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THE EXISTENCE OF A CONNECTED MEAGER IN ITSELF CDH

SPACE IS INDEPENDENT OF ZFC

MICHAEL HRUŠÁK AND JAN VAN MILL

(Communicated by Mirna Džamonja)

Abstract. We show that the existence of a countable dense homogeneous
metric space which is connected and meager in itself is independent of ZFC.

1. Introduction

All spaces under discussion are separable and metrizable.
Recall that a space X is countable dense homogeneous (CDH) if, given any two

countable dense subsets D and E of X, there is a homeomorphism f : X → X
such that f [D] = E. This classical notion isolated by Bennett in [1] dates back
to the works of Cantor, Brouwer, Fréchet, and others. Examples of CDH spaces
are the Euclidean spaces, the Hilbert cube and the Cantor set. In fact, every
strongly locally homogeneous Polish space is CDH, as was shown by Bessaga and
Pe�lczyński [2].

A space X is called a λ-set if every countable subset of X is Gδ in X. Fitzpatrick
and Zhou in [4] noted that every meager in itself CDH space is a λ-set. On the
other hand, in [6] it is shown that there is a meager in itself CDH space of size κ
if and only if there is a λ-set of the same size. Uncountable λ-sets exist in ZFC,
though the existence of a λ-set of size c is independent of ZFC ([11, Theorem 22]).

The natural question, whether meager in itself CDH spaces can be connected
and, more generally, whether λ-sets can be connected arose recently. The above
considerations show that the answer to both questions is consistently negative: If
there are no λ-sets of size c, then every λ-set and, in particular, every meager in
itself CDH space is of size less than c, hence is zero-dimensional, ergo not connected
([4]). In this note we shall see the consistency of a positive answer to the questions.

2. A connected λ-set

As a warm up, we present the proof of the following:

Theorem 2.1. The following are equivalent:

(1) There is a λ-set of size c, and
(2) there is a connected λ-set.
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Proof. As every infinite connected space has size c it suffices to show that (1)⇒(2).
Let Y ⊆ 2ω be a λ-set of size c which is c-dense, i.e., has intersection of size c with
every non-empty open subset of 2ω. To see that such a set exists let Y ′ be a λ-set
of size c contained in its completion Z. Let G be a Gδ subset of 2ω for which there
exists a continuous one-to-one surjection f : G → Z. Note that f−1[Y ′] is a λ-set
of size c contained in 2ω. Then let

P = 2ω \
⋃

{U : U ⊆ 2ω : |f−1[Y ′] ∩ U | < c}

and note that P is a perfect subset of 2ω, hence is homeomorphic to 2ω, and
Y = P ∩ f−1[Y ′] is a λ-set c-dense in P .

We shall construct the connected space X as a subspace of the one-point com-
pactification (2ω × [0, 1)) ∪ {∞} of 2ω × [0, 1).

Claim. There is a function f : Y → [0, 1) such that f ∩ g �= ∅ for every Borel
g : U → [0, 1), where U is a non-empty open subset of 2ω.

The proof of the claim is a straightforward diagonalization.
Having fixed a function f as above and identifying f with its graph, consider the

space X = f ∪ {∞}.
To see that X is a λ-set it suffices to see that any countable subgraph of f

is relatively Gδ, but this trivially follows from the fact that its domain is Gδ in
Y . Now we shall check that X is connected. To see this, consider V,W disjoint
open subsets of 2ω × [0, 1) ∪ {∞} both intersecting X. It suffices to show that
X \ (V ∪ W ) �= ∅. Since ∞ ∈ X we may consequently assume that ∞ ∈ W .
Now, let (x, f(x)) ∈ X ∩ V . There are open U ⊆ 2ω and U ′ ⊆ [0, 1) such that
(x, f(x)) ∈ U × U ′ ⊆ V . Define g : U → [0, 1) by

g(x) = max{z ∈ [0, 1) : (x, z) �∈ W}.

As ∞ ∈ W and U × U ′ ⊆ V , the function is well defined, and is Borel, in fact of
Baire class 1. Observe that for every y ∈ U we have that (y, g(y)) belongs to the
closure of W but not to W . By the claim there is a y ∈ U such that f(y) = g(y).
Hence (y, f(y)) ∈ X \ W and, moreover, (y, f(y)) ∈ X \ V since V and W are
disjoint and (y, g(y)) belongs to the closure of W . �

Note that the space constructed is homeomorphic to a subspace of the plane.
Similar arguments as in the proof of Theorem 2.1 can be found in Zindulka [13]

and Mazurkiewicz and Szpilrajn [8] where λ-sets of positive dimension were con-
structed. The theorem can also be deduced from [7, §27, IX], as pointed out by the
referee.

3. A connected meager in itself CDH space from CH

In this section we shall prove the main result of this note, namely we prove that
assuming the Continuum Hypothesis there is a connected CDH meager in itself
subspace of the Hilbert cube. Together with the above-mentioned observation that
consistently every λ-set has size less than c this shows that the existence of a
countable dense homogeneous metric space which is connected and meager in itself
is independent of ZFC.

We first review relevant material concerning the topology of the Hilbert cube.
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3.1. Topology of the Hilbert cube. Let Q =
∏∞

n=1[−1, 1]n denote the Hilbert
cube with with product metric

d(x, y) =
∞∑

n=1

2−n|xn − yn|.

The pseudo-boundary of Q is

B(Q) = {x ∈ Q : (∃n ∈ N)(|xn| = 1)}
and its pseudo-interior

s =

∞∏
n=1

(−1, 1)n

is the complement of B(Q). Observe that B(Q) and s are dense in Q, and that
both are connected.

Recall that a closed set A ⊆ Q is a Z-set if given a continuous function f : Q →
Q, and an ε > 0 if there is a continuous function g : Q → Q such that g[Q]∩A = ∅
while d(f, g) < ε, i.e., if d(f(x), g(x)) < ε for every x ∈ Q. A set B ⊆ Q is a σZ-set
if it is a countable union of Z-sets. We shall denote by Z (Q) the collection of all
Z-sets of Q, and Zσ(Q) denotes the family of all σZ-sets of Q. Many examples of
Z-sets are given by the following simple lemma:

Lemma 3.1 ([9, Lemma 6.2.3 (ii)]). A closed A ⊆ Q such that there are infinitely
many n ∈ N such that πn[A] �= [−1, 1] is a Z-set of Q.

In particular, it follows that B(Q) ∈ Zσ(Q), and that any compact subset K of
s is a Z-set.

We denote by H (Q) the group of autohomeomorphisms of Q. Given ε > 0, call
a homeomorphism h ∈ H (Q) ε-small if d(h, id) < ε, i.e., if d(x, h(x)) < ε for every
x ∈ Q.

Theorem 3.2 ([9, Theorem 6.4.6]). Let f : E → F be a homeomorphism between
two Z-sets of Q such that d(f, idE) < ε. Then f extends to an ε-small homeomor-

phism f̃ ∈ H (Q).

Theorem 3.3 ([9, Theorem 6.4.8]). Let A be a closed subset of a compact space
X, and let f : X → Q be a continuous map such that f�A is an embedding and
f [X] is a Z-set of Q. Then for every ε > 0 there is an embedding g : X → Q such
that g�A = f�A and f [X] is a Z-set.

A set A ∈ Zσ(Q) is

(1) a capset if there is a homeomorphism f : Q → Q so that f [A] = B(Q),
(2) an absorber if for every ε > 0 and every pair of Z-sets K,L there is an

ε-small h ∈ H (Q) such that h � K = id and h[L \K] ⊆ A,
(3) a skeletoid if A can be written as an increasing union of Z-sets An, n ∈ N,

so that for every ε > 0, n ∈ N and every Z-set K there are an m ∈ N and
ε-small h ∈ H (Q) such that h � An = id and h[K] ⊆ Am.

Basic properties of these sets are given by the following result:

Theorem 3.4 ([9, Theorem 6.5.2]). Let A and B be absorbers in Q.

(1) h[A] is an absorber for any h ∈ H (Q),
(2) A ∪ C is an absorber for any C ∈ Zσ(Q), and
(3) for every ε > 0 there is an ε-small h ∈ H (Q) such that h[A] = B.
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It turns out that a σZ-set is a capset if and only if it is an absorber if and
only if it is a skeletoid (see [9, §6.5] for details; in particular, Theorems 6.5.1, 6.5.5
and 6.5.8). The pseudo-boundary B(Q) is the standard capset of Q. There are,
however, many more.

Theorem 3.5. Let F be an infinite co-infinite subset of N, and let {xn : n ∈ F} ⊆
[−1, 1]. Then the set

Σ = {y ∈ Q : for all but finitely many n ∈ F , yn = xn}
is a capset.

Proof. The proof is standard and is similar to [9, Proposition 6.5.4]. Write F as⋃∞
n=1 Fn, where every Fn is finite and Fn ⊆ Fn+1. For every n, put

Mn = {y ∈ Q : (∀m ∈ F \ Fn)(ym = xm)}.
Then Mn ≈ Q since F is co-infinite, and Mn projects onto a point in infinitely
many coordinate directions, hence it is a Z-set by Lemma 3.1. Also Mn ⊆ Mn+1,
and

⋃∞
n=1 Mn = Σ. Hence Σ ∈ Zσ(Q). Put E = N \ F , and for every n, put

Qn = {y ∈ Mn : (∀m ∈ E ∪ Fn)(|ym| ≤ 1−1/n)}.
Then Qn ≈ Q, Qn ⊆ Qn+1, and there is a natural retraction rn : Q → Qn defined
by

rn(y)i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1+1/n (yi ≤ −1+1/n, i ∈ E ∪ Fn),

yi (−1+1/n ≤ yi ≤ 1−1/n, i ∈ E ∪ Fn),

1−1/n (−1+1/n ≤ yi, i ∈ E ∪ Fn),

xi (i ∈ F \ Fn).

Observe that for every ε > 0, there exists N ∈ N such that for every n ≥ N , rn
moves no point more than ε. Also observe that Qn is a Z-set in Qn+1 by Lemma
3.1.

We now aim at proving that the sequence (Qn)n witnesses the fact that
⋃

n∈N
Qn

is a skeletoid. To this end, let K be a Z-set, let ε > 0, and let n ∈ N. There is an
N ∈ N such that n < N , and such that the standard retraction rN : Q → QN moves
the points less than 1/2ε. Since Qn is a Z-set in QN , Theorem 3.2 implies that we
can adjust rN a little so that its restriction to K ∪Qn is an embedding and is the
identity on Qn. This embedding can be extended to an ε-small homeomorphism of
Q by Theorem 3.3, and this homeomorphism is the one we are looking for.

Hence
⋃∞

n=1 Qn is an absorber as every skeletoid is an absorber, and hence⋃∞
n=1 Mn is an absorber as well, being a σZ-set by Theorem 3.4, and finally⋃∞
n=1 Mn is a capset as every absorber is a capset. �

Corollary 3.6. Let A be a Gδ-subset of [−1, 1] such that [−1, 1] \ A �= ∅. Then
B(Q) \A∞ is a capset.

Proof. Observe that B(Q) \ A∞ is σ-compact, hence belongs to Zσ(Q). Pick an
arbitrary x ∈ [−1, 1] \ A, and split N into three pairwise disjoint infinite sets, say
Y0, Y1 and Y2. For every n ∈ Y1, put xn = 1, and for every n ∈ Y2, put xn = x.
Then the set Σ defined in the previous theorem with the sequence xn, n ∈ Y1 ∪ Y2,
is contained in B(Q) \ A∞. Hence B(Q) \ A∞ contains a capset by Theorem 3.5,
and therefore is a capset itself by Theorem 3.4. �

Variations of the following lemma are well known.
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Lemma 3.7. Let M and N be capsets in Q. In addition, let D0 be a countable
dense subset of Q \M containing the dense subset E0 such that F 0 = D0 \ E0 is
dense as well. Moreover, let D1 be a countable dense subset of Q \ N containing
the dense subset E1 such that F 1 = D1 \ E1 is dense as well. Then there is a
homeomorphism h of Q such that h[M ] = N , h[E0] = E1 and h[F 0] = F 1.

Proof. Write M =
⋃∞

n=1 Mn and N =
⋃∞

n=1 Nn, where the sequences (Mn)n and
(Nn)n witness the fact that M and N are skeletoids.

Let i ∈ {0, 1}. Write Ei as
⋃∞

n=1 E
i
n, where each Ei

n is finite and Ei
n ⊆ Ei

n+1.

Write F i similarly as
⋃∞

n=1 F
i
n.

It is clear that there is n1 > 0 and an embedding f1 : M1 ∪ E0
1 ∪ F 0

1 → Nn1
∪

E1
n1

∪ F 1
n1

such that f1[M1] ⊆ Nn1
, f1[E

0
1 ] ⊆ E1

n1
, and f1[F

0
1 ] ⊆ F 1

n1
. We can

extend f1 to a homeomorphism h1 of Q (Theorem 3.2). Now let ε > 0. There
clearly exists n2 > 1 and an embedding f2 : Nn1

∪E1
n1

∪F 1
n1

→ h1[Mn2
∪E0

n2
∪F 0

n2
]

such that f2[Nn1
] ⊆ h1[Mn2

], f2[E
1
n1
] ⊆ h1[E

0
n2
] and f2[F

1
n1
] ⊆ h1[F

0
n2
], while

moreover f2�h1[M1 ∪ E0
1 ∪ F 0

1 ] = id and d(f2, id) < ε. We can extend f2 to
a homeomorphism g2 of Q such that d(g2, id) < ε. Now put h2 = g−1

2 . Then
(h2 ◦ h1)[M1] ⊆ Nn1

⊆ (h2 ◦ h1)[Mn2
], (h2 ◦ h1)[E

0
1 ] ⊆ E1

n1
⊆ (h2 ◦ h1)[E

0
n2
], and

(h2 ◦ h1)[F
0
1 ] ⊆ F 1

n1
⊆ (h2 ◦ h1)[F

0
n2
]. And we can choose h2 as close to the identity

as we please. By the Inductive Convergence Criterion in [10, Theorem 1.6.2], we
can consequently construct a sequence of homeomorphisms (hn)n of Q the infinite
left product of which is a homeomorphism h with the properties as stated in the
lemma. �

3.2. The construction. Let us first note that both s and B(Q) intersect every
compact subset K of Q which disconnects Q.

It is a theorem of Hausdorff [5] that every Polish space can be written as the
union of a strictly increasing sequence of Gδ-sets. In particular, we can write [−1, 1]
as

⋃
α<ω1

Aα, so that A0 = ∅, each Aα is a Gδ-subset of [−1, 1], Aα ⊆ Aβ if α < β,

and [−1, 1] \Aα �= ∅.
Enumerate all closed subsets of Q that separate Q by {Kα : α < ω1}, and

enumerate all pairs of countable dense subsets of Q by {(Eα, Fα) : α < ω1} such
that each pair is listed ω1-many times.

We shall recursively construct a decreasing sequence {Bα : α < ω1} of capsets
and an increasing sequence {Dα : α < ω1} of countable subsets of Q, together with
an increasing sequence {Hα : α < ω1} of countable subgroups of H (Q) so that
(denoting Q \Bα by sα) for every α < ω1:

(1) Dα is a countable dense subset of sα, and Dα ∩Kα �= ∅,
(2) there exists an ordinal f(α) < ω1 such that B(Q) \A∞

f(α) ⊆ Bα,

(3) Dα, sα and Bα are invariant under Hα,
(4) if Eα ∪Fα ⊆ Dα, and Dα \ (Eα∪Fα) is dense, then there exists an element

h of Hα such that h[Eα] = Fα,
(5) if γ < α, Dα \Dγ is a dense subset of Q contained in sα \ sγ .
To start, put s0 = s and B0 = B(Q), and let D0 be any countable dense

subset of s0 which meets K0. Then consider the pair (E0, F0). Assume first that
E0 ∪ F0 ⊆ D0, and that D0 \ (E0 ∪ F0) is dense. Then there is by Lemma 3.7 a
homeomorphism h of Q such that h[E0] = F0, h[D0] = D0 and h[B(Q)] = B(Q).
Observe that h[s0] = s0. Let H0 denote the countable subgroup of H (Q) generated
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by {h}. If E0 ∪ F0 �⊆ D0 or if D0 \ (E0 ∪ F0) is not dense, then we let H0 denote
the subgroup of H (Q) consisting only of the identity.

Now suppose that for some α < ω1 we constructed for every β < α the sets Dβ ,
sβ and Bβ and a countable subgroup Hβ of H (Q) satisfying the conditions (1)-(5)
above.

Put B =
⋂

β<α Bβ, S = Q \ B, and H =
⋃

β<α Hβ , respectively. Observe that

H is a countable subgroup of H (Q), and by (3), B and S are H-invariant.
By (2), we may pick an ordinal number ξ < ω1 such that T = B(Q) \ A∞

ξ ⊆ B.
Since T is a capset by Corollary 3.6, it intersects Kα, say in the point x0. Let X
be a countable dense subset of T which contains x0. Since the set P = {h(x) : x ∈
X,h ∈ H} is countable and dense in Q, and each point of Q has countably many
coordinates only, there exists ξ < η < ω1 such that P ⊆ A∞

η . Consider the capset
T ′ = B(Q) \ A∞

η . It is contained in T and hence in B, and it misses P . Clearly,
S ∪ P is H-invariant. Hence it misses the set

T ′′ =
⋃
h∈H

h[T ′].

Observe that T ′′ is a capset since it contains the capset T ′ and T ′ ⊆ T ⊆ B ⊆ B(Q)
(hence T ′′ is a countable union of Z-sets), and T ′ = B(Q) \ A∞

η ⊆ T ′′ ⊆ B. By
definition T ′′ is H-invariant.

Define Bα = T ′′, sα = Q \ Bα, Dα = D ∪ P , and f(α) = η. Then all our
inductive hypotheses are satisfied, except perhaps (4). However, we are basically
back at the first step of the construction, so this can easily be taken care of. This
completes the recursive construction.

Put D =
⋃

α<ω1
Dα. Then D is connected as D is dense in Q and by (1)

intersects every closed set separating Q. To see that the set D is a λ-set note that
every countable subset C of D is contained in one of the Dβ , which in turn is a
Gδ subset of D as Dβ = D ∩ sβ by (5). Hence C itself is a Gδ-subset of D since
Dβ \ C is countable, in particular, Fσ. To prove that D is CDH, let E and F be
arbitrary countable dense subsets of D. Pick α < ω1 such that E ∪ F ⊆ Dα. Then
Dα+1 \Dα is a countable dense subset of D which misses E ∪ F . Let β > α+1 be
such that (E,F ) = (Eβ, Fβ). Then at stage β we took care of E and F .

4. Concluding remarks

There are several natural related questions. We suspect that a similar construc-
tion could be performed already in the plane:

Question 4.1. Is there, assuming CH, a connected meager in itself CDH space in
the plane?

It is not clear to us to what extent the assumption of CH can be weakened. In
light of Theorem 2.1 it is natural to ask:

Question 4.2. Is it consistent with ZFC that there is a connected λ-set yet there is
no connected meager in itself CDH space?

Finally, let us note that every arc-connected CDH space is Baire, in particular,
no arc-connected CDH space is meager in itself.
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