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open subset of a strongly locally homogeneous space is also strongly locally
homogeneous. Since strongly locally homogeneous connected spaces are ho-
mogeneous, any region G satisfying the hypotheses of Theorem 1.1 should
be homogeneous. We claim that it is locally connected as well. Indeed, since
any strongly homogeneous Polish space is countable dense homogeneous [1]
and a locally compact countable dense homogeneous connected space is lo-
cally connected [3], we have that any region G from Theorem 1.1 is locally
connected. (There is also a simple direct proof of this fact.) According
to [6], no region of homogeneous locally compact space of dimension n ≥ 1
can be separated by a closed set of dimension ≤ n− 2. So, Theorem 1.1 is
interesting only for regions G of dimension two.

2. Some preliminary results

Lemma 2.1. Let A be a closed nowhere dense subset of X such that

dimX \A = 0 and d(A,X \A) = 0. Then there is a retraction r : X → A
such that r(X \A) is countable.

Proof. The technique is similar to that in [5]. In brief, one constructs
a cover V = {Vn : n ∈ N} by disjoint nonempty clopen subsets of X \A such
that

(1) diamVn < d(Vn, A) for each n,
(2) there is a sequence {an : n ∈ N} in A such that

lim
n→∞

d(an, Vn) = 0.

Then define r : X → A as follows: r(a) = a for every a and r(Vn) = {an}
for every n. It is easy to check that r is as required. �

If J is an arc and p, q ∈ J , then (p, q) and [p, q] denote, respectively, the
open and closed subintervals in J with endpoints p, q.

Proposition 2.2. Let J = [a, b] be an arc in a space (X,d) which is ev-

erywhere 2-dimensional. Then b has arbitrarily small open neighborhoods U
such that bd(U) is at most 1-dimensional and intersects J in exactly one

point.

Proof. Fix ε > 0 and let U be an open neighborhood of b in X such
that diamU < ε and dimbdU ≤ 1. We may assume without loss of gener-
ality that J \ U �= ∅ and J ∩ U is uncountable. Put Y = J ∪ U . Moreover,
put A = J ∪bdU , B = (J \U)∪ bdU and C = (J ∩U)∪bdU , respectively.

Let D be a zero-dimensional dense subset of U such that dimU \D = 1.
Since dimJ = 1, we may clearly assume that D ∩ J = ∅.

Because C is a closed nowhere dense subset of C ∪D and d(C,D) = 0,
there is a retraction r1 : C∪D → C such that r1(D) is countable (Lemma 2.1).
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Abstract. We prove that if X is a strongly locally homogeneous and locally
compact separable metric space and G is a region in X with dimG = 2, then G

is not separated by any arc in G.

1. Introduction

By a space we mean a separable metric space. Kallipoliti and Papa-
soglu [4] proved that any locally connected, simply connected, homogeneous
metric continuum can not be separated by arcs, and asked if this is true
without the assumption of simply connectedness. A partial answer to this
question was provided in [8] for homogeneous metric continua of dimen-
sion two having a non-trivial second integral Čech cohomology group. In
the present paper we prove the following partial answer to Kallipoliti and
Papasoglu’s question.

Theorem 1.1. Let X be a locally compact strongly locally homogeneous
space and G be a region in X with dimG = n ≥ 2. Then G is not separated
by any arc J ⊂ G.

Recall that a space is strongly locally homogeneous if every point x ∈ X
has a local basis of open sets U such that for every y, z ∈ U there is a homeo-
morphism h on X with h(y) = z and h is identity on X \U . Obviously, every
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be homogeneous. We claim that it is locally connected as well. Indeed, since
any strongly homogeneous Polish space is countable dense homogeneous [1]
and a locally compact countable dense homogeneous connected space is lo-
cally connected [3], we have that any region G from Theorem 1.1 is locally
connected. (There is also a simple direct proof of this fact.) According
to [6], no region of homogeneous locally compact space of dimension n ≥ 1
can be separated by a closed set of dimension ≤ n− 2. So, Theorem 1.1 is
interesting only for regions G of dimension two.

2. Some preliminary results

Lemma 2.1. Let A be a closed nowhere dense subset of X such that

dimX \A = 0 and d(A,X \A) = 0. Then there is a retraction r : X → A
such that r(X \A) is countable.

Proof. The technique is similar to that in [5]. In brief, one constructs
a cover V = {Vn : n ∈ N} by disjoint nonempty clopen subsets of X \A such
that

(1) diamVn < d(Vn, A) for each n,
(2) there is a sequence {an : n ∈ N} in A such that

lim
n→∞

d(an, Vn) = 0.

Then define r : X → A as follows: r(a) = a for every a and r(Vn) = {an}
for every n. It is easy to check that r is as required. �

If J is an arc and p, q ∈ J , then (p, q) and [p, q] denote, respectively, the
open and closed subintervals in J with endpoints p, q.

Proposition 2.2. Let J = [a, b] be an arc in a space (X,d) which is ev-

erywhere 2-dimensional. Then b has arbitrarily small open neighborhoods U
such that bd(U) is at most 1-dimensional and intersects J in exactly one

point.

Proof. Fix ε > 0 and let U be an open neighborhood of b in X such
that diamU < ε and dimbdU ≤ 1. We may assume without loss of gener-
ality that J \ U �= ∅ and J ∩ U is uncountable. Put Y = J ∪ U . Moreover,
put A = J ∪bdU , B = (J \U)∪ bdU and C = (J ∩U)∪bdU , respectively.

Let D be a zero-dimensional dense subset of U such that dimU \D = 1.
Since dimJ = 1, we may clearly assume that D ∩ J = ∅.

Because C is a closed nowhere dense subset of C ∪D and d(C,D) = 0,
there is a retraction r1 : C∪D → C such that r1(D) is countable (Lemma 2.1).
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Let r : A ∪D → A be defined by r(x) = r1(x) if x ∈ C ∪D and r(x) = x if
x �∈ C ∪D. Obviously r is a retraction such that r(D) is countable. Pick
an arbitrary s ∈ U ∩ J such that s �= b, [s, b] ⊂ U and s �∈ r(D). Choose
also two points s1, s2 ∈ J ∩ U different from s and b such that s ∈ (s1, s2),
and let V1 = A \ [s1, b] and V2 = (s2, b]. Obviously V1 and V2 are open sub-
sets of A containing B and {b}, respectively. Moreover, V 1 = A \ (s1, b] and
V 2 = [s2, b].

Claim 1. {s} is a partition in A between V 1 and V 2.

Indeed, put P = [s, b] and Q = [a, s] ∪ bdU . Then P and Q are closed
subsets of A such that P ∪Q = A, V 2 ⊂ P , V 1 ⊂ Q and P ∩Q = {s}.

Claim 2. {s} is a partition in A ∪D between r−1(V 1) and r−1(V 2).

Since r−1(s) = {s}, this is a direct consequence of Claim 1.
By [7, Lemma 3.1.4], there is a partition S between {b} and B in Y such

that S ∩ (A ∪D) ⊂ {s}. If s �∈ S, then S ∪ {s} is also a partition between
{b} and B in Y , hence we may assume without loss of generality that s ∈ S.
But then S ∩ J = {s}. Write Y \ S as E ∪ F , where E and F are disjoint
relatively open subsets of Y such that b ∈ E and B ⊂ F .

Claim 3. E ⊂ U .

Indeed, since E ∩ B = E ∩
(
(J \ U) ∪ bdU

)
= ∅, this is clear.

Since E is open in U and U is open in X we have that E is open in X .
Moreover, diamE < ε. Also, E ∪ S is closed in Y and hence in X . As a
consequence bdE ⊂ S. Since S ⊂ U \D, we have dimS ≤ 1, as required.
�

It will be convenient to use additive notation for the topological group S1.
The following result can be proved by tools from algebraic topology. For

the convenience of the reader, we include a simple direct proof.

Proposition 2.3. Let X be a space and let A be a closed subspace of it.
Moreover, let γ : A → S1 be continuous. Suppose that there are closed subsets

P1, P2 of X satisfying the following conditions:
• P1 ∪ P2 = X and if C = P1 ∩ P2 then C ∩A is a singleton, say c;
• γ|Pi∩A is extendable over Pi for each i = 1,2, but γ is not extendable

over X .
Then there is a continuous function β : C → S1 such that β(c) = 0 and

β is not nullhomotopic.

Proof. Let αi : Pi → S1 for i = 1,2 be a continuous extension of γ|Pi∩A.
Define β : C → S1 by β(x) = α1(x)−α2(x) (x ∈ C). Then, clearly, β(c) = 0.
We claim that β is as required, and argue by contradiction. Assume that β
is nullhomotopic. Let H : C × I → S1 be a homotopy such that H0 ≡ 0 and
H1 = β. Define S : C × I → S1 by S(x, t) = H(x, t)−H(c, t). Then S0 ≡ 0,
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S1 = β and S(c, t) = 0 for every t. Define a homotopy T : (C ∪ (P2 ∩A))× I
→ S1 by

T (x, t) =

{
S(x, t) (x ∈ C, t ∈ I),
0 (x ∈ P2 ∩A, t ∈ I).

Then T0 ≡ 0 and hence can be extended to the constant function with value 0
on P2. By the Borsuk Homotopy Extension Theorem [7, 1.4.2], the func-
tion T1 can be extended to a continuous function δ : P2 → S1. Now define
ε : X → S1 as follows:

ε|P1 = α1, ε|P2 = δ + α2.

If x ∈ C, then ε|P1(x) = α1(x) and

ε|P2(x) = δ(x) + α2(x) = S1(x) + α2(x) = β(x) + α2(x) = α1(x).

Hence ε is well defined and continuous. Also observe that if x ∈ P2 ∩A, then

ε(x) = 0 + α2(x) = α2(x).

Hence ε extends γ, which is a contradiction. �

3. Proof of Theorem 1.1

Throughout, let X be a locally compact and strongly locally homoge-
neous space, and G be a region in X of dimension 2. Suppose G is separated
by an arc J = [a, b] ⊂ G. Recall that G is homogeneous and locally con-
nected (see §1). Write G \ J as G1 ∪G2, where G1 and G2 are disjoint
nonempty open subsets of G. Everywhere below K denotes the closure of K
in G for any set K ⊂ G.

We say that a space Y has no local cut points if no connected open
subset U ⊂ Y has a cut point.

Lemma 3.1. G has no local cutpoints.

Proof. By Kruspki [6, Theorem 2.1] it follows that every nonempty
open connected subset U of G is a Cantor manifold of dimension 2. Hence
U cannot be separated by a zero-dimensional closed set. �

A space X is crowded if it has no isolated points.

Lemma 3.2. The set S = G1∩G2 is a 1-dimensional closed and crowded
subspace of J which separates G.

Proof. Assume first that J \ (G1 ∪G2) �= ∅. Then G is somewhere at
most 1-dimensional. Hence G is at most 1-dimensional at every point by
homogeneity. But this contradicts G being 2-dimensional.
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Hence J ⊂ G1 ∪G2 and so G = G1 ∪G2. If S is empty, then G is cov-
ered by the disjoint nonempty closed sets G1 and G2 which contradicts the
connectivity of G.

Now assume that x is an isolated point of S. Let U be an open connected
neighborhood of x in G such that U ∩ S = {x}. Then x is a cutpoint of U .
But this contradicts Lemma 3.1.

We conclude that S separatesG and consequently has to be 1-dimensional
by Krupski [6]. �

Let s be the maximum of S (as a subset of [a, b]). Then Js = [a, s] also
separates G and G \ Js is the union of the disjoint open sets G′

1 and G′
2,

where G′
i
= Gi \ Js. Moreover, s ∈ G

′
1 ∩G

′
2. Hence, we can assume without

loss of generality that b ∈ G1 ∩G2.

Lemma 3.3. There is an open neighborhood U ⊂ G of b having compact

closure and a compact set F ⊂ G such that for every open neighborhood V
of b with V ⊂ U there exist a compact set MU ⊂ U and a continuous function

f : bdF (U ∩ F ) → S1 such that

(1) b ∈ U ∩ F ;
(2) MU is everywhere 2-dimensional and MU ∩ V �= ∅;
(3) dimbdU ≤ 1 and J ∩ bdU is a point;
(4) f is not extendable over bdF (U ∩ F ) ∪MU , but it is extendable over

bdF (U ∩ F ) ∪ P for every proper closed set P of MU .

Proof. Choose a compact neighborhood Ob of b in G. Since every
neighborhood of b is of dimension 2, there is a compact subset Y ⊂ Ob,
a closed set A ⊂ Y and a continuous function g : A → S1 not extendable
over Y . Let F be a minimal closed subset of Y containing A such that
g is not extendable over F . Then for every open subset W of F \A with
W ∩ A = ∅ there is a function fW : F \W → S1 extending g such that fW
can not be extended to a continuous function f̄W : F → S1. This means that
fW |bdF W is not extendable over W . Consequently, F \A is everywhere
two-dimensional. We can assume by homogeneity that b ∈ F \A. Indeed,
by Effros’ theorem [2], we take Ob so small that for every point x ∈ Ob there
is a homeomorphism h on G with h(b) = x. Then, consider the set h(J)
instead of J .

By Proposition 2.2, there are an open neighborhood U of b whose clo-
sure in G is a compact and a point c ∈ (a, b) such that bdU ∩ J = {c},
dimbdU ≤ 1 and U ∩A = ∅. Suppose V is an open neighborhood of b such
that V ⊂ U , and consider a continuous function fV : F \V → S1 extending g
which is not extendable over F . Let f = fV |bdF (U ∩ F ). Clearly, f cannot
be extended to a continuous function f̄ : U ∩ F → S1, but f can be extended
to a continuous function from (U ∩ F ) \ V into S1. Let MU be a minimal
closed subset of U ∩ F with the property that f cannot be extended to a
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continuous function f̃ : bdF (U ∩F )∪MU → S1. The minimality of MU im-
plies that f is extendable over bdF (U ∩ F ) ∪ P for any closed set P � MU .

Because f is extendable over (U ∩ F ) \ V , MU ∩ V �= ∅. It is clear that MU

is a continuum.
Assume that O is a nonempty open subset of MU such that dimO ≤ 1.

Taking a smaller open subset of O, we may assume that dimO ≤ 1. There
are two possibilities, either O ⊂ bdF (U ∩ F ) or O \ bdF (U ∩ F ) �= ∅. If
O ⊂ bdF (U ∩ F ), MU \O is a proper closed subset of MU having the same
properties as MU , which contradicts minimality. If O′ = O \ bdF (U ∩ F )
�= ∅, then P = MU \O′ is a proper closed subset of MU . So, there is an
extension f1 : bdF (U ∩ F ) ∪ P → S1 of f . Since dimO′ ≤ 1, we can ex-
tend f1 over bdF (U ∩ F ) ∪MU , a contradiction. Therefore, MU is every-
where 2-dimensional. �

Now, we can complete the proof of Theorem 1.1. Choose open neighbor-
hoods U and V of b, closed sets F ⊂ G and MU ⊂ U ∩ F and a continuous
function f : bdF (U ∩F ) → S1 satisfying the conditions (1)–(4) from Lemma
3.3. Let also J ∩ bdU = {c} and C = [c, b]. We can also assume that V
satisfies the additional property that for every two points p, q ∈ V there is
a homeomorphism ϕ of G supported on V with ϕ(p) = q. We may conse-
quently assume without loss of generality that b ∈ MU . Indeed, if b �∈ MU we
take a point x ∈ MU ∩V and a homeomorphism ϕ of G supported on V such
that ϕ(x) = b. Then the set ϕ(MU) satisfies all condition from Lemma 3.3
and contains b. Since MU is everywhere 2-dimensional, dim(MU ∩ V ) = 2.
Hence, MU ∩ V meets at least one of the sets Gi, i = 1, 2.

Assume first that MU ∩ V ∩G1 �= ∅ but MU ∩ V ∩G2 = ∅.
Then MU ∩W meets G1 for every neighborhood W of b with W ⊂ V .

Indeed, because dimMU ∩W = 2 and MU ∩W ∩G2 = ∅ it follows that
MU ∩G1 ∩W �= ∅. Consequently there is a neighborhood W of b in G
such that

(5) W ⊂ V , (MU ∩ V ) ∩ (G1 \W ) �= ∅ and MU ∩G1 ∩W �= ∅;
(6) For every x, y ∈ W there is a homeomorphism h of G supported on W

with h(x) = y.
Finally, choose points x ∈ MU ∩G1 ∩W and y ∈ W ∩G2 and a homeo-

morphism h : G → G supported on W with h(x) = y. Since h(z) = z for all

points z ∈ (MU ∩V )∩ (G1 \W ), the set K̃ = h(MU) meets both G1 and G2.

Moreover, the function f is not extendable over bdF (U ∩ F )∪ K̃ (otherwise
f would be extendable over bdF (U ∩ F ) ∪MU ). On the other hand, since

each of the sets Qi = h−1(K̃ ∩Gi), i = 1,2, is a proper closed subset of MU ,

f is extendable over each of the sets bdF (U ∩ F ) ∪ (K̃ ∩Gi). Let γ : bdU
→ S1 be an extension of f (recall that dimbdU ≤ 1 and bdF (U ∩ F ) is a
closed subset of bdU , so such γ exists). Because f is not extendable over
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quently assume without loss of generality that b ∈ MU . Indeed, if b �∈ MU we
take a point x ∈ MU ∩V and a homeomorphism ϕ of G supported on V such
that ϕ(x) = b. Then the set ϕ(MU) satisfies all condition from Lemma 3.3
and contains b. Since MU is everywhere 2-dimensional, dim(MU ∩ V ) = 2.
Hence, MU ∩ V meets at least one of the sets Gi, i = 1, 2.

Assume first that MU ∩ V ∩G1 �= ∅ but MU ∩ V ∩G2 = ∅.
Then MU ∩W meets G1 for every neighborhood W of b with W ⊂ V .

Indeed, because dimMU ∩W = 2 and MU ∩W ∩G2 = ∅ it follows that
MU ∩G1 ∩W �= ∅. Consequently there is a neighborhood W of b in G
such that

(5) W ⊂ V , (MU ∩ V ) ∩ (G1 \W ) �= ∅ and MU ∩G1 ∩W �= ∅;
(6) For every x, y ∈ W there is a homeomorphism h of G supported on W

with h(x) = y.
Finally, choose points x ∈ MU ∩G1 ∩W and y ∈ W ∩G2 and a homeo-

morphism h : G → G supported on W with h(x) = y. Since h(z) = z for all

points z ∈ (MU ∩V )∩ (G1 \W ), the set K̃ = h(MU) meets both G1 and G2.

Moreover, the function f is not extendable over bdF (U ∩ F )∪ K̃ (otherwise
f would be extendable over bdF (U ∩ F ) ∪MU ). On the other hand, since

each of the sets Qi = h−1(K̃ ∩Gi), i = 1,2, is a proper closed subset of MU ,

f is extendable over each of the sets bdF (U ∩ F ) ∪ (K̃ ∩Gi). Let γ : bdU
→ S1 be an extension of f (recall that dimbdU ≤ 1 and bdF (U ∩ F ) is a
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bdF (U ∩ F ) ∪ K̃, γ is not extendable over the set K = bdU ∪ K̃ ∪ C. De-
note Pi = C ∪ (K ∩Gi), i = 1, 2. Obviously, P1 ∪ P2 = K and P1 ∩ P2 = C.
Then for each i we have Pi ∩ bdU = {c} ∪ (bdU ∩Gi). So, the function
γ|(Pi ∩ bdU) is extendable over the set Pi because dimC ∪bdU = 1. Hence,
we can apply Proposition 2.3 (with A = bdU ) to conclude that there is a
continuous function β : C → S1 such that β is not nullhomotopic, a contra-
diction.

Assume next that MU ∩ V meets both G1 and G2. We can now proceed

as above (considering MU instead of K̃) to obtain the desired contradiction.
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