
One of the features of our approach is that we never work with a particular real-
ization of a model space, we don’t even assume that the Hilbert cube Q is a model
space for Hilbert type compacta. Although in the compact case we are able to
detect at a relatively early stage of the proof that if a model space exists it must
be homeomorphic to Q, in the non-compact case we can pretend not to know what
a model space looks like until the characterization is proved.

We are indebted to the referee for helpful comments.

2. Preliminaries

We assume that the reader is familiar with general facts regarding AR’s, Hilbert
type compacta and Hilbert type spaces, cell-like maps, etc. Most of the necessary
information can be found in [17, §§7.1-7.3] and [11]. See also Chapman [9] and
Edwards [12]. Earlier simplifications of Toruńczyk’s proofs can be found in [7]
and [23].

Let f : X −→ Y be a proper map and let A be a closed subset of Y . By X ∪f A
we denote the quotient space of X obtained by collapsing the fibers over A to
singletons. As usual, for a proper surjection f : X −→ Y , we let M(f) denote the
mapping cylinder of f , that is, M(f) is obtained from X × I by replacing X × {1}
by Y . We usually let πY : M(f) −→ Y denote the projection. If f : X → Y and
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A ⊂ Y , then we say that f is one-to-one over A if the restriction of f to f−1(A) is
one-to-one.

The following result displays a technique for proving the existence of a home-
omorphism between an M(f) and the range of f that is known as ‘the Edwards
trick’. This result is very similar to Lemma 42.1 of [10] which Chapman attributes
to Edwards in Note §42 on page 107.

Proposition 2.1. Let f : X → Y be a proper surjection between complete metric
spaces and let πY : M(f) → Y be the natural projection. Assume that for every
open cover V of Y , there is a proper near homeomorphism α : M(f) → M(f) such
that πY ◦ α is V -close to πY and for every y either α(π−1

Y (y)) is a singleton or

α(π−1
Y (y)) does not meet X × {0}. Then πY is a near homeomorphism.

Proof. Observe that α is surjective because it is a proper near homeomorphism.
Identify M(f) \ Y with X × [0, 1) and let πX : M(f) \ Y −→ X be the natural

projection. With the aim of using Bing shrinking consider open covers UM of M(f)
and UY of Y respectively. Replacing UY by a finer open cover of Y we may assume
that the closures of the sets in UY refine UM restricted to Y . Then there are
an open cover UX of X refining f−1(UY ) and an infinite sequence of continuous
functions ti : X −→ (0, 1) (i ∈ N) with ti+1(a) < ti(a) and limi→∞ ti(a) = 0 for
every a ∈ X such that the collection U of open sets in M(f) defined below refines
UM . Assume that I is located on the vertical axis as usual so that the points of Y
are above the graph of every function ti in M(f). The collection U consists of the
portions of the sets of π−1

Y (UY ) above the graph of the function t3 and the portions

of the sets of π−1
X (UX) between the graphs of ti+2 and ti for i ∈ N.

Let V be an open cover of Y such that st(V ) refines UY and assume that α is
chosen as in the premise of the proposition with πY ◦α is V -close to πY . Then one
can find an infinite sequence of continuous functions si : X −→ (0, 1) (i ∈ N) with
si+1(a) < si(a) and limi→∞ si(a) = 0 for every a ∈ X with the following properties.
For every set of the form F = α(π−1

Y ({y})) where y ∈ Y that is not a singleton in
X ×{0} we have that F lies in between the graphs of si+2 and si for some i ∈ N if
F intersects the closed region below the graph of s2; F lies above the graph of s3
if F intersects the closed region above the graph of s2 and πX(F ) is contained in
an element of UX if F intersects the closed region below the graph of s1.

Put t0(a) = s0(a) = 1 for each a ∈ X. Consider the homeomorphism ψ :
X × I −→ X × I that maps every interval {a} × [ti+1(a), ti(a)] linearly onto {a} ×
[si+1(a), si(a)]. Then Ψ : M(f) −→ M(f) is the homeomorphism of M(f) induced
by ψ. We have that πY = πY ◦Ψ and the sets of the form Ψ−1(α(π−1

Y ({y}))), y ∈ Y
refine UM .

Recall that α is a proper near homeomorphism and that πY is proper. Then
α can be approximated by a homeomorphism Φ so close to α that the sets of the
form Ψ−1(Φ(π−1

Y ({y}))), y ∈ Y also refine UM . Clearly if Φ is sufficiently close to
α, then πY ◦ Φ−1 ◦ Ψ is UY -close to πY and the proposition follows from Bing’s
shrinking criterion. �

A closed embedding f : X −→ Y is said to be a Z-embedding if f(X) is a
Z-set in Y . Let us end this section with recalling the following Z-embedding
approximation properties which play an important role in the proofs:

(i) Let Y be a complete ANR strongly universal with respect to maps from com-
plete spaces. Then every map f : X −→ Y from a complete space X can arbitrarily



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

904 JAN J. DIJKSTRA, MICHAEL LEVIN, AND JAN VAN MILL

closely be approximated by a Z-embedding f ′ : X −→ Y . Moreover, if f is a Z-
embedding on a closed subset F of X, then f ′ can be chosen to coincide with f
on F .

(ii) Let Y be a locally compact ANR strongly universal with respect to maps
from compact spaces. Then every proper map f : X −→ Y from a locally compact
space X can arbitrarily closely be approximated by a Z-embedding f ′ : X −→ Y .
Moreover, if f is a Z-embedding on a closed subset F of X, then f ′ can be chosen
to coincide with f on F .

Although these properties are well known and often considered as folklore, we
provide their elementary (that is, not based on characterization theorems) proof
in Section 7 because an appropriate reference was not found. For the sake of
simplicity some authors even regard the Z-embedding approximation properties as
an alternative definition of strongly universal ANR’s.

3. Topological characterization of the Hilbert cube

Everywhere in this section ‘model space’ means ‘model space for Hilbert type
compacta’. We will show that the existence of a model space implies the charac-
terization of Hilbert type compacta.

The following proposition is very similar to Lemma 42.2 of Chapman [10] which
is attributed to West [24] and Edwards in Note §42 on page 107 of [10].

Proposition 3.1. Let X and Y be compact AR’s, f : X −→ Y a cell-like map
and A a closed subset of Y such that Z = f−1(A) is a Z-set in X and Z has a
closed neighborhood H homeomorphic to a model space. Then the quotient map
π : X −→ X ∪f A is a near homeomorphism and A is a Z-set in X ∪f A.

Proof. Note that, since H is an AR and Z is contained in the interior of H we
get that Z is a Z-set in H as well. Fix a sufficiently small ε > 0 such that the
ε-neighborhood Ω of Z is contained in H and let U be an open ε-cover of Y . Using
that f is a fine homotopy equivalence (Haver [13]), we lift f restricted to Z to a
Z-embedding φ : Z −→ H such that φ(Z) ⊂ Ω, φ(f−1(a)) is of diameter less than
ε for every a ∈ A and φ is homotopic to the identity map of Z by a homotopy
controlled by f−1(U ) and supported by Ω. Then, by Definition 1.2, φ extends to
a homeomorphism Φ : X −→ X controlled by f−1(U ) and supported by Ω. Hence
Bing’s shrinking criterion implies that π is a near homeomorphism. Then, since
Z = f−1(A) = π−1(A) is a Z-set in X, we get that A is a Z-set in X ∪f A. Indeed,
approximate the identity map of X by a map f ′ : X −→ X \Z and approximate π
by a homeomorphism π′. Then the map π ◦ f ′ ◦ (π′)−1 witnesses that A is a Z-set
in X ∪f A. �

Corollary 3.2. Let H be a model space, f : H −→ Y a cell-like map and Y a
compact AR. Then the projection from H × I to M(f) is a near homeomorphism.
In particular, we get that M(f) ≈ H.

Proof. Follows from Proposition 3.1. �

Let f : X −→ Y be a map of compacta and πY : M(f) −→ Y the projection.
We say that f is a nice map if the identity map of Y can arbitrarily closely be
approximated by an embedding g : Y −→ Y such that π−1

Y (g(Y )) is a Z-set in
M(f).
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Note that for every map f : X −→ Y and a Hilbert type compactum C the
induced map f × id : X × C −→ Y × C is a nice map. Indeed, observe that
M(f × id) = M(f)×C and πY×C = πY × id. Approximate the projection of Y ×C
to C by a Z-embedding φ : Y ×C −→ C. Then the embedding g : Y ×C −→ Y ×C
defined by g(y, c) = (y, φ(y, c)) for (y, c) ∈ Y × C witnesses that f × id is nice.

A similar argument also shows that the identity map on a Hilbert type com-
pactum is nice.

This result is very similar to Theorem 43.1 of [10] which is attributed to Edwards
in Note §43 on page 107.

Proposition 3.3. Let H be a model space, let f : H −→ Y be a nice cell-like map
and Y a Hilbert type compactum. Then the projection πY : M(f) −→ Y is a near
homeomorphism.

Proof. We aim to use Proposition 2.1. Since Y is a Hilbert type compactum and f
is a nice map we conclude that πY restricted to H × {0} can be arbitrarily closely
approximated by an embedding g : H × {0} −→ Y such that for A = g(H × {0})
we have that π−1

Y (A) is a Z-set in M(f). Let π : M(f) −→ M(f) ∪πY
A and

π′
Y : M(f)∪πY

A −→ Y be the natural projections. Observe that M(f)∪πY
A is an

AR by Hu [14, Theorem VI.1.3 on page 181]. By Corollary 3.2 and Proposition 3.1
the projection π is a near homeomorphism and A is a Z-set in M(f)∪πY

A. Hence
one can choose a homeomorphism h : M(f) −→ M(f) ∪πY

A so that the map
π◦h−1◦π : M(f) −→ M(f)∪πY

A is as close to π as we wish. Note that πY = π′
Y ◦π

and hence we may assume that πY ◦ h−1 ◦ π = π′
Y ◦ π ◦ h−1 ◦ π : M(f) −→ Y is as

close to πY as we wish. Also note that πY is a fine homotopy equivalence. Then
assuming that g is sufficiently close to πY on H×{0} and h is sufficiently close to π
we can apply Definition 1.2 and Corollary 3.2 to replace h by its composition with
a homeomorphism of M(f) sending H×{0} to h−1(A) and still keeping πY ◦h−1◦π
and πY as close as we wish. Thus we now assume that h sends H × {0} onto A.
Putting α = h−1 ◦ π : M(f) −→ M(f) we note that α is a near homeomorphism
and for every y ∈ Y either α(π−1

Y (y)) is a singleton or α(π−1
Y (y)) does not meet

H×{0}, and the maps πY and πY ◦α are as close as we wish. Thus Proposition 2.1
applies with X = H. �
Theorem 3.4. Let H be a model space. Then

(i) H ≈ H ×Q and
(ii) if f : H −→ Y is a cell-like map and Y is a Hilbert type compactum, then f

is a near homeomorphism.

Proof. Since the identity map id : H −→ H is a nice map we get by Proposition 3.3
that the projection M(id) = H × I −→ H is a near homeomorphism. As a conse-
quence, the projection H×I −→ H is shrinkable. Thus the projection H×I

n −→ H
is shrinkable for every n. But this clearly implies that the projection H ×Q −→ H
is shrinkable, hence a near homeomorphism by the Bing shrinking criterion and so
H ×Q ≈ H.

For part (ii) assume first that f : H −→ Y is a nice map. Then f is a near home-
omorphism because the projections H×I −→ H, H×I −→ M(f) and M(f) −→ Y
are near homeomorphisms by Corollary 3.2 and Proposition 3.3.

Now consider the general case. Recall that H ≈ H ×Q and f × id : H ×Q −→
Y ×Q is a nice map, because Q is a Hilbert type compactum. Then f × id is a near
homeomorphism and hence Y × Q ≈ H. Note that the projections H × Q −→ H



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

906 JAN J. DIJKSTRA, MICHAEL LEVIN, AND JAN VAN MILL

and Y ×Q −→ Y are nice maps and therefore they are also near homeomorphisms.
All this implies that f is a near homeomorphism. �
Theorem 3.5. Any compact AR is a cell-like image of any model space.

Wewill prove this theorem in the next section. Theorems 3.4 and 3.5 immediately
imply the characterization theorem for Hilbert type compacta.

4. Cell-like resolution

In this section we prove Theorem 3.5. For its proof we need the following aux-
iliary propositions and constructions. Recall that a model space means a model
space for Hilbert type compacta.

Proposition 4.1. Let H be a model space, X a Z-set in H and f : X −→ H any
map. Then f extends to a cell-like map H −→ H.

Proof. Let us first consider the case when f(X) is a Z-set. By the Z-set unknotting
theorem we may assume that X and f(X) are disjoint. Take any Z-set A ⊂ H
such that A is an AR, f(X) ⊂ A and X ∩A = ∅. Consider f as a map f : X −→ A.
By extending f over a bigger Z-set we may assume that X is an AR. Let M(f) be
the mapping cylinder of f and πA : M(f) −→ A the projection. Embed M(f) as a
Z-set in H so that X and A are identified with the corresponding natural subsets of
M(f). Then the adjunction space Y = H ∪πA

A is an AR (Hu [14, Theorem VI.1.3
on page 181]), the projection π : H −→ Y is cell-like and hence, by Proposition 3.1,
π is a near homeomorphism and A is a Z-set in Y . Thus there is a homeomorphism
g : Y −→ H and by the Z-set unknotting theorem we may assume that g sends A
to A by the identity map. Then π followed by g is the extension of f we are looking
for.

Now consider the general case. Let the map φ : X −→ H × I be defined by
φ(x) = (f(x), 0). By the previous case φ extends to a cell-like map Φ : H −→ H×I.
Then Φ followed by the projection of H × I to H is the required cell-like extension
of f . �

Let A ⊂ H be a compact AR and r : H −→ A a retraction. We assume that the
mapping cylinder M(r) is obtained from H × I by replacing H × {1} with A and
denote by πA : M(r) −→ A the projection induced by r and by πI : M(r) −→ I the
projection to I. We can rescale the interval I to another interval [a, b] and consider
M(r) over [a, b] assuming that the interval projection πI sends A ⊂ M(r) to the
right end point b. We will also refer to A ⊂ M(r) as the right A-part of M(r) and
A×{0} ⊂ H ×{0} as the left A-part of M(r) and the projections πA and πI as the
A-projection and the interval projection respectively.

By the extended mapping cylinder E(r) of r we mean the unionM(r)∪H×[1/2, 1]
in which we assume that M(r) is the mapping cylinder over [0, 1/2] and A×{1/2} ⊂
H × [1/2, 1] is identified with A ⊂ M(r) (the right A-part of M(r)). We will call
H× [1/2, 1] the extension part of E(r). We define the projection πI : E(r) −→ I by
the projections of M(r) and H × [1/2, 1] to [0, 1/2] and [1/2, 1] respectively and we
define the map πE

H : E(r) −→ H as the union of the projection πA : M(r) −→ A
and the projection of H× [1/2, 1] to H. Clearly we can rescale I to an interval [a, b]
so that M(r) ⊂ E(r) and the extension part of E(r) will be sent by πI to [a, c] and
[c, b] respectively for some a < c < b. In that case we say that E(r) is the extended
cylinder over [a, b] with M(r) ⊂ E(r) being over [a, c].
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Proposition 4.2. Let H be a model space and r : H −→ A a retraction. Then
there is a cell-like map from H to E(r).

Proof. By Proposition 4.1 there is a cell-like map φ : H × [1/2, 1] −→ H × [1/2, 1]
so that φ(x, 1/2) = (r(x), 1/2) for x ∈ H. Consider E(r) as the extended mapping
cylinder over I with M(r) being over [0, 1/2] and identify M(r)\A with H×[0, 1/2).
Extend φ to the map Φ : H × I −→ E(r) by Φ(x, t) = (x, t) for x ∈ H and
0 ≤ t < 1/2. Then Φ is the required cell-like map. �

Let H be a model space. We say that a retraction r : H −→ A is a convenient
retraction if E(r) is homeomorphic to H. Note that if H is a model space and
r : H −→ A is any retraction, then the induced retraction r× id : H×Q −→ A×Q
is a convenient retraction because E(r×id) = E(r)×Q is a Hilbert type compactum
and because, by Proposition 4.2, E(r× id) admits a cell-like map from H and this
map is a near homeomorphism by Theorem 3.4.

Let r : H −→ A be a retraction. By the telescopeM(r, n) of n mapping cylinders
of r we mean the union M(r, n) = M1(r)∪ · · ·∪Mn(r) where Mi(r) is the mapping
cylinder of r over the interval [ti−1, ti], ti = i/n and the right A-part of Mi is
identified with the left A-part of Mi+1(r) by the identity map of A for 1 ≤ i ≤ n−1.
The projections of Mi(r) to A and [ti−1, ti] induce the corresponding projections
πA : M(r, n) −→ A and πI : M(r, n) −→ I. Clearly I can be rescaled to any interval
[a, b].

In a similar way we define the infinite telescope M(r,∞) =
⋃∞

i=1 Mi(r) over an
infinite partition 0 = t0 < t1 < t2 < . . . , ti −→ ∞, of the ray R+ = [0,∞) with the
mapping cylinder Mi(r) being over the interval [ti−1, ti]. Again the A-projections
and the interval projections of Mi(r) define the projections πA : M(r,∞) −→ A
and πR : M(r,∞) −→ R+ to which we will refer as the A-projection and the R-
projection respectively. Note that if r : H −→ A is a convenient retraction, then
M(r,∞) is homeomorphic toH×R+. Indeed, assume that the cylinders ofM(r,∞)
are over the intervals [i− 1, i], i = 1, 2 . . . . Then π−1

R
([0, 1/2]) is homeomorphic to

H × [0, 1/2] and π−1
R

([i − 1/2, i + 1/2]) is homeomorphic to the extended cylinder
E(r) which is homeomorphic to H ≈ H × [i − 1/2, i + 1/2] since r is convenient.
Then using the Z-set unknotting theorem we can assemble all these pieces into a
space homeomorphic to H × R+.

The next two propositions are very similar to Theorems 41.2 and 41.3 of [10]
which are attributed to Chapman and West in Note §41 on page 98 of [10].

Proposition 4.3. Let H be a model space and r : H −→ A be a convenient
retraction. Then there is a homeomorphism φ : M(r) −→ M(r, 2) = M1(r)∪M2(r)
such that φ sends the right A-part and the left A-part of M(r) to the right A-
part of M2(r) and the left A-part of M1(r) respectively by the identity map of A.
Moreover, φ can be chosen so that for the A-projections πA : M(r) −→ A and
π∗
A : M(r, 2) −→ A the composition π∗

A ◦ φ is as close to πA as we wish.

Proof. Let πI : M(r) −→ I and π∗
I : M(r, 2) −→ I be the interval projections.

One can naturally identify π−1
I ([0, 2/3]) with H × [0, 2/3] and (π∗

I )
−1([0, 2/3]) with

the extended mapping cylinder E(r) of r over the interval [0, 2/3] with mapping
cylinder of E(r) being over [0, 1/2] and being identified with M1(r). Let the map
πE
H : E(r) −→ H be as defined above. Since r is a convenient retraction and πE

H

is cell-like, we get that πE
H is a near homeomorphism (Theorem 3.4). Since the

projection πH : H × [0, 2/3] −→ H is also a near homeomorphism one can find a
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homeomorphism ψ : H × [0, 2/3] −→ E(r) so that πE
H ◦ ψ is as close to πH as we

wish. Since H×{2/3} and the left A-part of M1(r) are Z-sets in E(r), A×{0} and
H ×{2/3} are Z-sets in H × [0, 2/3], and πE

H and πH similarly send these sets into
H by the identity maps of A and H respectively, we can, in addition, by the Z-set
unknotting theorem adjust ψ so that ψ sends A × {0} and H × {2/3} to the left
A-part of M1(r) and H × {2/3} respectively by the identity maps. Extending ψ
over H×I by the identity map between π−1

I ([2/3, 1]) ⊂ M(r) and (π∗
I )

−1([2/3, 1]) ⊂
M2(r) we get the required homeomorphism φ : M(r) −→ M(r, 2). �

Proposition 4.4. Let H be a model space and r : H −→ A a convenient retraction.
Then there is a cell-like map from cone(H) to cone(A).

Proof. Denote by Mn the infinite telescope Mn =
⋃∞

i=1 M
n
i of the mapping cylin-

dersMn
i of r over the intervals [ i−1

2n , i
2n ] and let πn

A : Mn −→ A and πn
R
: Mn −→ R+

be the A-projection and the R-projection of Mn. We are going to construct a cell-
like map φ : M0 −→ A × R+. Let En, n = 1, 2, . . . , be a sequence of open covers
of A such that st(En+1) refines En and every set of En can be homotoped to a
point inside a set of diam < 1/2n. By Proposition 4.3 take a homeomorphism
ψn
n+1 : Mn −→ Mn+1 sending each mapping cylinder Mn

i of Mn to two consecu-

tive mapping cylinders Mn+1
2i−1 and Mn+1

2i of Mn+1 as described in Proposition 4.3

and so that πn+1
A ◦ ψn

n+1 is En+3-close to πn
A. Denote ψn

m = ψm−1
m ◦ · · · ◦ ψn

n+1 :
Mn −→ Mm for m > n, ψn

n = id, φn
A = πn

A ◦ ψ0
n and φn

R
= πn

R
◦ ψ0

n. Note
that if x ∈ Mn belongs to Mn

i , then (πm
R

◦ ψn
m)(x) ∈ [ i−1

2n , i
2n ] for every m ≥ n.

Thus we have that the sequences of maps {φn
A} and {φn

R
} converge and we de-

note their limits by φA : M0 −→ A and φR : M0 −→ R+ respectively. Consider
φ = (φA, φR) : M

0 −→ A× R+.
We will show that φ is cell-like. Take x = (a, t) ∈ A× R+ and let F = φ−1(x).

Fix n and note that ψ0
n(F ) is always contained in at most two consecutive mapping

cylinders Mn
i and Mn

i+1 of Mn. Also note that φn
A(F ) refines En+1. Then ψ0

n(F )

can be homotoped to a point of the right A-part of Mn
i+1 inside the set (πn

A)
−1(B)∩

(Mn
i ∪Mn

i+1) where B ⊂ A is the closed 1/2n-neighborhood of φn
A(F ) in A. Note

diamB < 3/2n. Then diamφA((π
n
A ◦ ψ0

n)
−1(B)) < 5/2n and hence F can be

homotoped to a point inside the set φ−1(C × [ i−1
2n , i+1

2n ]) where C is the closed
5/2n-neighborhood of a in A. This implies that φ is cell-like.

It is also clear that φ is a proper map. Recall that M0 is homeomorphic to
H × R+. Identify H × R+ and A × R+ with the complements of the vertices of
cone(H) and cone(A) respectively. Then φ extends to a cell-like map from cone(H)
to cone(A) by sending the vertex of cone(H) to the vertex of cone(A) and we are
done. �

Proof of Theorem 3.5. Let A be a compact AR and H a model space. By Propo-
sition 3.1, H ≈ H × I ≈ cone(H). Recall that A × Q is a convenient retract of
H ≈ H ×Q. Then, by Proposition 4.4, cone(A×Q) is a cell-like image of cone(H).
One can easily verify that if X is a Hilbert type compactum, then so is cone(X).
Then, by Theorem 3.4, cone(A×Q) ≈ cone(H). By the Z-set unknotting theorem
we can identify the vertex of cone(A×Q) with the vertex of cone(H) and conclude
from this that the set A×Q× {0} has a closed neighborhood in A×Q× I home-
omorphic to H ≈ H × I. Then, by the symmetry, such a neighborhood also exists
for A×Q×{1} and hence, by Proposition 3.1, A×Q ≈ A×Q× I is homeomorphic
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to cone(A×Q). Thus A×Q ≈ H and the projection of A×Q to A is the cell-like
map we need. �

5. Topological characterization of Hilbert space

The results of the previous sections were intentionally presented in such a way
that they apply with minor clarifications to the characterization of Hilbert type
spaces. In this section we describe the adjustments in the proofs needed in the
non-compact setting. Everywhere we replace Hilbert type compacta by Hilbert
type spaces, a model space will mean a model space for the Hilbert type spaces and
a cell-like map will mean a proper cell-like map. Almost all the proofs in Sections
3 and 4 will work in the non-compact setting with obvious trivial adjustments. So
we will point out only those places that require clarifications.

Section 3.

Nice maps. The property that for a map f : X −→ Y the induced map f ×
id : X × Q −→ Y × Q is nice remains true for non-compact spaces X and Y
provided f is proper. We will show that using the properties that any proper map
g = (gY , gQ) : X −→ Y ×Q can be arbitrarily closely approximated by

(*) a map g′ = (g′Y , g
′
Q) : X −→ Y ×Q such that g′Y = gY and g′(X) ⊂ Y ×B(Q);

(**) an injective map g′ = (g′Y , g
′
Q) : X −→ Y × Q such that g′Y = gY and

g′(X) ⊂ Y × (Q \B(Q)).
Note that the maps g′ in (*) and (**) are proper (and hence closed) since g′Y = gY

and g is proper. Thus g′ in (**) is a closed embedding.
Let us indicate how to prove (*) and (**). The case of compact X and Y is quite

easy and, by a simple iterative procedure the compact case extends to the case of
X and Y being locally compact. The general case reduces to the locally compact
one as follows. Let U be an open cover of Y ×Q determining the closeness of an
approximation of g. Take any compactification Y ∗ of Y and extend g over a metric
compactification X∗ of X to a map g∗ : X∗ −→ Y ∗×Q (for example embed X into
Q, identify X with the graph Γ of g in Q× (Y ∗ ×Q) and set X∗ to be the closure
of Γ with g∗ being the projection to Y ∗ ×Q). Extend U to an open cover of a set
UY ×Q where Y ⊂ UY is open in Y ∗. Thus we can replace X and Y by the locally
compact sets UX = (g∗)−1(UY ×Q) and UY respectively, g by g∗ restricted to UX

and arrive at the locally compact setting.
Now we return to showing that f × id is nice. Let πY : M(f) −→ Y be the

projection. By (**) the identity map of Y × Q can be arbitrarily closely approx-
imated by a closed embedding of Y × Q into Y × Q with the image A contained
in Y × (Q \B(Q)). Then (πY × id)−1(A) is contained in M(f)× (Q \ B(Q)) and,
hence by (*), (πY × id)−1(A) is a Z-set in M(f)×Q. Thus f × id is nice.

Theorem 3.4(i). The proof in the compact case can be extended to complete
spaces using an infinite iterative procedure for constructing homeomorphisms of
H × Q witnessing the shrinkability of the projection to H. Another way to prove
Theorem 3.4(i) in the non-compact case is to show that the projections of the
inverse limit of a sequence of complete spaces with bonding maps being proper near
homeomorphisms are near homeomorphisms as well. It can be done by adjusting
the proof of the similar result in the compact case [17, Theorem 6.7.4].
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Theorem 3.5. The phrase compact AR should be replaced by the phrase Hilbert
type space. The proof of this theorem is considered below (clarifications to Sec-
tion 4).

Section 4. In Section 4 we need to consider only proper maps and retractions and
everywhere assume that A is a Hilbert type space.

Proper retractions. A proper retraction to a Hilbert type space A always exists.
Indeed, let A ⊂ X be a closed subset of a complete space X. Note that A × I is
also a Hilbert type space with A × {0} being a Z-set in A × I. Then the identity
map A −→ A × {0} extends to a Z-embedding f : X −→ A× I and f followed by
the projection of A× I to A provides a proper retraction from X to A.

Convenient retractions. The property that a retraction r : H −→ A from a
model space H to A ⊂ H induces a convenient retraction r × id : H × Q −→
A × Q remains true for non-compact spaces provided r is proper. Indeed, by
Proposition 4.2, there is a proper cell-like map f : H −→ E(r × id). In order to
show that E(r× id) is homeomorphic to H, it is enough to show, by Theorem 3.4,
that E(r × id) is strongly universal. Take any map g : X −→ E(r × id) from a
complete space X. Since f is a fine homotopy equivalence and H is a Hilbert type
space we can lift g to a closed embedding h : X −→ H so that f ◦ h is arbitrarily
close to g. Note that E(r × id) = E(r)× Q. Then by (**) there is an arbitrarily
close approximation of f by a closed embedding f ′ : H −→ E(r×id) and the closed
embedding f ′ ◦ h : X −→ E(r × id) witnesses the strong universality of E(r × id).

Proposition 4.4. We assume that the metrics on A and M0 are complete, and
the horizontal shift of M0 one unit to the right is an isometric embedding. The
properness of φ can be achieved as follows. Note that φn

A is proper on each cylinder

M0
i of M0. Then we can additionally assume that φn+1

A is so close to φn
A that every

fiber of φn+1
A |M0

i is contained in the 1/2n+1-neighborhood of the corresponding
fiber of φn

A|M0
i for every i. Take a compact set K in A × R+ and let a compact

set KA ⊂ A and a natural number k be so that K ⊂ KA × [0, k]. Then for every
n we have that φ−1(K) is contained in the 1/2n-neighborhood of the compact set
(φn

A, φ
n
R
)−1(KA × [0, k+ 1]). This implies φ−1(K) is complete and totally bounded

and, therefore, compact. Hence φ is proper.

Proof of Theorem 3.5. By cone(X) of a space X we mean the metric cone whose
topology is defined by declaring X × [0, 1) to be an open subspace of cone(X) and
the complements of X × [0, t] for 0 ≤ t < 1 to form a basis of the vertex. We need
to assume that X is a Hilbert type space and to verify that X × I ≈ cone(X) if
X × {1} has a closed neighborhood H in X × I so that H is homeomorphic to a
model space. Let π : X × I −→ cone(X) be the projection. Fix ε > 0, take a point
x ∈ Uε = X × (1 − ε, 1] and a neighborhood Ux ⊂ Uε of x. Applying an obvious
homeomorphism of X×I we can replace H by a homeomorphic set and assume that
Uε ⊂ H. Approximate the constant map sending X × {1} to x by a Z-embedding
φ : X × {1} −→ Uε. Note that X ≈ X × {1} is an AR since it is a Hilbert type
space. Then φ and the identity map of X × {1} are homotopic in Uε and, by the
Z-set unknotting theorem, φ extends to a homeomorphism Φ : X × I −→ X × I

supported by Uε. Now take another obvious homeomorphism Ψ : X × I −→ X × I

supported by U2ε such that Ψ sends Uε into Φ−1(Ux). Then, by Bing’s shrinking
criterion, Φ ◦Ψ witnesses that π is a near homeomorphism. �
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6. Topological characterization of Hilbert cube

and Hilbert space manifolds

In this section we apply the characterization of the Hilbert cube and Hilbert
space to show that Hilbert cube and Hilbert space manifolds are topologically char-
acterized as being strongly universal locally compact ANR’s and strongly universal
complete ANR’s respectively where the strong universality of a locally compact
space means the strong universality with respect to the maps from compact spaces.

Let X be a strongly universal locally compact ANR. If X is compact, then set
Y = cone(X). If X is not compact, then denote by X∗ = X ∪ {∗} the one-point
compactification of X and denote by Y the reduced cone over X∗ which is obtained
from cone(X∗) by collapsing the interval connecting the point ∗ with the vertex to a
singleton. Note that in both cases Y is a compact AR and X× [0, 1) embeds into Y
as an open subset. That Y is an AR in the compact case follows from [17, Theorem
5.4.2], and in the non-compact case this can be proved in an almost identical way.
Since Q and Y × Q are both Hilbert type compacta, then the characterization of
the Hilbert cube implies Y ×Q ≈ Q. Then X× [0, 1)×Q is a Hilbert cube manifold
and hence X × I×Q ≈ X ×Q is a Hilbert cube manifold as well.

Now assume that X is a strongly universal complete ANR. Define a space Y
as the union of X × I and the Hilbert space where X × {1} is identified with
a homeomorphic Z-set in the Hilbert space. One can easily verify that Y is a
strongly universal complete AR and hence, by the characterization of Hilbert space,
both Y and Y ×Q are homeomorphic to the Hilbert space. Observe that X× [0, 1)
is an open subset of Y and hence X× [0, 1)×Q is an open subset of Y ×Q. Thus we
have that X × [0, 1)×Q is a Hilbert space manifold and hence X × I×Q ≈ X ×Q
is a Hilbert space manifold as well.

Note that the Z-set unknotting theorem for Hilbert cube implies the correspond-
ing Z-set unknotting theorem for Hilbert cube manifolds in the form of (ii) of Def-
inition 1.2 with the additional requirement that the homotopy is proper. Also note
that the Z-set unknotting theorem for Hilbert space implies the corresponding Z-
set unknotting theorem for Hilbert space manifolds exactly in the form of (ii) of
Definition 1.2. Such unknotting theorems can easily be derived from [5] and [4].

Then, after obvious adjustments, the proofs of Propositions 3.1 and 3.3 apply for
proper cell-like maps with model spaces H being replaced by Hilbert cube (space)
manifolds M satisfying M ≈ M × I and Hilbert type compacta (spaces) replaced
by strongly universal locally compact ANR’s (strongly universal complete ANR’s).
Now letX be a strongly universal locally compact ANR (strongly universal complete
ANR). Recall that X × Q is a Hilbert cube (space) manifold. Then, by Corollary
3.2, the mapping cylinder of the projection from X ×Q to X is homeomorphic to
X ×Q. Note that the projection from X × Q to X is a nice proper cell-like map.
Then Proposition 3.3 implies that X is homeomorphic to X ×Q and hence X is a
Hilbert cube (space) manifold.

Let us finally note that Theorem 3.4 also applies to show that a proper cell-like
map of Hilbert cube (space) manifolds is a near homeomorphism.

7. Appendix

In this section we provide an elementary proof of the Z-embedding approxima-
tion properties (i) and (ii) presented in Section 2.
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Proof of (i). We recall some basic properties of (a complete strongly universal ANR)
Y :

(A1) every Z-set A in Y is a strong Z-set, i.e., the identity map of Y can arbi-
trarily closely be approximated by a map with the closure of the image not
intersecting A ([11], Lemma 2.3.15 );

(A2) every compact subset of Y is a Z-set ([11], Lemma 2.3.16);
(A3) a closed subset A of Y is a Z-set if and only if there is countable dense

subset G of the function space C(Q, Y ) such that the images of Q under
the maps in G do not intersect A ([11], Proposition 2.2.3).

First assume that F �= ∅, identify F with f(F ) and consider F as a closed subset
of both X and Y . Fix a countable dense collection G = {g0, g1, g2, . . . } of maps
in C(Q, Y ) whose images do not intersect F . Take an open cover U of Y and
fix complete metrics dX and dY on X and Y respectively such that dX and dY
are bounded by 2 and the unit balls of Y with respect to dY refine U . We will
construct by induction maps fn : X −→ Y that do not move the points of F , a
decreasing sequence of open neighborhoods Un of F in X and compatible metrics
dnY on Y such that the following holds:

(B1) for every x ∈ Un there is a point xF in F such that dX(x, xF ) ≤ 2/2n−1

and dY (fn−1(x), xF ) ≤ 2/2n−1 for every n ≥ 1;
(B2) fn restricted to Xn = X \Un is a closed embedding such that Y X

n = fn(Xn)
does not intersect both F and Y Q

n = g0(Q) ∪ · · · ∪ gn(Q);
(B3) diY (fn−1(x), fn(x)) ≤ 1/2n for every i ≤ n− 1, n ≥ 1 and x ∈ X;

(B4) dnY (y1, y2) =

⎧⎪⎨
⎪⎩

dX(f−1
n (y1) ∩Xn, f

−1
n (y2) ∩Xn), if y1, y2 ∈ Y X

n ,

dY (y1, y2), if y1, y2 ∈ F ∪ Y Q
n ,

2, if y1 ∈ Y X
n and y2 ∈ F ∪ Y Q

n .

Set U0 = X, f0 = f , d0Y = dY and proceed from n to n + 1 as follows. Define

Un+1 ⊂ Un to be so close to F that (B1) holds. Recall that F and Y Q
n+1 are Z-

sets in Y . Then, applying (A1) and a controlled version of the Borsuk Homotopy
Extension Theorem, approximate fn by a map fn+1 so that fn+1 does not move
the points of F and (B2) holds. We may also assume that fn+1 is so close to fn
that (B3) holds as well. Define the metric dn+1

Y on Y X
n+1 ∪ F ∪ Y Q

n+1 to satisfy
(B4) and, by Hausdorff’s metric extension theorem, extend this partial metric to a
metric dn+1

Y on Y . The construction is completed.
Recall that d0Y = dY is a complete metric and, hence, by (B3), f ′ = lim fn is well

defined. Fix ε > 0 and let x1, x2 ∈ Xn be distinct points with dX(x1, x2) ≥ ε. Take
i > n such that 1/2i ≤ ε/8. Then, by (B4), diY (fi(x1), fi(x2)) = dX(x1, x2) ≥ ε and
hence, by (B3), diY (f

′(x1), f
′(x2)) ≥ ε/2. This implies that f ′ restricted to Xn is a

closed embedding. (The contrapositive of the previous argument shows (f ′|Xn)
−1

is uniformly continuous with respect to the metrics diY and dX .)
By (B3) and (B4), dnY (f

′(x), F ∪ Y Q
n ) ≥ 1 for every x ∈ Xn. Thus we get that

f ′(Xn) ∩ F = ∅ and f ′(Xn) ∩ Y Q
n = ∅. Hence f ′ is injective and f ′(X) ∩ Y Q

n = ∅
for every n.

Now, in order to show that f ′ is a closed embedding, we only need to verify that
if for a sequence xn in X such that xn ∈ Un+1 the sequence f ′(xn) converges in Y ,
then xn converge in X as well. Indeed, take a point xn

F ∈ F witnessing the property
(B1) for x = xn. By (B3), dY (f

′(xn), fn(xn)) = d0Y (f
′(xn), fn(xn)) ≤ 2/2n. Hence

by (B1), dY (f
′(xn), x

n
F ) ≤ 4/2n and lim xn = lim xn

F = lim f ′(xn).
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Recall that f ′(X)∩Y Q
n = ∅ for every n and hence, by (A3), f ′ is a Z-embedding.

By (B3), f ′ and f = f0 are 1-close with respect to dY = d0Y . Thus f ′ is a Z-
embedding U -close to f and coinciding with f on F .

The above construction also works for F = ∅ by just letting Un = ∅ for every
n ≥ 1 and removing the condition (B1).
Proof of (ii). The proof of (i) also applies to prove (ii) as follows. Assume that Y
is locally compact. Observe that (A1) trivially holds in this case because in this
context, the map which pushes Y off a Z-set can be taken to be proper and hence
having closed image.

Replace (A2) by the property that every map from a compactum to Y can
arbitrarily closely be approximated by a Z-embedding ([17, Theorem 7.3.5]).

Assume in (A3) that the maps in G are Z-embeddings ([17], Proposition 7.3.2).
Proposition 2.2.3 in [11] shows that if A lies in the complement of the images of
a dense subset of C(Q, Y ), then idY can be approximated by maps whose images
miss A. Since Y is locally compact, sufficiently close approximations of idY are
necessarily proper. So idY can be approximated by proper maps whose images
miss A. Thus, A satisfies the definition of a Z-set in the locally compact context.
Now choose dY to be a proper metric; then all the maps fn : X → Y and f ′ : X → Y
generated in the proof of (i) will be proper.
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no. 1, 1–41, DOI 10.4064/fm202-1-1. MR2457483
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