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A Tychonoff space X will be called strongly bicompactly condensable (SBC) if there 
is a set S of compact Hausdorff topologies on the set X whose supremum in the 
lattice of topologies is the original topology. Such an S determines a compactification 
K(S) of X. We examine which compactifications of an SBC X arise in this way: 
For some X, all do, and for others, some and not all; For some X, βX does, and for 
others, does not.

© 2019 Elsevier B.V. All rights reserved.

The second and third authors dedicate our share of this work to the memory of the first author, our 
friend Wis Comfort (1933 – 2016). See the obituary [9], reprinted in this issue.

1. Introduction

All spaces will be Tychonoff. For X a space, tX will be its topology. We may hypothesize X, or tX , 
without mentioning the other. An embedding is a map (continuous function) which is a homeomorphism 
onto its range.

Terminology, notation 1.1. Consider a space X and s a compact (Hausdorff) topology on the set X with 
s ⊆ tX . Then s, or the space (X, s), or the continuous identity function is : (X, tX) → (X, s) will be called 
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a Bicompact Condensation (BC) of X (or, of (X, tX), or of tX). Or, a continuous bijection X
f−→ Y with Y

compact, will be called a BC of X.

BC(tX) ≡ {s | s is a BC of tX}.

“BC” will be used as various parts of speech. “X is BC” means BC(tX) �= ∅.
It is known (and see 1.6 below) that not all X are BC.
X is strongly BC (SBC) if tX =

∨
BC(tX), this sup in the lattice of topologies. It is known (and see 1.6

below) that BC �=⇒ SBC. There may be various S ⊆ BC(tX) with 
∨

S = tX , as we shall see.
Suppose ∅ �= S ⊆ BC(tX). A sub-base for 

∨
S is 

⋃
S. Let P =

∏
{(X, s) | s ∈ S}, and let X δ−→ P be 

the diagonal map (πsS = is ∀s ∈ S), which is obviously one-to-one and continuous as a map of (X, tX). 
A sub-base for P is 

⋃
{πs(G) | s ∈ S, G ∈ s}. It follows that (X, 

∨
S) δ−→ P is an embedding and δ(X)

P
is 

a compactification of (X, 
∨
S). We have

Theorem 1.2. In the above setting, (X, tX) δ−→ P is an embedding iff 
∨
S = tX . When this is so, δ(X)

P
is 

a compactification of (X, tX), denoted K(S), and called a compactification “of SBC-type”.

Thus, X is SBC iff X has a compactification of SBC-type. As we shall see many times, different S can 
produce different K(S). Evidently, S1 ⊆ S2 (each with 

∨
Si = tX) entails K(S1) ≤ K(S2) in the semi-lattice 

of compactifications. If X is SBC, then K(BC(tX)) is the maximum SBC-type compactification.
The main thrust of this paper is “What are the compactifications of SBC-type?”. We indicate some of 

our results. Various examples given later show that these results are, to some degree, sharp.
βX denotes the Čech-Stone compactification. “locally compact” is abbreviated LC. For X LC, we have 

the one-point compactification αX = X ∪ {α}. clopX denotes the family of clopen sets in X. X is called 
zero-dimensional (ZD) if clopX is a basis. If X is ZD, there is a maximum ZD compactification ζX. X is 
called strongly ZD if ζX = βX.

Theorems 1.3 (from §4). Suppose X is LC. The following compactifications, for spaces indicated, are 
SBC-type.

(a) αX (X is always SBC).
(b) Any ZD compactification of X. So, if X is strongly ZD, βX.
(c) If each non-void open set in X contains a copy of [0, 1], every compactification.

Theorems 1.4 (from §5).

(a) Suppose X is ZD. If every U ∈ clopX is BC, then there is S ⊆ BC(tX) with 
∨

S = tX and ξX ≤ K(S).
(b) (Corollaries of (a)) βX is SBC-type for the following.

(i) X with at most one non-isolated point.
(ii) X = the irrationals.
(iii) X countable scattered.
(iv) X =

∑
{Qα | α < c}, each Qα ≈ Q the rationals (while Q is not even BC).

Finally, two classes of LC, ZD, pseudocompact spaces will be considered, called “maximal ψ”, and 
“Dowker-type” (detailed description in the text).

Theorems 1.5.

(a) (from §6). If X is maximal ψ, then βX is SBC-type.
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(b) (from §7). If X is Dowker-type, then αX < βX, and αX is the only compactification of SBC-type.

Remarks 1.6. We comment briefly on the origins and history of BC issues. More appears in the text.
The question “What X are BC?” is attributed to P.S. Alexandroff in both [21] and [24]. For metrizable 

spaces, the question is raised by S. Banach [5].
The first paper of which we are aware is Parhomenko’s [19], which contains (inter alia): LC implies BC

(Proof. Take p ∈ X and identify p with the point at infinity in αX (cf. 3.5 below); and, if X is BC and 
absolute Fσ, then the set of locally compact points in X is dense.). (So the rationals Q is not BC.)

Katětov [16] shows countable X is BC iff scattered (cf. 5.5 below).
Hewitt [14] translates BC for realcompact X into the existence of a certain kind of subring of C∗(X), 

then into the existence of certain kind of family of zero-sets, and also notes (i) The class of BC spaces is 
closed under product formations. (Proof. If ∀i Xi → Yi is a BC, then the resulting 

∏
Xi →

∏
Yi is a BC.), 

(ii) if X is BC with |X| < 2ω, then X has an isolated point (cf. 5.4 below).
Smirnov [25] translates BC into the existence of a certain kind of function βX ↠ X.
Reiter [23] observes that the class of BC spaces is closed under sum formation (Proof. If ∀i Xi → Yi is a 

BC, then the resulting 
∑

Xi →
∑

Yi is a bijection, and 
∑

Yi is LC, thus BC.)
Bashkirov [6] has defined SBC spaces, in the following terms. Let u(tX) = min{|S| | S ⊆ BC(tX), V S =

tX} understanding u(tX) = ∞ if there is no such S; so X is SBC iff u(tX) < ∞. He gives an example of 
BC X with u(tX) = ∞, various examples of u(tX) = 2 (including X the irrationals), and various other 
u(tX) = m.

Pytkeev [20] shows (inter alia) that u(tX) = 2 for X completely metrizable and ZD.
Some other papers discussing various aspects of BC are [2], [18], [21], [15], [8], [22], [1], [4]. We apologize 

to neglected authors. We are not aware of any mention in the literature of the situation in our 1.2.

2. Comparison of compactifications

A compactification K of X is usually construed as a dense inclusion X ↪→ K. Recall the quasi-order is 
([12]) K1 ≤ K2 means X ↪→ K, extends continuously over K2 (yielding a surjection K2 ↠ K1 which is the 
identity on X).

Definitions, etc. 2.1. Suppose X, s ∈ BC(tX), ∅ �= S ⊆ BC(tX) with 
∨

S = tX ; so K(S) is the compactifi-
cation of 1.1. Let K be another compactification of X.

(a) s is subordinate to K (subK) if X → (X, s) has the continuous extension a(s) : K → (K, s). S is subK
if each s ∈ S is. Then there is a(S) : K →

∏
S(X, s), given by πsaS = a(s) for all s ∈ S, and the 

corestriction a(S) : K ↠ K(S) shows K ≥ K(S). And, K = K(S) iff a(S) is one-to-one.
(b) For any Y , Z (Y ) denotes the family of zero-sets of Y . For any product 

∏
A Yα and B ⊆ A, we have 

the projection πB :
∏

A Yα ↠
∏

B Yα. For B ⊆ S we have πB : P ↠ PB ≡
∏

B(X, s).
(c) S finitely separates Z (K) ∩X if: ∀ disjoint Z0, Z1 ∈ Z (K) ∃ finite B ⊆ S for which the πB(Zi ∩X)

are disjoint (which means: for s =
∨

B, the Zi ∩X
s are disjoint).

Theorem 2.2. With data and definitions as in 2.1:

(a) S is subK iff K ≥ K(S).
(b) S finitely separates Z (K) ∩X iff K ≤ K(S).
(c) The following are equivalent.

(c1) K = K(S).
(c2) S is subK and finitely separates Z (K) ∩X.



70 W.W. Comfort et al. / Topology and its Applications 259 (2019) 67–79
(c3) S is subK and {as | s ∈ S} separates points of K.
Thus, K is of SBC-type iff there is S satisfying (c2) and/or (c3).

We defer the proof briefly.

Corollary 2.3. Suppose S ⊆ BC(tX) with 
∨
S = tX . βX = K(S) iff ∀ disjoint Z0, Z1 ∈ Z (X) (n.b., Z (X)) 

∃ finite B ⊆ S for which the πB(Zi) are disjoint (“S finitely separates Z (X)”).
Thus, βX is of SBC-type iff there is S as above (or, the condition holds with S = BC(tX)).

Proof. (of 2.3 from 2.2). Any S is subβX and K(S) ⊆ βX so we just look at 2.2(b).
⇐=. If Zi ∈ Z (βX) are disjoint, then so too Zi ∩X ∈ Z (X). The B in the present condition shows the 

condition in 2.2(b), so βX ≤ K(S).
=⇒. If Zi ∈ Z (X) are disjoint, then the Z

β

i are disjoint, so there are disjoint Ei ∈ Z (βX) with Ei ⊇ Z
β

i

and Ei ∩X ⊇ Zi (see [13], if necessary). Now take B from 2.2(b). �
Proof. (of 2.2). First the easy parts:

(a) We noted =⇒ is 2.1(a).
For ⇐=: If K f−↠ K(S) witnesses K ≥ K(S), then, if s ∈ S, K K−↠ (S) ⊆ P

πs−−→ (X, s) has πsf = the 
desired as.

(c1) ⇔ (c3). K = K(S) means a(S) is one-to-one (see 2.1), which is equivalent to {as | s ∈ S} separating 
points. Also K = K(S) entails K ≥ K(S), which is equivalent to S being subK.

(c1) ⇔ (c2), is the conjunction of (a) and (b).
It remains to prove (b). We need two lemmas, whose proofs we defer briefly.

Lemma 2.4. For compactifications K1, K2 of X, K1 ≤ K2 iff ∀ disjoint Z0, Z1 ∈ Z (K1), the Zi ∩X
K2 are 

disjoint.

Lemma 2.5. Suppose Y =
∏

A Yα, the Yα compact. If F0, F1 are disjoint closed in Y , then there is finite 
B ⊆ A for which the 

∏
B(Fi) are disjoint.

We prove 2.2(b).
Suppose K ≤ KS , and Z0, Z1 ∈ Z (K) are disjoint. By 2.4, the Zi ∩X

KS are disjoint, so are disjoint 
closed sets in P . By 2.5, there is finite B ⊆ S with 

∏
B(Fi) disjoint. But, 

∏
B(Zi ∩ X) ⊆

∏
B(Fi), so 

∏
B(Zi ∩X) ⊆

∏
B(Fi).

Suppose S finitely separates Z (K) ∩ X. Toward showing K ≤ K(S) via 2.4, let Z0, Z1 ∈ Z (K) be 

disjoint. There is finite B ⊆ S with the 
∏

B(Zi ∩X) disjoint. Now, 
∏

B(Zi ∩X
P ) ⊆

∏
B(Zi ∩X), so the 

former are disjoint, thus the Zi ∩X
P are disjoint. But, Zi ∩X

P = Zi ∩X
K(S .

It remains to prove 2.4 and 2.5.

Proof. of 2.4. K1 ≤ K2 means X e
↪−→ K1 extends over K2. Taimonov’s theorem ([12], p. 136) says e extends 

iff ∀ disjoint closed E0, E1 in K1, the e−1(Ei)
K2 are disjoint. Here, e−1(Ei) = Ei ∩X.

Thus: =⇒ in 2.4 is immediate; ⇐= follows using Urysohn’s Lemma (the Ei are contained in disjoint 
Zi). �
Proof. of 2.5. Given the Fi, there is f ∈ C(Y )∗ with f(Fi) = {i} (by the Urysohn Lemma). Then, there is 
finite B ⊆ A and g ∈ C(

∏
B Yα)−1 with |f(y) − g(

∏
B(y))| ≤ 1/3 ∀y ∈ Y (by the general Stone-Weierstrass 

Theorem, or the specific Dieudonné Theorem ([10]). Then g |
∏

B(F0) ≤ 1/3, g(
∏

B(Fi)) ≥ 2/3, so the 
∏

(Fi) are disjoint. �
B
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The proofs of 2.2 and 2.3 are complete. �
3. Some constructions of BCs

This section may be somewhat tedious. The reader could skip it, and refer back as needed.
We first note the following simple sufficient (not necessary) condition that 

∨
S = tX (referring to 1.2).

Lemma 3.1. Suppose S ⊆ BC(tX): If {(X, tX) → (X, s) | s ∈ S} separates points and closed sets in X

(x /∈ F = F
X =⇒ ∃s ∈ S s.t. x /∈ F

s), then 
∨
S = tX (so we have the compactification X ⊆ K(S)).

Proof. Apply the Diagonal Theorem [12], 2.3.20. �
Next, for application to various zero-dimensional situations, we indicate a construction of BCs of X from 

BCs of clopen sets.
In the following, with U ⊆ X; tU denotes the relative topology on U ; U ′ ≡ X − U .
Upon stating the following, it becomes obvious.

Lemma 3.2.

(a) Suppose U ∈ clopX, so that X = U + U ′. Suppose s(U) ∈ BC(tU ) and s(U ′) ∈ BC(tU ′). Then 
(U, s(U)) + (U ′, s(U ′)) is a BC of X. Denote the topology s(U) + s(U ′). In this topology U and U ′ are 
compact and open.

(b) Suppose K is a compactification of X and V ∈ clopK, so that K = V +V ′. Then V ∩X ≡ U ∈ clopX, 
and U ′ = X − U = V ′ ∩X, and V, V ′ are compactifications of U, U ′, resp.

Let s(U), s(U ′) be as in (a). These are subV , subV ′, resp., and s(U) + s(U ′) is subK.

We adapt to our purposes material from [12], Chapts. 2 and 3, toward construction of BCs from upper 
continuous decompositions.

Let E be an equivalence relation on the set X with X
q−→ X/E denoting the quotient onto the set of 

equivalence classes. In case X
f−→ Y is a function, we have the equivalence relation x1E(f)x2 meaning 

f(x1) = f(x2).
When X is a space, we give X/E the quotient topology. E , or really its decomposition of X into equivalence 

classes, is called upper semicontinuous (USC) if q is a closed map. For X f−→ Y continuous, E(f) is USC iff 
f is a closed map.

We are assuming below all spaces are Tychonoff, even if that is not always needed.
From [12], 2.4.13 and 2.4.15, we have

Lemma 3.3. Suppose F is closed in K and F
γ−→ Z is a closed map. Then the USC E(γ) on F extends to 

the USC E = E(F, γ) on K as

E = E(γ) ∪ {{x} | x ∈ K − F},

and the resulting K
q−→ K/E has the following features.

q−1q(K − F ) = K − F , and q−1q(F ) = F .

q | (K − F ) is a homeomorphic embedding into K/E.

q(F ) = F/E(γ) = γ(F ).
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This process constructs both compactifications (3.4) and BCs (3.5), as follows.

Corollary 3.4 (Magill [17], [12], 3.5.13). Suppose X ⊆ K with K compact, (F ≡) K − X closed in K, 
Z ∩X = ∅, and K −X ↠ Z is continuous and onto. Let E = E(K −X, γ), and K

q−→ K/E be as in 3.3.
Then, q | X is a homeomorphic embedding. If X is dense in K, then K/E is a compactification of X

with K ≥ K/E and K/E −X ≈ Z.

Corollary 3.5 (Parhomenko [19] (perhaps); [12], 3.3D). Again suppose X ⊆ K with K compact, (F ≡) 
K −X closed in K. Now take Z = X, and K −X

γ−→ X continuous. Let E = E(K −X, γ) as in 3.3.
Then, K q−→ K/E has: q | X one-to-one and onto K/E: “q | X is a BC of X”; q | (X − γ(K −X)) is a 

homeomorphic embedding; q(K −X) ≈ γ(K −X).

In the situation of 3.5, we have replaced tX by a new compact topology, s, without changing the “pieces” 
γ(K−X) and X−γ(K−X), but these pieces fit together differently: Some tX-closed E with E∩γ(K−X) = ∅

will have E
s ∩ γ(K −X) �= ∅.

Some applications below will combine 3.4 and 3.5.
A rather elaborate further refinement of 3.5 appears in §6.
The simplest instances of 3.5 have K = αX = X ∪ {α} the one-point compactification, then γ defined 

by picking p ∈ X, and γ(α) ≡ p. Denote by sp the resulting topology on the set X.
The following is evident.

Corollary 3.6. Suppose X is LC, and s ∈ BC(tX); s is subβX, i.e., we have βX
b−↠ (X, s) extending the 

“identity” (X, tX) → (X, s). These are equivalent.

(a) ∃p ∈ X for which s = sp.
(b) s is subαX.
(c) |b(βX −X)| = 1.

4. Locally compact spaces

Theorem 4.1. For X LC, αX is SBC-type (and X is SBC).

Proof. ([6] shows X is SBC, by the same argument.)
We exhibit appropriate S = {s1, s2}. Take p1 �= p2 in X. By 3.6, we have the si ≡ spi

∈ BC(tX) which 
are subαX. 3.1 applies here because: if x /∈ F , F closed in X, then for one of the pi, x �= pi, and then 
x /∈ F

si . By 2.2, we have K(S) ≤ αX, thus = since αX is the minimum compactification. �
The following shows (as explained below) that frequently LC X has compactifications not SBC-type.

Theorem 4.2. Suppose X (not assumed LC) has each of its BCs ZD. If K is a compactification of X with 
K −X containing a connected set with at least two points, then K is not SBC-type.

Proof. Using 2.2, consider an S ⊆ BC(tX) which is subK. The resulting a(S) : K →
∏

S(X, s) ≡ P cannot 
be one-to-one because each (X, s) is ZD, thus so is P , so the connected set a(S)(C) must be a singleton. �
Corollary 4.3. The countable discrete space N (which is SBC by 4.1) has compactifications not SBC-type. 
(In §5 below, we show βN is SBC-type. Since αN is also, we see that “SBC-type” is inherited neither up 
nor down in the semi-lattice of compactifications of N.)
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Proof. N is an X as in 4.2: Any BC is ZD because N is countable ([12]). N has compactifications K with 
K − N ≈ [0, 1] (for example), by a use of 3.4. �

On the other hand

Theorem 4.4. If X is LC, and each open G �= ∅ contains (a copy of) [0, 1], then each compactification of 
X is SBC-type.

Proof. Let K be a compactification of X. Per 2.2, we want S ⊆ BC(tX) which is subK and finitely separates 
Z (K) ∩X.

Suppose given disjoint Z0, Z1 ∈ Z (K). Case (i). Z0 ∪ Z1 ⊂ K. Here, the Zi ∈ clopX. Consider 3.4(b) 
with Z0 = V . The construct there, s = s(U) + s(U ′) is subK, and the Zi ∩X

C are disjoint, using 3.4(a).
Case (ii). Z0 ∪ Z1 �= K. Then (Z0 ∩ X) ∪ (Z1 ∪ X) �= X and there is ∅ �= G open in X missing each 

Zi ∩ X. Take g ∈ C(K, [0, 1]) with {y ∈ K | g(G) = i} a neighborhood of Zi. Then, take I ≈ [0, 1] with 
I ⊆ G. Then an embedding g(K −X) e

↪−→ I. Define K −X
γ−→ X as γ = e ◦ g, and use 3.5 to produce from 

γ, s ∈ BC(tX). This s is subK and has the Zi ∩X
s disjoint. �

4.1 shows any LC X is SBC. The following shows that weakening LC “slightly” can result in “not SBC” 
in a striking way.

Theorem 4.5. Suppose X = {p} ∪
∑

N
Ln, where: each Ln is a continuum (compact, connected), not a 

point; p has no compact neighborhood in X (so 
∑

Ln is dense in X). Then, the one-point compactification 
α
∑

Ln =
∑

Ln ∪ {α} is the unique BC of X.
(Within [0, 1] × [0, 1], X = {(0, 0)} ∪

∑
({ 1

n × [0, 1]) is such a space.)

Proof. Recall Sierpinski’s Theorem ([12], 6.1.27): If a continuum C =
⋃

n Fn, Fn closed and disjoint, then 
Fn �= ∅ for at most one n.

For our X = {p} ∪
∑

n Ln, the component of p, Cp = {p}, because: If Cp �= {p}, then some Li ∩Cp �= ∅, 
so Li ⊆ Cp (otherwise, Cp ∪ Li is a connected set bigger than Cp). Then, applying Sierpinski to Cp =
{p} ∪

⋃
{Li | Li ⊆ Cp} shows Cp = {p}.

Now let X f−→ Y be a BC. Note that such restriction Ln
f−→ f(Ln) is a homeomorphism because Ln

is compact and f is one-to-one. We claim that each f(Li) is clopen. That will mean 
⋃

f(Ln) =
∑

Ln, 
and Y = {f(p)} ∪

⋃
n f(Ln) = α(

∑
Ln) (α = f(p)). Since {p} = Cp, {f(p)} = f(Cp), and the latter 

is the component of f(p). Since Y is compact, components and quasi-components coincide ([12], p. 357), 
so {f(p)} =

⋂
{U | f(p) ∈ U, U clopen}. Take any Ln and y ∈ f(Ln). There is clopen Un � f(p) with 

y ∈ Un. Since f(Ln) is connected, f(Ln) ∩ Un = ∅. Thus {f(p)} =
⋂

n Un. We arrange Un+1 ⊆ Un ∀n and 
Un ∩ f(Li) = ∅ ∀i ≤ n.

So Y − Un =
⋃

i≤n f(Li), for i ≤ n f(Li) is clopen, and f(Ln) is clopen. �
In the above, some hypothesis resembling “the Ln are continua” is needed: β({p} ∪

∑
Ln) would be 

SBC-type were each Ln discrete (by 5.4 below), or countable scattered (5.5).

5. Zero-dimensional spaces

Recall that: X is ZD by definition if clopX is a basis, and strongly ZD iff ∀ disjoint Z0, Z1 ∈ Z (X)
∃U ∈ clopX with Z0 ⊆ U , Z1 ⊆ X − U ≡ U ′. And, Lindelöf ZD implies strongly ZD. See [12], 6.2.

Theorem 5.1. If K is a ZD compactification of LC X, then K is of SBC-type.
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Proof. Given such X ⊆ K, from 2.2 we want S ⊆ BC(tX) which is subK, 
∨
S = tX , and S finitely separates 

Z (K) ∩X.
Referring to 3.7: For V ∈ clopK, U = V ∩ X is LC, with U ⊆ V a compactification, and there is 

s(U) ∈ BC(tU ) which is subV . Likewise, sV ≡ s(U) +s(U ′) ∈ BC(tX), is subK and U and U ′ are sV -compact. 
Evidently, S ≡ {sV | V ∈ clopX} is subK, and separates points and closed sets of X, so by 3.1, 

∨
S = tX .

For disjoint Z0, Z1 ∈ Z (K), there is V ∈ clopK with Z0 ⊆ V , Z1 ⊆ V ′ (because K is strongly ZD). 
Then, Z0∩X ⊆ U , Z1∩X ⊆ U ′, U and U ′ are sV -compact and disjoint, so in sV , the closures of the Zi∩X

are disjoint. �
4.2, say with X = N, shows the need to have K ZD in 5.1.
We turn to “βX is SBC-type?”
In the following for B ⊆ BC(tX), we have/denote (X, tX) e−→

∏
B{(X, s) | s ∈ B} ≡ PB (e given by 

πse = (X, t) → (X, s) ∀s ∈ B).

Theorem 5.2. Suppose X is ZD.

(a) Suppose S ⊆ BC(tX). Then, ζX ≤ K(S) iff
(∗) ∀U ∈ clopX ∃ finite B(U) ⊆ S for which e(U) and e(X − U) have disjoint closures in PB(U).

(b) If X is strongly ZD, then βX is SBC-type iff for S = BC(tX), (∗) holds.

Proof. (a) (∗) is easily seen to be equivalent to “S finitely separates Z(ζX) ∩X”. Apply 2.2(b).
(b) follows from (a). �
We are going to use 5.2 only for situations where the cardinals |B(U)| = 1 (5.3 – 5.6) or 2 (5.7). (We do 

not pursue other cases, which doubtless exist.)
We simplify the case |B(U)| = 1.

Corollary 5.3. Suppose X is ZD, and that each U ∈ clopX is BC. Then,

(a) There is S ⊆ BC(tX) with ζX ≤ K(S).
(b) If X is strongly ZD, then βX is SBC-type.

Proof. (a) Let U ∈ clopX. Choose (in any way) s(U) ∈ BC(tU ), s′(U ′) ∈ BC(tU ′), and let sU ≡ s(U) +
s′(U ′) ∈ BC(tX) (per 3.6, as in 5.1). Here, U and U ′ are s(U)-compact. Then, S ≡ {sU | U ∈ clopX}
satisfies 5.2(a) (with B(U) = {sU}).

(b) follows. �
Corollary 5.4. If X has ≤ 1 non-isolated point, then βX is SBC-type.

Proof. If X has no non-isolated points, then X is discrete, thus strongly ZD, so 5.1 (or 5.2) gives βX
SBC-type.

Suppose X = D ∪ {p}, D discrete and p the non-isolated point. Again, X is strongly ZD: For disjoint 
Zi ∈ Z (X), say p /∈ Z0. So Z0 is open, and {Z0, X − Z0} is a clopen partition separating Z0, Z1.

Now, the obvious map D ∪ {p} → D ∪ {α} = αD defines a BC for X.
If U ∈ clopX, then: either p /∈ U , whence U is discrete, thus BC; or p ∈ U , so U is “of the form D∪{p}”, 

thus BC.
Now apply 5.3. �
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Let D be discrete and p ∈ βD −D. 5.4 applies to X = D ∪ {p}. Obviously 5.4 extends to X with only 
finitely many non-isolated points.

X is called scattered if each ∅ �= S ⊆ X contains an isolated point of S.
In the following, (a) ⇔ (b) is due to Katětov [16], and (a) ⇔ (b) ⇔ (c) to Bashkirov [6] (who seems 

unaware of [16]).

Corollary 5.5. For countable X, these are equivalent.

(a) X is scattered.
(b) X is BC.
(c) X is SBC.
(d) βX is SBC-type.

Proof. We noted (a) ⇔ (b) ⇔ (c) above. Of course, (d) ⇒ (c).
We show (a) & (b) =⇒ (d). Now, any countable space is strongly ZD ([12], p. 362), and any subspace 

of a scattered space is scattered. So, if X satisfies (a) and (b), then 5.3 applies ((∗) holds), giving (d). �
[15] has an example in ZFC, of a scattered space which is not BC.
As noted in 1.6 (or by 5.5), the rationals Q is not BC. (However, see 5.7 below.) On the other hand, 

consider P = R −Q, the irrationals.

Corollary 5.6. βP is SBC-type.

Proof. 5.3 applies: (i) P is Lindelöf ZD, thus strongly ZD. (ii) P is BC, since P ≈ NN, N is BC and the class 
of BC-spaces is closed under product formation (1.6). (iii) ∀∅ �= U ∈ clopP , U ≈ P by [12], 6.2A(b). �

We consider an interesting case of 5.2 with |B(K)| = 2.
Let m �= 0 be a cardinal number, and let m · Q denote the sum of m copies of the rationals Q, or, 

m ·Q =
∑

α<m Qα with each Qα ≈ Q.

Theorem 5.7. m ·Q is BC iff c ≤ m.

Proof. Suppose m < c. If m ·Q 
f−→ Y were a BC, then |Y | < c, Y is compact, thus Y has an isolated point 

y ([3], p. 30), and f−1(y) is an isolated point of m · Q – which has none. (This argument is Hewitt’s (see 
1.6 here).)

Suppose c ≤ m. Since m · c = m, m · Q is the sum of m copies of c · Q. Since the class of BC spaces is 
closed under sums, it suffices that c ·Q be BC. Write [0, 1] =

⋃
α<c Qα (Qα ≈ Q). Evidently, we have the 

BC c ·Q =
∑

α<m Qα
f−→

⋃
α<c Qα = [0, 1]. �

Theorem 5.8. β(m ·Q) is SBC-type iff c ≤ m.

Proof. =⇒. If m < c, m ·Q is not even BC (5.7).
⇐=. This has several steps. Suppose c ≤ m.
(1) Take any BC m ·Q 

f−→ Y (from 5.7).
In the following: Let X denote m ·Q, sometimes expressed as X =

∑
α<m Qα. Always, U ∈ clopX.

(2) Suppose U ≈ X and X − U ≈ X. Then, there is a BC X
f−→ Y with f(U) clopen, i.e., there is 

U ∈ clopY with u = f−1V . (I.e., here “|B(U)| = 1”).
(By (1), there are BCs U → Y1 and X −U → Y2 which yield the BC X = U + (X −U) → Y1 + Y2 = Y .)
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(3) Put E(U) ≡ {α | U ∩Qα �= ∅}. |E(W )| = m iff U ≈ X. (Q is the unique countable metrizable space 
with no isolated points ([12], p. 370). Thus, ∅ �= U ∩Q implies U ∩Qα ≈ Q.)

(4) Suppose one of U and X − U is not homeomorphic to X. Say U �≈ X. Then |E(U)| < m (by 

(3)), and there are BCs X fi−→ Zi (i = 0, 1) for which the X e−→ Z0 × Z1 ≡ P given by fi = πie has 
e(U)

P ∩ e(X − U)
P

= ∅. (I.e., here “|B(U)| = 2”.)

Proof. of (4). Put F = m −E(U) and write F = F0
·
∪ F1 with each |Fi| = m. Then, each U ∪

∑
α∈Fi

Qα ≡
Ui ∈ clopX and |E(Ui)| = m. By (3) and (2), there are BCs X fi−→ Zi with V ∈ clopZi for which Ui = f−1

i Vi.
With X e−→ Z0×Z1 ≡ P (πie = fi), we have U = f−1

0 V0∩f−1
1 V1; say x /∈ f−1

0 V0 = (π0e)−rV0 = e−1π−1
0 V0, 

i.e., e(x) /∈ π−1
0 V0. This shows e(X − U) ⊆ P − V . The latter being clopen. So e(X − U)

P ⊆ P − V , and 
(4) is proved.

(2) and (4) show 5.2 applies, and since Q is strongly ZD, so is X. Thus βX is SBC-type. �
5.7 and 5.8 include the information: m · Q is SBC iff c ≤ m. We note that [6] Theorem 3 says that the 

class of SBC spaces is closed under 
∑

. (That does not give 5.8.)

6. More βX SBC-type

These X will be the “maximal Ψ-spaces” described in [13], [26], and [7] (among other places). Let 
R be a family of infinite subsets of N which is “almost disjoint” (∀a �= b in R, a ∩ b is finite). Denote 
R = {d | d ∈ R} = D. (“d” becomes a point).

Put X = N ∪D with the topology: points of N are isolated; a neighborhood of d ∈ D is {d} ∪ (d −F ) for 
F finite. Such X is LC, ZD, first countable, and D is closed and discrete. Further, X is pseudocompact iff 
R is maximal for almost-disjointness (which entails |R| > ω). We call these X “maximal Ψ”; there are 2c
such X which are strongly ZD, and 2c which are not [7].

Theorem 6.1. If X is maximal Ψ, then βX is SBC-type.

Cf. §7, where we have another X which is LC, ZD, pseudocompact, but βX not SBC-type.
The proof of 6.1 proceeds in stages. For any X denote: X∗ = βX −X; for E ⊆ X, Eβ is closure in βX; 

E# = E
β ∩X∗.

Consider, for any X, disjoint non-void Z0, Z1 ∈ ζ(X). Toward applying 2.3, we seek s ∈ BC(tX) with 

the Zi
s disjoint. We have the Zi

β disjoint, and the Z#
i disjoint. There are two cases: (i) (resp., (ii)) there 

is (resp., there is not) W ∈ clopX∗ with W ⊇ Z#
0 , W ∩ Z#

1 = ∅.

Proposition 6.2. Suppose X is (merely) LC, ZD, and disjoint Z0, Z1 ∈ ζ(X) are “case (i)”. Then, there is 
a ZD compactification K of X and V ∈ clopK with V ⊇ Z#

0 , V ∩ Z#
1 = ∅ such that, for U = V ∩X, the 

s = s(U) + s(U ′) from 3.2 has the Zi
s disjoint.

Proof. Define continuous X∗ γ−→ {0, 1} as γ(V ) = 0, γ(V ′) = 1. Since X is LC, by 3.4, there is a compacti-
fication βX

f−→ K with f | X∗ = γ, we have Zi
∗ = f(Zi

β) = f(Zi) ∪ f(K − Zi) = Zi ∪ {i}, and these are 
disjoint. Since X is ZD, and K = X ∪ {0, 1}, K is ZD, and there is V ∈ clopK as desired. �

One may note now: were X strongly ZD, then for every disjoint Z0, Z1 ∈ Z (X) case (i) obtains and 6.2
is applicable, so (5.2 again) βX is SBC-type. (5.2 is not proving 6.2 though.)

We turn to the more complicated case (ii). More general features of the argument will be isolated for 
possible later use.
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Proposition 6.3. Suppose (for any X), disjoint Z0, Z1 ∈ Z (X) are “case (ii)” (i.e., not case (i)). Then

(a) There is in βX a continuum C, |C| ≥ 2, with each Zi ∩ C �= ∅.
(b) Suppose X is LC. There is a compactification K of X with K −X ≈ [0, 1], and Z

K

i = Zi ∪ {i} (thus 
disjoint), and there is a retraction K r−→ K −X = [0, 1].

(c) Suppose X is pseudocompact (as well as LC). Then, ∀t ∈ K − X = [0, 1], r−1({t}) ∩ X �= ∅ and 
r−1({t}) is uncountable.

Proof. (a) In X∗, let C be the connected component of Z#
0 . Then, C =

⋂
{W ∈ clopX∗ | W ⊇ Z#

0 } (i.e., 
the component is the quasi-component because X∗ is compact ([12], 6.1.23)). Since we are in “case (ii)”, 
C ∩ Z# �= ∅, so |C| ≥ 2 (thus ≥ c).

(b) Now, since the Z#
i are disjoint closed in compact X∗, there is X∗ γ−→ [0, 1] with γ(Z#

i ) = {i}, and 

since γ(C) is connected with 0, 1 ∈ γ(C), γ(C) = [0, 1]. By 3.4, there is a compactification βX
f−→ K, with 

f | X∗ = γ, so K − X = [0, 1]. The identity function on K − X = [0, 1] extends over K (Tietz-Urysohn 
Theorem) to the desired retraction r.

(c) ∀t ∈ [0, 1], {t} is Gδ in K. Since X is pseudocompact, this Gδ meets X (from [12], 3.10F). Moreover, 
|r−1({t})| > ω, for if not, r−1({t}) = {t} ∪A with |A| = ω and t /∈ A, and then again, {t} = r−1({t} −A is 
Gδ in K missing X. �
Proof. of 6.1. Suppose X is “maximal Ψ”, as X = N ∪D, which is LC, ZD, pseudocompact, with D closed 
and discrete, and |D| > ω.

Take disjoint Z0, Z1 ∈ Z (X). As noted, we want s ∈ BC(tX) with the Z
s

i disjoint.
If “case (i)”, 6.2 gives such s.
If “case (ii)”, we have the apparatus in 6.3 available (K = X

·
∪ [0, 1] and K r−→ [0, 1]) which we refine 

further.
∀t ∈ [0, 1], r−1({t}) is uncountable Gδ in K, so r−1({t}) −N is also, thus hits X, so we choose d(t) ∈ D =

X − N with r(d(t)) = t. Then, E ≡ {d(t) | t ∈ [0, 1]} is closed and discrete (since D is), and F = E ∪ [0, 1]
is compact (gives F = E

K ∪ [0, 1]).
Our situation now is an instance of 3.3, F ⊆ K, F γ−→ Z, for which X ⊆ K, K − X = [0, 1], F =

(F ∩X) ∪ (F ∩ (K−X)), and γ = r | F . There is the resulting k
γ−→ K/E . Here we have r(F ∩X) = K−X, 

so q(X) = K/E , q(X) = q(K∩X) = q((K−F ) ∩X) ∪q(F ∩X). From 3.3, q | (K−F ) is a homeomorphism. 
Here, q | F ∩X = r | F ∩X, which is one-to-one. Thus, X → q(X) = K/E is one-to-one and onto, and is a 
BC say s, in which F ∩X (with the X-topology) is replaced by r(F ∩X) = [0, 1].

Looking back at 6.3(b), where Z
K

i = Zi ∪ {i}, we see that Zs

i = Zi ∪ {i}, so these are disjoint. �
7. X SBC with βX not SBC-type

We prove 1.6, proceeding in stages.

Theorem 7.1. Suppose X is LC (so X is SBC, and αX is SBC-type (4.1)).

A. αX is the only SBC-type compactification of X iff the only s ∈ BC(tX) are the sp (p ∈ X) of 3.6.
B. If that is true, and X is also ZD, then αX is the only ZD compactification of X.

Proof. A. Evident from 2.2 and 3.6.
B. An easy argument shows X ZD =⇒ αX ZD. Now use A, and 5.1. �
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In a space Y , a subset A is called a P -set (resp., weak P -set) if every Gδ containing A is a neighborhood 
of A (resp., each countable E with E ∩A = ∅ has E ∩A = ∅).

Theorem 7.2. Suppose X is ZD, with X∗ (= βX −X) a metrizable continuum, and a weak P -set in βX. 
Then X satisfies 7.1.

Proof. X is LC because X = βX −X∗.
Toward 7.1 A, suppose X = (X, t) f−→ (X, s) is a BC (f = the identity function on the set X). We have 

βX
βf−−→ (X, s), and we want to show that A ≡ βf(X∗) is a singleton (3.6).

B ≡ f−1(A) is closed in X, and the restriction B
f−↠ A is one-to-one. Since X∗ is a metrizable continuum, 

so is A ([12], 3.7.19), so A has a countable dense set D. Take countable E ⊆ P with f(E) = D.
Since X∗ is a weak P -set, Eβ ⊆ X, so E

β is ZD. We have βf(Eβ) = βf(E)
s

(since βf is a closed 

surjection), and since E ⊆ X, βf(E)
s

= f(E)
s

= D
s = A. Also, since E

β ⊆ X, we have βf(Eβ) = f(Eβ), 
and because f is one-to-one and E

β is compact, f | Eβ is a homeomorphism, and onto A. Thus, A is ZD 
and connected, and is a singleton. �

We now describe the space in 1.5, and show it satisfies 7.2. The example is based on a famous space of 
Dowker [11]. Our description and a few facts more-or-less follow [12], 6.2.20.

On I = [0, 1], xEy ≡ |x −y| ∈ Q is an equivalence relation with c equivalence classes. Take (any) pairwise 
disjoint classes {Qα | α < ω1} with each Qα �= Q. Each Qα is countable and dense in I.

Let W = [0, ω1], the ordinal space, and P ≡ {ω1} × I ⊆ W × I.
For each α < ω1; Sα ≡ I −

⋃
γ≥α Qα is D; put Yα ≡

⋃
γ≤α{γ} × Sγ . Then, (the Dowker space) Y ≡

⋃
α<ω1

Yα =
⋃

α<ω1
{α} × Sα, is dense in W × I, and is ZD and normal.

Put Y ′ ≡ Y ∪ P . This space is normal, and Y is C∗-embedded in Y ′, so that βY ′ = βY .
Let K ≡ βY ′ = βY . Since P ⊆ K, K is not ZD. Let X ≡ K − P ; so βX = K.
The following shows 1.5.

Theorem 7.3. X is ZD, X∗ = P is even a P -set in βX (= K). Thus, X satisfies 7.2, thus 7.1, so αX
(< βX) is the only compactification of SBC-type (and the only ZD compactification).

Proof. Some technicalities are needed.
(a) If U is open in K and U

K ∩ P = ∅, then there is γ < ω1 for which U ∩ Y ⊆ ([0, 1] × I) ∩ Y .
(b) For γ < ω1, [0, γ] × I) ∩ Y

K ∩ P = ∅.
For (a): Suppose we have U open in K, but the conclusion of (a) fails, i.e., ∀γ < ω1, ∃xγ ∈ U ∩ Y but 

xγ /∈ P . Then, there is x ∈ W × I which is a complete accumulation point of {xγ | γ < ω1}, i.e., every 
neighborhood of x contains uncountably many xγ. But then x = (x1, x2) cannot have π1(x) = x1 < ω1, 
which means x1 = ω1, so x ∈ P , and U

K ∩ P �= ∅.
For (b): For γ < ω1, P and ([0, γ] × I) ∩ Y ′ are disjoint closed sets in the normal space Y ′, thus have 

disjoint closures in βY ′ = K.
We show X is ZD. Since X is LC, it suffices that V X be ZD whenever V is open in X with V

X compact 
(and thus V X ∩ P = ∅). Now V = U ∩X for U open in K, and U

K = V
X since V

X is compact. By (a) 
above, ∃γ < ω1 with U ∩ Y ⊆ ([0, γ] × I) ∩ Y ≡ E, and by (b) above, EK ∩ P = ∅.

Here E is clopen in Y and Y is normal, so E is C∗-embedded in Y and E
K is (a model of) βE. Since 

K = βY , E = F ∩ Y for F clopen in K, and F = E
K = βE. Since [0, γ] × I is separable metrizable and 

ZD, it is strongly ZD ([12], 6.2), so βE = F is ZD, and so is its subspace V
X = U

K = (U ∩ Y )K .
We show P is a P -set in K. Suppose U is open Fσ in K with U ∩ P = ∅. We want UK ∩ P = ∅. 

Now, U =
⋃

Fn with each Fn compact and Fn ∩ P = ∅. So, ∀n ∃Vn open in K with Vn ⊇ Fn and 

N
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Vn
K ∩P = ∅; then by (a) above, ∃γn < ω1 with Vn ∩Y ⊆ ([0, γn] × I) ∩Y . Then γ ≡ supN γn < ω1 and ∀n, 

Vn ∩ Y ⊆ ([0, γ] × I) ∩ Y ≡ E. We have U
K ⊆ E

K , and by (b) above, EK ∩ P = ∅. �
Remark 7.4. We actually have many X as above, since the construction proceeds from any pairwise disjoint 
{Qα | α < ω1}. These X are all pseudocompact, since X∗ ≈ [0, 1] fails to contain βN − N. Thus (for what 
it’s worth), these X, and the many “maximal Ψ” from §6, share the features: LC, ZD, pseudocompact.
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